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Abstract— This paper addresses the distributed bipartite
containment tracking-control problem for autonomous vehicles
steered by multiple leaders. Some leaders are cooperative
and others are competitive, so the vehicles form a so-called
coopetition network; in which the interaction links may be
negative or positive. The presence of cooperative and antag-
onistic leaders does not enable the system to achieve consensus.
Instead, the followers’ states converge to a residual compact set,
not predefined, but depending only on the leaders’ states. We
establish global exponential stability for this so-called bipartite
containment set, and we compute the exact equilibria to which
all agents converge inside of it. Our proofs are constructive,
that is, we provide strict Lyapunov functions, which also allow
us to establish robustness with respect to external disturbances.
Numerical simulations illustrate our theoretical findings.

I. INTRODUCTION

Coordination of multi-agent networks has received con-
siderable attention due to multiple potential applications in
engineering and social sciences [1]. A large number of con-
sensus problems have been extensively studied, e.g., for first-
order, second-order, and for linear high-order dynamics [2]. In
particular, when the network contains a leader, all followers
converge to the leader’s states and achieve consensus. On the
other hand, when the network contains more than one leader,
it is impossible to achieve classical consensus and it appears
more appropriate to speak of containment control [3]. The
latter consists in making all followers’ states converge to the
convex hull determined only by leaders’ initial conditions.

There are various studies on distributed containment con-
trol, e.g., for social networks [4] or for networks of single-
integrators [5], double-integrators [6], and general linear au-
tonomous systems [7]. Yet, most of the current research on the
consensus or containment problems for multi-agent systems
focus on cooperative networks, i.e., the interactions between
nodes are characterised only by non-negative edge weights,
although there are many scenarii in which agents may com-
pete. These may appear, e.g., in robotics, in the context of
herding control [8], in aerospace applications involving control
of multiple satellites that must face debris represented as
non-cooperative agents, or in the context of social networks
that include trust/distrust relationship between agents [9]. The
latter reference extends the notion of consensus to networks
containing antagonistic interactions, and provides a general
graph-theory-based framework to deal with signed networks,
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also called coopetition networks [10]. In this case, the edge
weights may be either positive or negative and at least two
consensus equilibria appear—we speak of bipartite consensus
[9]. In the case of networks with multiple cooperative and an-
tagonistic leaders, the overall behavior is even more complex
[11] and more than two consensus equilibria may appear [12].

To analyse the complex behavior of multi-leader coopetition
networks, in [13] the notion of containment control is extended
to bipartite containment tracking-control. The latter consists in
making all followers converge to the geometric space spanned
by all the leaders’ trajectories and their symmetric counter-
parts. Bipartite containment has been also studied in [14], [15],
where the followers converge asymptotically into the convex
hull, determined by leaders’ initial conditions, but only in [13]
limit points for the followers’ states are given explicitly. In
[14], only cooperative leaders are considered, so they do not
apply to scenarii involving, for example, obstacle avoidance,
where an obstacle may be considered as a competitive leader.

In this paper, we study the bipartite containment tracking
problem presented in [13] over structurally balanced multi-
leader coopetition networks described by first-order systems,
and we provide the exact equilibrium points for the followers.
Unlike [13], we assume that the leaders do not interact. Our
main contribution is to establish exponential stability of the
containment set, and ensure robustness with respect to additive
perturbations. On the other hand, in contrast to all references
mentioned previously, our proofs are constructive; we provide
a strict Lyapunov function. Exponential stability is a stronger
property than the convergence to the interior of a containment
set and provides a basis to establish input-to-state stability
(ISS).

Our contributions are based on the framework introduced
in [16]. We recast the bipartite containment problem into a
problem of stability of a set of the appropriately defined errors.
Then, we extend the main results of [17] which provides a
Lyapunov characterisation for matrices admitting one zero
eigenvalue and others having negative real part. We extend this
result to the case of matrices admitting multiple zero eigen-
values and by that we establish global exponential stability of
the bipartite containment set. Furthermore, we give the explicit
limit values of followers by constructing a matrix determined
by all eigenvectors associated to the zero eigenvalues.

II. PROBLEM FORMULATION

Consider a group of n dynamical systems modeled by

ẋi = ui, xi, ui ∈ R, i ∈ IN (1)

where IN := {1, 2, . . . , n}, but all the contents of this paper
hold if xi, ui ∈ RN with N > 1. It is well-known–see e.g.



[3]– that under the distributed control law

ui = −
n∑
j=1

aij(xi − xj), (2)

where aij ∈ R≥0 is the adjacency weight between the nodes i
and j, the consensus problem, that is,

lim
t→∞

[xj(t)− xi(t)] = 0 ∀ i, j ≤ n, (3)

is solved if and only if the underlying graph contains a directed
spanning tree. More precisely, aij > 0 if there is a directed
interconnection from the ith node to the jth node, aij = 0
if there is not, and there exists at least one node from which
any other node may be reached. Moreover, the consensus
equilibrium may be computed explicitly. Indeed, if there exists
a directed spanning tree, the resulting Laplacian matrix, L :=
[`ij ] ∈ RN×N , where

`ij =

{ ∑
k∈IN

aik i = j

−aij i 6= j,
(4)

has exactly one zero eigenvalue [3]. Thus, the consensus
equilibrium xm is uniquely calculated by the left eigenvector
vl associated to that eigenvalue, xm := v>l x(0). Furthermore,
a strict Lyapunov function can be constructed to establish
exponential stability of the origin in the space of the syn-
chronisation errors e := x− vrxm [17], where vr is the right
eigenvector associated to the zero eigenvalue.

In the case of a network containing nodes with interactions
that can be either cooperative, such that aij > 0 for some i,
j ≤ n or competitive, such that, aij < 0 for some i, j ≤ n, the
distributed consensus control law (2) becomes

ui = −
n∑
j=1

|aij |(xi − sgn(aij)xj), (5)

and the elements of the associated Laplacian matrix are

`ij =

{ ∑
k∈IN

|aik| i = j

−aij i 6= j.
(6)

Agents on a directed coopetition network with a leader or a
directed spanning tree achieve bipartite consensus, under the
distributed control law (5), if and only if the underlying graph
is structurally balanced [9]. A signed graph is structurally
balanced if it may be split into two disjoint sets of vertices
V1 and V2, where V1 ∪ V2 = V,V1 ∩ V2 = ∅ such that
for every i, j ∈ Vp, p ∈ {1, 2} if aij ≥ 0 while for every
i ∈ Vp, j ∈ Vq , with p, q ∈ {1, 2}, p 6= q if aij ≤ 0. It
is structurally unbalanced, otherwise. The Laplacian matrix
of a structurally balanced graph has a unique zero eigenvalue
[9] and the associated right eigenvector has all entries equal
to ±1, thereby agents converge to the same state in modulus
but different in signs. In such networks, moreover, several an-
tagonistic agents, described as competitive leaders, that inject
disinformation into the network may appear. In this particular
case, agents can no longer achieve bipartite consensus. Instead,
they can achieve bipartite containment [13], where followers
converge to the convex hull spanned by all cooperative leaders’

trajectories and competitive leaders’ symmetric trajectories.
More precisely, the achievable objective is bipartite contain-
ment tracking, that is,

lim
t→∞

[|xj(t)| −max
i∈L
|xi(t)|] ≤ 0, j ∈ F , (7)

which is the problem solved, e.g., in [13]– [15], where L and
F are sets of leader and follower nodes respectively.

In this paper we analyse the behavior of the networked sys-
tems (1) in closed loop with the distributed control law (5) and
under the assumption that multiple leaders (cooperative and
competitive) interfere. Beyond the inequality in (7), commonly
found in the literature—cf. [13], we give the explicit limit
values of the followers’ states depending only on the initial
conditions of the leaders. For clarity we stress that we consider
a leader node to be one that has no incoming edges and we
assume them to be static. To that end, we pose the following

Standing Assumption:

1) the signed graph is structurally balanced;
2) there are m leaders such that 1 ≤ m ≤ n;
3) given each follower νj , for all j ∈ F with
F := {m+ 1,m+ 2, . . . , n}, there exists at least one
leader νi, for all i ∈ L with L := {1, 2, . . . ,m}, such
that there exists at least one path from νi to νj —cf. [13,
Condition 1].

In the case of a network containing only one leader, the
Standing Assumption boils down to the necessary condition
for consensus that requires the existence of a directed spanning
tree. As the networks considered here contain, a priori, more
than one leader, the resulting Laplacian matrix has as many
zero eigenvalues and associated eigenvectors as the number of
leaders [18]. This also results in multiple convergence points
for the agents. Therefore, in contrast to the consensus equi-
librium xm = v>l x(0) for networks with one leader, the final
states of the agents, for multi-leader networks, are determined
by all eigenvectors associated to the zero eigenvalues. One of
this paper’s contributions is to show that under the control law
(5) and the Standing Assumption, the limit-values of the agents
are given by

xm := Vx, (8)

in which V is a matrix determined by all the eigenvectors
associated to the m zero eigenvalues of the Laplacian matrix.
More precisely, the matrix V is given by

V :=
m∑
i=1


vri,1
vri,2

...
vri,n

 [vli,1 vli,2 . . . vli,n
]
, (9)

where for each j ∈ IN , vri,j and vli,j denote, respectively,
the jth element of the ith right and left eigenvector of the
Laplacian matrix corresponding to the ith 0 eigenvalue. We
will demonstrate further below, the properties of the terms of
the right and left eigenvectors. Considering these, we establish
bipartite containment of the system and, more significantly,
that x→ xm exponentially.



III. ANALYSIS APPROACH

Our main results are based on original technical statements
for networks having an associated Laplacian matrix with mul-
tiple null eigenvalues. These are of two kinds. First, we follow
the framework brought in [16], and we show how to construct
the matrix V in (8), which defines the average states of the
agents. Then, we extend the method of [17] on constructing
strict Lyapunov functions for linear systems with a simple zero
eigenvalue, to the case of multiple zero eigenvalues. To that
end, we recall the following definition from [18] to introduce
some useful sets of vertices in a graph.

Definition 1: A reachable setRj is the set containing vertex
j and all vertices i belonging to the directed path from j to i. A
set R of vertices in a graph is called a reach if it is a maximal
reachable set that consists in a leader and its followers. For
each reach Ri of a graph, we define the exclusive part of Ri
to be the set Hi = Ri\

⋃
j 6=iRj , that is, the set of followers

influenced only by the leader i, and the common part ofRi to
be the set Ci = Ri\Hi, that is, the set of followers influenced
by other leaders than the ith one.

The following statement, which is an original contribution
of this paper, extends Corollary 4.2 of [18] to the case of struc-
turally balanced signed networks and leads to the construction
of the matrix V.

Lemma 1: Let G denote a structurally balanced directed
signed graph, and letL denote the associated Laplacian matrix.
Suppose G has n vertices and m leaders. Then the algebraic
and geometric multiplicity of the eigenvalue 0 is equal to m.
Furthermore, the associated eigenspace in Rn has as basis
{vr1 , vr2 , . . . , vrm}, where

1) vri,j = 0 for j /∈ Ri,

2) vri,j =

{
1, if (νj , νi) ∈ V1
−1, if νj ∈ V1, νi ∈ V2

for j ∈ Hi,

3) vri,j ∈
{

(0, 1), if (νj , νi) ∈ V1
(−1, 0), if νj ∈ V1, νi ∈ V2

for j ∈ Ci,

4)
∑
j |vri | = 1n,

V1 and V2 are the two disjoint sets of vertices, i ∈ IM :=
{1, 2, . . . ,m}, j ∈ IN , and vri,j denotes the jth element of
vri .

Sketch of Proof: From Definition 1 and under the Standing
Assumption, the number of leaders is equal to the num-
ber of reaches. The statement follows by applying a gauge
transformation, which consists in a change of coordinates
performed by the matrix D = diag(σ), where σ =
[σ1, ..., σn], σj ∈ {1,−1}, j ∈ IN [9], as the considered
signed network is structurally balanced, to transform it into
an unsigned graph and following along the lines of the proof
in [18, Corollary 4.2]. �

As the m leaders have no incoming edges, the Laplacian
matrix has all entries equal to 0 for its first m rows. Then,
we obtain the following form for the m left eigenvectors
associated to the zero eigenvalues:

vli,j =

{
1 i = j
0 i 6= j

∀i ∈ IM,∀j ∈ IN . (10)

Hence, we can split V in four block as follows:

V =
m∑
i=1

vriv
>
li =

[
Vl V01
Vf V02

]
, (11)

where Vl ∈ Rm×m represents the leaders’ interactions, Vf ∈
R(n−m)×m represents the leader-follower interactions and
V01 ∈ Rm×(n−m) and V02 ∈ R(n−m)×(n−m) are null. More
precisely, from (10), we have

Vl =

 vr1,1vl1,1
. . .

vrm,m
vlm,m

 = Im×m, (12a)

Vf =

vr1,m+1
. . . vrm,m+1

...
...

...
vr1,n . . . vrm,n

 , (12b)

so V has the following particular form

V =

[
Im×m 0m×(n−m)

Vf 0(n−m)×(n−m)

]
. (13)

Notice that in view of (12b) the elements of Vf have the
same properties as the basis defined in Lemma 1. This is
significant because Vf is the matrix that defines the limit points
of the followers as x → xm, where xm is defined by (8).
Moreover, the followers’ states may be influenced by other
followers’ states during their trajectories depending on the
network’s topology, but it follows from (8) that the final states
of the followers are defined only by the leaders’ states.

Now, similarly to the case of networks with one leader,
where the error is defined as e := x− vrxm, with xm := v>l x,
for multi-leader coopetition networks, we define the consensus
errors as

e := [I − V]x. (14)

Then, to establish that x→ xm and, consequently, the bipar-
tite containment objective defined by (7), we will prove the
stronger property of global exponential stability of the set
{e = 0}. For that, we shall show how to construct strict—in
the space of e— Lyapunov functions, based on the following
proposition, which is another original contribution of this
paper and extends Proposition 1 of [17] to the case of signed
networks with multiple leaders.

Proposition 1: Let G be a structurally balanced directed
signed network containing multiple leaders. Then, the follow-
ing are equivalent:

(i) the graph has m leaders, and given each follower
νj ,∀j ∈ F , there exists at least one leader νi,∀i ∈ L
such that there exists at least one path from νi to νj ,

(ii) for any Q ∈ RN×N , Q = Q> > 0 and for any
{α1, α2, . . . , αm} with αi > 0, there exists a matrix
P ∈ RN×N , P = P> > 0 such that

PL+ L>P = Q−
m∑
i=1

αi(Pvriv
>
li + vliv

>
riP ), (15)

where vri, vli ∈ R are the right and left eigenvectors of
L associated with the ith 0 eigenvalue.



Proof: (i) ⇒ (ii): By assumption, the graph G has m
leaders. Then, from Lemma 1, it follows that L has m zero
eigenvalues: 0 = λ1 = · · · = λm < <e(λm+1) ≤
· · · ≤ <e(λn). Following the lines the proof of Lemma
2 of [17], we write the Jordan decomposition of L as
L = UΛU−1 =

∑m
i=1 λi(L)vriv

>
li + U1Λ1U

†
1 with Λ1 ∈

Cn−m×n−m, U =
[
vr1 . . . vrm U1

]
∈ Cn×n, and

U−1 =
[
v>l1 . . . v>lm U†1

]>
∈ Cn×n. For any αi > 0

define R(αi) = L+
∑m
i=1 αivriv

>
li . From this decomposition

and the properties of Λ1, <e{λj(R)} > 0 for all j ≤ n.
−R(αi) is Hurwitz, therefore for any Q = Q> > 0 and αi >
0, i ≤ m, there exists P = P> > 0 such that

− P (L+
m∑
i=1

αivriv
>
li )− (L+

m∑
i=1

αivriv
>
li )
>P = −Q.

Then, we obtain the equation in (15).
(ii) ⇒ (i): Let statement (ii) hold and assume that

the Laplacian matrix has m + 1 zero eigenvalues. In
view of Lemma 1, the assumption that the system has
m leaders does not hold. Now, the Jordan decomposi-
tion of L has the form L =

∑m+1
i=1 λi(L)vriv

>
li +

U1Λ1U
†
1 with U =

[
vr1 . . . vrm+1 U1

]
and U−1 =[

v>l1 . . . v>lm+1
U†1

]>
. Next let us consider R(αi) =

L +
∑m
i=1 αivriv

>
li which admits the Jordan decomposition

R := UΛRU
−1, where

ΛR :=


α1

. . .
αm

0
Λ1

 .
Clearly,R is not positive definite beause one of its eigenvalues
is equal to zero. Then, there exists a matrix Q = Q> for
which there does not exist a matrix P = P> such that
−PR−R>P = −Q, which contradicts statement (ii).

IV. MAIN RESULTS

In this section, we will present our main results on first-
order systems and we will establish robustness of the bipartite
containment tracking in the sense of ISS, with respect to
external bounded perturbations.

A. Exponential Stability

Consider the system (1), interconnected with the bipartite
containment control law (5). We analyse the dynamics of the
errors (14). Differentiating the latter on both sides, to obtain

ė = [I − V]ẋ (16)

and using (1) and (5), we obtain the closed-loop dynamical
equations

ė = −Le. (17)

The bipartite containment problem is now recast as a problem
of stability analysis of the dynamical system (17). Thus, rely-
ing on Proposition 1, our next statement provides sufficient
conditions to achieve global exponential stability of the set

{e = 0}, which is equivalent to the bipartite containment
tracking objective (7).

Proposition 2: Consider the system (1) with the bipartite
containment control law (5). Under the Standing Assumption,
for any Q = Q> > 0 there exists P = P> > 0 such that

V (e) = e>Pe, V̇ (e) = −e>Qe. (18)

Then, the consensus set {e = 0} is exponentially stable for all
initial states x(0) ∈ Rn.

Proof: Let Q = Q> > 0 and α > 0 be arbitrar-
ily fixed. Since by the Standing Assumption, by Proposi-
tion 1, ∃P = P> > 0 such that (15) holds. Then, consider the
Lyapunov function candidate V (e) := e>Pe. The total time
derivative of V along the trajectories yields

V̇ (e) = −e>Qe+ e>
m∑
i=1

αi(Pvriv
>
li + vliv

>
riP )e.

On the other hand, replacing (14) we obtain
m∑
i=1

αiPvriv
>
li e =

m∑
i=1

αiPvriv
>
li [I −

m∑
i=1

vriv
>
li ]x

=
m∑
i=1

αi(Pvriv
>
li − Pvriv>li )x = 0

for which we used the identity v>li vri = 1, i ≤ m. Similarly,
we obtain e>

∑m
i=1 αivliv

>
riP = 0. In consequence,

V̇ (e) = −e>Qe ≤ −qm|e|2, (19)

where qm > 0 is the smallest eigenvalue ofQ, so the statement
of the proposition follows.

The following statement provides explicit expressions for
the limit values of the followers’ states.

Proposition 3: Consider the system (1) with the bipartite
containment control law (5). Under the Standing Assumption,
the bipartite containment objective is achieved, that is the
inequality (7) holds. Furthermore, if the leaders are static (i.e.,
ẋl = 0), the final states of the followers satisfy

lim
t→∞

xf (t) = Vfxl, (20)

where xl and xf are the leaders’ and the followers’ states
respectively and Vf is given in (12b).

Proof: Differentiating the weighted average of the system
(8), we obtain the dynamical equation below

ẋm = Vẋ = −VLx = 0, (21)

with v>liL = 0 for each i ≤ m. Its solution
gives xm(t) = xm(0). From Proposition 2, we have
limt→∞ e(t) = 0, which gives limt→∞ x(t) = xm(t) =
xm(0). Then, using (13), we obtain the relation in (20). Under
the Standing Assumption and from Item 4 of Lemma 1, we
have

lim
t→∞
|xfj (t)| = |

m∑
i=1

vri,m+j
xli | ≤

m∑
i=1

|vri,m+j
| max
1≤i≤m

|xli |

≤ max
1≤i≤m

|xli |

Then, the bipartite containment objective in (7) is achieved.



B. Robustness Analysis

Consider the perturbed first-order systems

ẋi = ui + di(t), (22)

where the disturbances di : R≥0 → Rn are assumed to be
locally integrable functions. Under the control law (5), the
system (22) becomes

ẋ = −Lx+ d(t). (23)

Differentiating the errors in (16) on both sides, and using (23)
we obtain

ė = −Le+ [I − V]d(t). (24)

Then, we have the following.
Proposition 4: The closed-loop system (24), under the

Standing Assumption, is ISS with respect to an essentially
bounded, locally integrable external disturbance.

Proof: Consider the Lyapunov function candidate in (18).
Its derivative gives

V̇ (e) =
∂V

∂e
(−Le) +

∂V

∂e
[I − V]d.

From (19), we have

V̇ (e) ≤ −e>Qe+
∂V

∂e
[I − V]d

≤ −qm|e|2 + 2λP |e||[I − V]||d|.

We know that 0 ≤ |[I − V]| ≤ |I|+ |V| ≤ 2, because all
eigenvalues of I are equal to 1 and all eigenvalues of |V| are
either 1 or 0. Let δ > 0 be such that c := qm − 2λP

δ > 0.
Then,

V̇ (e) ≤ −c|e|2 + 2δ|d|2.

The statement follows.

V. SIMULATION RESULTS

To illustrate our theoretical findings we present a numerical
example on a system of multi-wheeled mobile robots modeled
as unicycles. Let

[
rxi

ryi
]> ∈ R2 be the position of the

center of the ith robot, θi ∈ R the orientation of the ith robot,
and vi ∈ R and ωi ∈ R the linear and angular velocities of the
ith robot. Then, the dynamics of the wheeled mobile robots
can be modeled as [19]

ṙxi = vi cos(θi), ṙyi = vi sin(θi), θ̇i = ωi. (25)

To apply the consensus control law (5)—designed for (1)—
on this system we apply a preliminary feedback linearizing
control. To that end, we rewrite the system’s dynamics in terms
of the position of a point located at a distance δ off the axis
joining the wheels. That is, the point pi =

[
pxi

pyi
]>

, where
pxi = rxi + δi cos(θi) and pyi = ryi + δi sin(θi). For the
purpose of simulation, we use δi = 0.1m. Differentiating pi
with respect to time and by letting[

vi
ωi

]
=

[
cos(θi) sin(θi)
− 1
δi

sin(θi)
1
δi

cos(θi)

] [
uxi

uyi

]
, (26)

we get
[
ṗxi ṗyi

]>
=
[
uxi uyi

]>
, which is a simplified

kinematic equation in the form of first-order dynamics. For the
simulations examples, we implemented (26) with ui as in (5),
where xi = [pxi

pyi ].
We consider a coopetition network containing three leaders

xi, i ≤ 3 and four followers xj , 4 ≤ j ≤ 7, communicating
over a directed graph as the one depicted in Figure 1. The
competitive leader x3 represents an obstacle in the system.

x4 x5

x7x6

x1

x2 x3

1

11
1

3

5 -3

Fig. 1. A network of seven mobile robots with 2 cooperative and 1
competitive leaders.

According to (6) , the Laplacian matrix corresponding to the
graph is

L =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−3 0 0 5 −1 −1 0
0 0 0 −1 2 0 −1
0 −5 0 −1 0 7 −1
0 0 3 0 −1 −1 5


and its eigenvalues are λL = {0, 0, 0, 1.38, 4.80, 7.81, 5}.

The network may be bipartitioned into two subgroups as
V1 = {x1, x2, x4, x5, x6, x7}, V2 = {x3} so is structurally
balanced. The matrix Vf in (12b) is calculated as below.

Vf =

 0.7038 0.1923 −0.1038
0.4038 0.1923 −0.4038
0.1154 0.7692 −0.1154
0.1038 0.1923 −0.7038

 .
We notice that Vf has the properties stated on Items 1–4

of Lemma 1. Since each follower is influenced by the three
leaders, 0 is not an element of Vf (Item 1). Moreover, none
of the followers corresponds to the exclusive part of a reach,
so Vf does not have an element equal to ±1 (Item 2). From
the structural-balance property, all elements corresponding to
leaders x1 and x2 (the first two columns) are positive and less
than one, whereas the elements corresponding to leader x3 (on
the last column) are negative and greater than−1 (Item 3). We
also remark that the sum of the absolute value of the terms on
each row is equal to 1 (Item 4).

Let P be generated by (15) with Q = IN and α = 20,
then we obtain λP = 0.6247. Consider the system (25) and
the bipartite containment law (5). The respective initial states
of the robots are rx(0) = [3.5, 4,−2,−6.5, 5.5,−3.5, 6]>,
ry(0) = [2, 3.5,−3,−1,−3,−3,−2.5]>, θi(0) = π

2 for all
i ∈ IN . Figure 2 depicts the simulation results. The
followers converge to the convex hull spanned by coop-
erative leaders’ states and competitive leader’s x3 sym-
metric state. Using (20) and the coordinate transformation,
we obtain the following limit values for the followers’
states: limt→∞ rxf

(t) =
[
3.44 2.99 3.69 2.54

]>
and

limt→∞ ryf (t) =
[
2.37 2.61 3.25 2.85

]>
.
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Fig. 2. Bipartite containment tracking of system (25) with control input
(26), [uxi uyi ] =: ui and ui as in (5). The filled dots are the final states
of the mobile robots and the dotted lines represent the trajectory of the
four followers. The yellow diamond represents the symmetric state of the
antagonistic leader x3.

We now perform simulations for the system (25) with
the bipartite containment law (5), with di(t) = σi(t)

[
1 1

]>
where σi(t) is given as below

σi(t) =


tanh(t− 10)− 1 + 1

(t+10) i ∈ {5, 6}
− tanh(t− 10) + 1− 1

(t+10) i = 4

0 i ∈ {1, 2, 3, 7}.
(27)

Figure 3 depicts the simulation results. During the first 10s, the
perturbation d(t) prevents the achievement of bipartite con-
tainment tracking and the followers reach a stable state with a
steady-state error. However, as the perturbation vahishes, after
10s, the trajectories of the followers move towards the convex
hull, spanned by cooperative leaders’ states and antagonistic
leader’s symmetric state. We obtain the same limit values as
before for the followers.
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Fig. 3. Bipartite containment tracking of system (25) under the same
conditions as in Figure 2 and under the effect of the perturbation in (27).

VI. CONCLUSIONS
We presented a Lyapunov approach to analyse the expo-

nential stability of the bipartite containment tracking problem
of simple-integrators over structurally balanced multi-leader
coopetition networks. Via a change of coordinates, we have
shown a bound for the convergence of the followers. Moreover,
we have generalised the Lyapunov equation characterisation
of the Hurwitz property of a matrix to matrices having more
than one zero eigenvalue, which allowed us to construct strict
Lyapunov functions. Disposing of strict Lyapunov functions
allowed us to establish the robustness of the system with a
bounded disturbance. Further research is focused on extending
these results to more general classes of dynamical systems and
industrial deployment of multi-robot systems.
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