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Magneto-visual-inertial Dead-reckoning : Improving Estimation
Consistency by Invariance

David Caruso!?, Alexandre Eudes?, Martial Sanfourche?, David Vissiére! and Guy Le Besnerais

Abstract— Tractable algorithms used for 6DOF
visual-inertial odometry have decades-long history of
estimation consistency issues. Those arise in partic-
ular in two well-studied filters: namely the EKF-
SLAM and MSCKF. Recently, strong theoretical
works linked the error-state of these filters with
their consistency properties; these results led to the
synthesis of far more consistent filters. In previous
works, we have shown that using similar filter for the
fusion of magneto-inertial sensors with optical ones
improved classical visual-inertial navigation systems.
The consistency of those novel magneto-visual-inertial
filters were, however, not addressed until now. This
work does. We apply invariance theory findings to
the specific case of magneto-inertial odometry and
magneto-visual-inertial odometry for the synthesis of
a filter with interesting consistency properties. We de-
scribe thoroughly such an invariant filter, implement
it and conduct experiments on carefully captured
data from real sensor. By comparing the results of
non-invariant, observability-constrained and invariant
versions of the filter, we find that the invariant version
(i) shows an error estimate that is consistent with
observability of the system, (ii) is applicable in case
of unknown heading at initialization, (iii) improves
long-term behavior of the filter and (iv) exhibits a
lower normalized estimation error. We experiment
on challenging scenarios for regular visual-inertial
pedestrian navigation systems.

I. INTRODUCTION

We address here the problem of an embedded device
position and orientation estimation. The goal is to
estimate these quantities with minimum drift with power
efficiency and robustness with respect to the various
type of motion. We also target an accurate estimation of
the uncertainty of these quantities. In one hand, Visual-
Inertial Odometry (v1O) has become a fundamental tech-
nology for positioning in spatial computing applications
such as augmented or virtual reality. In the other hand,
Magneto-Inertial Dead-Reckoning (MI-DR) uses the local
magnetic perturbations for correcting accelerometers inte-
gration drift and recently showed dramatic performance
improvement [1]. As failure modes of MI-DR and VIO
are disjoint, it was shown that a fused Magneto-Visual-
Inertial Navigation System (MVINS) estimator was more
robust than either vio and MI-DR [2,3]. These latter
references use an algorithm based on the Multi-State
Constraint Filter (MsCKF) [4] adapted for MVINS problem
that we will name here Magneto-Inertial Multi-State
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Constraint Filter (MI-MSCKF). It is well-known that, in
the context of V1O, the MSCKF applied without extra care
is not consistent: the state errors are not well represented
by the estimated covariance [5]. In this extent, there is
no reason why the MI-MSCKF algorithm presented in [3]
would be free from the same flaws than its inspirator.

This paper shows that these inconsistencies are signif-
icant issues for MVINS, and address them by leveraging
the link between the filter’s error-state definition and
its consistency property. We base our work on theory
developped in [6], that was already recently applied to Vio
[7]. The contributions of this paper are (i) the description
of a Lie group-based parametrization for the MVINS model
inspired by invariant theory of [6] (ii) the proof that
a MSCKF-like filter based on this parametrization has
consistency properties (we use here the unobservable
stochastic transformation of [7] with some corrections on
their mathematical developments), (iii) the comparison of
several variants of MVINS filters on a real dataset showing
the advantages of the invariant filter.

Furthermore, we prove consistency properties from the
MSCKF equations directly. In contrast, all previous works
we are aware of, transpose such theoritical results from
the associated EKF-SLAM filter.

II. RELATED WORK

It has been known for many years that consistency
issues can arise from linearization errors in the EKF when
using it in a Simultaneous Localization and Mapping
(sLAaM) context. The authors of [8] demonstrated that
this stems in part from the fact that some state-variables
are used in several measurements equations with different
linearization points. In constrast, full batch optimization
of the underlying cost function does not suffer from these
sources of spurious observability. However, batch methods
are computationally intensive and even if incremental
solvers exist [9,10], truly real-time implementations
marginalize past poses and face the same consistency
issues [11]. An often used workaround is to freeze the
linearization point of all variables already involved in
marginalization [12]. This idea was applied to the MSCKF
in [13] and to a batch approach in [11]. Yet the potential
negative side effects of this practice are unclear.

Another solution is to alter artificially the transition
and measurement matrices of a filter in order to enforce
the non-observable space of linearized model [14]. This
method is referred as Observability Constrained EKF
(OC-EKF) in the literature and was applied to MSCKF with



success in [15]. This approach is however not theoreticaly
strongly founded.

The influence of parametrization of the error-state on
the consistency property of EKF has been the subject
of research for a long time [16-18]. However, the most
promising works regarding this idea arose from the theory
of invariance of estimators [19,20] applied to the EKF
in [21] and later to SLAM in [6]. In the latter work, the
authors expoloits the symetries of the problem to design
the error-state, and synthesize a consistent EKF-SLAM
(EKF-SLAM). This “invariant“ parametrization ideas dis-
seminated quickly and were used in various contexts
such as in [7,22]. In particular, [23] is very close to our
approach, while targeting a totally different application.
Very valuable information about the mathematics behind
these development can be found in [24, 25].

III. PROBLEM STATEMENT

A. Kalman filtering with Non-linear Error

We use a very general formulation of the Kalman filter
as in [24, 26], in which uncertainty is represented through
the covariance matrix 3e of a non-linear error vector
e. The latter is defined through an abstract retraction
operator H:

X =XMHe, exN(0,Xe) (1)
where X is the true state value, X is the estimated one
and N the normal distribution. Error’s selection is merely
a design choice; it defines the space where the uncertainty
of the filter is approximated as a Gaussian. It also governs
the linearization process of the filter. Therefore it has a
major impact on the filter performance.

Loosely speaking, this error operator must verify
expected properties for an error such as Xy H0 = X and
have a reciprocal operator B so that e = X 8 X around
zero. To use it in a EKF, it must also be continuous and
differentiable at least in the vicinity of zero.

Let us consider the following generic discrete dynamic
model:

(propagation) X1 = f(Xg, ug, mx),

(measurement) y=h(Xy) +v (2)

with n o N(0,Ep) (respectively v, o N(0,%¢)) the
Gaussian noise term of the propagation (respectively
measurement) equation.

With this model, the Kalman propagation step writes

Xpg1k = F (X, 0, 0) (3)
Sepiifk = PuTer®] + G ZuGl + CInCL,  (4)
where @y, « N(ug, Xy, ) is a corrupted measurement of
the input u;. Matrices ®;,, G, Cj, are respectively the

Jacobian matrices of the process function f with respect to
the state, the input, and the stochastic input of the model.

Denoting ey, : e,u,n — f(f(k He,u,n) Ef(Xk, 1y,0), these
matrices are formally defined by:

_ Oep

8eb
T = Oe ~ ou

G =
0,1;,0 du

_ %
Cr =3,

(5)

0,1iy,,0 0,1iy;,0

The update step with measurement g, writes

Xpp1 =X B (Kk+1 (?Jk+1 - h(Xk+1|k,0))> (6)
Sept1 =T - Ky Hp 1) Zep )k (7)

where the linearized measurement matrix Hy ; is

9 N
Hp1= 55 (h(xk+1|k & e)) ’9:0 (8)

and Kalman gain Ky

—1
T
Ki1 = Zepp1pHr (Hk+12ek+1|ka+1 + Ec) :
(9)
Note that the choice of the error is decoupled from how
the mean estimates are kept in memory and propagated.

B. The MI-DR model and the MI-MSCKF

This section describes the MVINS filter of [3].
We will call RY € SO(3) the attitude of the body frame
(body to world convention), v, p* respectively the world
velocity and position of the sensor, BY the magnetic field
at the current sensor position in world aligned frame,
wb ab vBY respectively the instantaneous rotationnal
velocity, acceleration and the gradient of magnetic field
at sensor position in sensor-aligned frame. [w’]y is the
skew symmetric matrix associated to the 3D vector wb.
We start from the continuous model of MI-DR:

RY = R [w!]y, (10)
¥ = Rwab +gw; pw _ vw’ (11)
BY = r*“vBY RV TvY. (12)

The magnetic equation (12) is specific to MI-DR technique.
The gradient of magnetic field VB? is measured from
a network of magnetometer and renders the speed in
body frame observable provided it is non-singular. In
environments where compass capability is strongly altered
by magnetic perturbations, such as indoor, this equation
allows to efficiently correct accelerometers integration.

In [3] it is shown how to integrate this model to obtain
the discrete dynamic model f:

R’ | = R}’ ARy, (13)
Vir1 = Vi + 8" At + R Avy, (14)
1 —~
Pip1 = P + Vi Al + 58V AR + R Apy, (15)
By, = BY +RyAB, 4RI v}’ + R ABg R} g
+ RkABa;k' (16)

Where we introduced abruptly the notations’v&%k € 50(3),
Avy € R?, Apy, € R? and ABy, € R*3, ABy € R,
AB,,, € R3. They stand for integrated quantities that can



be computed from received measurements. Their exact

expressions depend on a choice of integration method.

They do not matter here (see [3] for more details).

Within the MSCKF technique, the state of the filter is
augmented by a few past states, we define it:

X, = (X} XT) a7)
where XJ' = (R}f,pg,v};’,B}:) is the current state and
X3 = (R, Phne---» Ri_1,Pj_q) is compound of
nc "stochastic clones” [4] states (here past camera poses
still in the sliding window). In [3], the error-state was
simply defined with a substration between real state and
estimated state, except for its rotational part where the
distance loggo(s) (RRT) is used.

The MI-MSCKF filter uses two measurements. On one
hand magnetic measurement is a direct measurement of
the field state, in body frame: hmagn(Xy,) = RwTBg.

On the other hand, a visual measurement is built

when a corner feature’s track ends in the image stream.

For a given track, the measurement equation collects
the reprojection errors computed on all images taken at
stochastic cloned instants:

N
. Tr(R}é’_l(l—p}:))T} (18)

where 7 is the projection function of the camera. The
feature measurement is linearized according to:

hfeat(X,1) = [w(ﬁ;{nc(l—px))T

Ppont (X B e, 1" +61) ~ hgt (X, 1") + Fe + Es1  (19)

where F (resp. E) is the Jacobian of hg,,; with respect
to the stochastic cloned part of the state (resp. to the
landmark position parameters 1).1 In this expression, the
linearization point 1* comes from triangulation, assuming
known past poses. The measurement matrix Hyp,; is
computed by projecting this equation over the nullspace
of E with a QR decomposition:

erat = OS—F with E = [0y, O] |:1§:| ) (20)

with [O1,0¢] € © and R an upper triangular matrix.

The projection steps (20) eliminates the need to
augment the filter state with landmark positions. This is
the big improvement of MSCKF-like algorithm compared to
traditional EKF-SLAM filter : it saves both computation
and memory requirements.

Note: In this section and hereafter, we choose to
write all formulas without biases, albeit accelerometer
and gyrometers biases are estimated by the filter in all
experiments — as commonly done in VIO litterature. This
simplify derivations, as bias estimation does not change
the property we prove later on regarding the invariance
to stochastic transform as noted in [7].

1The landmark parametrization can be chosen indifferently: we
took as example 3D position of landmark in world frame but could
be also 3D position in the coordinate frame of the first camera,
inverse depth parametrization on first ray, etc.
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Fig. 1: False observability. Top : Covariance of the estimated
heading on a real dataset with various initial covariance for the
MI-MSCKF [3] (log scale). bottom: X position. Only magnetic
update is employed during the first 6.5 seconds as an initializa-
tion. Heading’s covariance decreases inconsistently as visual
measurement are used, the position inconsistently depends
on the initial heading covariance. Note: In the blue curve
(with lowest initial uncertainty): the small increase is due to
gyroscope noise and is hidden at the higher uncertainty levels
and the decreasing at the end is not a sign of inconsistency as
the uncertainty never become smaller than the initial value.

IV. INCONSISTENCY AND INVARIANCE

In this section, we first demonstrate an inconsistent
behavior of MI-MSCKF, and then link this inconsistency
to invariance properties this filter lacks.

A. An experiment on real data

Five instances of the MI-MSCKF of [3] were run with
the same input data but different initialization mean and
covariance values. The initialization values only differ
from the initial uncertainty of the heading angle. Real
data were used for this experiment, more precisely the
first few seconds of dataset denoted TRAJ5 in [3]. The top
curves of Fig. 1 depicts the uncertainty of the filter on the
heading angle — measured by the corresponding diagonal
value of the covariance. We observe that for high initial
uncertainty, the heading uncertainty estimated by the
filter ends up lower than the initial uncertainty. This is a
sign of inconsistency, as, intuitively, the model does not
provide information on the absolute heading. Interestingly,
this drastic decrease of uncertainty co-occurs with the
first use of visual measurements, proving these are a major
source of inconsistency.

B. Lack of invariance to unobservable stochastic transform

In order to define consistency, we use in this work the
definition of unobservable stochastic transform of an EKF
which was introduced in [7]. In all this section we assume
an EKF built on a non-linear error e and we let 7y be
a transformation of the space defined as a 2-argument
function Ty : (X RN ) — X in which the second argument
argument is seen as a stochastic input drawn from a
centered Gaussian distribution of covariance . We also
assume 7y is such that Ty(-,0) is the identity function on
X. The 6 symbol can be seen as a parameter of a family
of possible transform functions of interest.



Definition 1. (Stochastic transform of an EKF state) We
call a stochastic transform of an EKF state at time k the
following transformation:

Xp s Tp(Xp,0), Sep > MEe;M' + NENT,  (21)
. 9 5 o
with M = e (Tg(X He,0) 3 TH(X,0)) oo (22)
(9 ~ N
N= - (Tg(X,n) BTy(X,0)) (23)
n 'r]:O

By extension we will call 7y the stochastic transform
(function).

Definition 2, introduced by [7], gives a meaning to
the concept of invariance to a stochastic unobservable
transform.?

Definition 2. (Invariance of an EKF output to unobserv-
able stochastic transform) The EKF output is said to be
invariant to an unobservable stochastic transformation if
both following statements are true:

1) For all n € RY, the stochastic transform Ty
(x,RN) — X describes a unobservable transfor-
mation of the model/output on which the EKF is
based on. Le, if at time i we have X = 779(X2-’,17)
then Vn > i, h(X%) = h(X%) (noting with indices n
the quantities obtained by applying repeatedly the
discrete transition function)

2) For any two estimate and covariance of the EKF
at time i, say (X?, Zef) and (XZI?,EeZI»’), so that
b-quantities are computed from the stochastic trans-
formation of a-quantities, we have equality of output
sequence of the two instances of the filter based
on respectively a- and b-quantities as initialization
values: Vn > i, h(X%) = h(X})

Intuitively, this last definition states that, whatever
are the unobservable quantities values initialized to, and
whatever are the initial uncertainty along the unobservable
direction in the initial covariance, the innovation sequence
of the filter should not change: one property we would
expect from a consistent filter. For MVINS, respecting Def-
inition 2 means that the mean estimate sequence should
not be modified by changing solely the initial heading
uncertainty. This was proved wrong for the MI-MSCKF in
previous section .

C. Two stochastic transforms of interest

This section exposes two properties that will be used
in Section V-B in order to prove the invariance of a new
filter to all unobservable stochastic transformations of
its model. Sufficient conditions were introduced in [7] to
prove by simple computation the invariance of a EKF for
two particular types of stochastic transform functions :
purely deterministic transform (verifying vn, X, Tp(X,n) =

2Note that while we have slightly rewritten [7] definitions to give
them more context, Definition 2 remains exactly equivalent to their
definition of unobservable stochastic transforms

To(X,0)) and stochastic identity transform (verifying
VX, T7,(X,0) = X).
1) Invariance of an EKF to a deterministic transform:

Property 1. Let Ty denotes a stochastic transform
function. The output of an EKF is invariant under the
deterministic part of this transform, X,n — Ty(X,0), if:
(i) the process function f commutes with Ty(-,0) and, (i)
there exists a constant invertible matric Wy such that:

ve,X, Tp(XHBe,0)=Ty(X,0)BWye (24)

Proof insight: we consider an EKF built on the model
with a choice of error verifying (24) and we assume
that two such filters are running concurrently. The first
starts from the initial estimate (Xi,EXi) at time .

The second starts from the initial estimate (Y, 3y)=

(To(X;, 0),W92Xiwg), a deterministic transform of the
first one. It is possible to show by brute force calculus
that after one propagation and one update, the two filter
estimates and covariances are still related one to the
other with the same unobservable deterministic transform.
Conclusion can be drawn by induction. The condition (i)
is necessary to the proof ([27, p.152]).

2) Invariance of an EKF to a family of stochastic
identity transform:

Property 2. Let Ty, be a stochastic transform function
fulfilling stochastic identity transform properties. The
output of an EKF is invariant under Ty, if:

Vn and i >0, Hn+i+1q)n+i(bn+i71"'q>iNi =0 (25)

Proof insight: Let us consider an EKF built on the model
with an error verifying (25) and suppose two instances
of it are started. The first one from estimate (X;, 2¢.)

at time i. The second from estimate (X, ot NiEN;r),
an unobservable stochastic transform of the first one. By
calling the subsequent estimate of the second filter Yo,
and EYn’ we can show by recursion that:

Vn 2 Z,Yn = Xn and
Sy =Zx 40, 1 ONEN] o] 0l 0] (26)

n—1

The first equality induces that the filter output is invariant
to identity stochastic transform.

V. AN INVARIANT PARAMETRIZATION
A. Lie Group embedding of the MI-DR state

We borrow and adapt to our problem the invariant
parametrization of IMU states originally presented in [21].
Despite the fact that the miraculous log-linear property
of [21] does not hold for MvINS discrete model 3, we show
in this paper that this invariant parameterization gives
the filter a lower property of invariance to stochastic
transformation.

3this stems from magnetic equations, even when disregarding
biases; a simple calculus using [25, Theorem 2] proves it.



We base a new error definition on the following matrix
Lie group embedding, named SE3(3) by the authors of
[21], of the MI-DR state (stochastic clones part of the state
is treated hereafter):

RY ¥ p¥ BY
XM = 27
{03,1 I3 (27)
wT wT w  pwT _ w  pwlTpw
(Xm)fl _ |:l:) R7 v RI P R”'B ] (28)
3,1 3,3

RY € SO(3),v?,p?,BY € R,

and focus on the “right-invariant” error that writes:
-1

e=X"(Xm)" " = (29)
RwﬁwT v 7RwﬁwT‘A,w pwiRwaTf)w Bw 7Rw}f{wTBw ]
03,1 I33

This error can be associated to a vector error through the
vectorized matrix Lie group logarithm Loggpe, (3) (e). Its
Lie algebra se3(3) is the set of matrices of the following
form:

"N = [[eG]X ev. ¢ °B e € se3(3) (30)

033 037 037 031]’

with e = [eg ev e-rl,— eE]T e R
For concision, we will write elements dropping the
trivial parts of the matrix and write the shortcuts e®®
for Expgo(3) (er), exp(e™”) for Expgp, (3) (em/\). The
exponential matrix operator on this matrix Lie group
associates an element of its Lie algebra to an element of

the group. One has in reduced notations:

e®R
mAy _ Jr(—eR)ev
exp(e ) = J’I‘(_eR)ep ) (31)
Jr(—ep)ep
where J, : R? — R3*3 is the right jacobian of SO(3) [28]:
1—cos|@ 0|| — sin ||
R = AL e

We use this exponential to define the error by the following
B and H operators:

X=X Hel' = exp(ezl/\)f(k (33)
eSRRY
_ €eRr W
_ Jr(—eg)ev + eRv (34)

Jr(—eg)ep + P
Jr(—eg)eg + e*BY

. omy—1
ezn =X"g ngn = Loggﬁg(g) (X?(X?) > (35)

©R
| Ir(—ep) v —rRT9) 12
| e tp—maTp) | € (36)
Jr(—eg) (B —RRTB)
with eg = LOgSO(3) (RﬁT) (37)

For the stochastically cloned part of the state, we use a
left multiplication by the natural SE(3) exponential of

the error as retraction operator for each stochastic cloned
pose:

ex° SC\ ,SC
Expsps) ([eECT’e%CT]> _ {eoa Jr(—elR )eb (38)

The stochastic clone errors are concatenated together with
e and respective retraction operators are used to define
an error from which we build a new MVINS filter denoted
RI-MI-MSCKF, where RI stand for "right-invariant”.

Hereafter, we name M the Lie group structure on the
state of the filter as the following direct product: M =
SE(3) x ... x SE(3) x SE3(3).

B. Proof of the invariance of this parametrization

In this section we prove the invariance to stochastic
unobservable transform of the RI-MI-MSCKF with help
from properties defined in Section IV-C.

1) Stochastic unobservable transform for MVINS model:
In order to work with the observability properties of
our model, we define formally the set of unobservable
stochastic transform corresponding to composition of
rotation around the gravity vector and global translation
of world coordinates.

Definition 3. (Unobservable stochastic transform for mi-
MSCKF model) We parametrize the family of unobservable
stochastic transforms for the model in the following way:

e(ni+61)gpse
e(MFOVER 4 gy + o
def

T(X,n,0) = e(m'-*-.éﬂgR
e(m+o1)ey,

e(MHOVER 4 0y 4 + 12y
e(nit+o1)spg

with X € M,n e R, 9 e R*

Note that, we now put 0 as a proper 7 argument
function as we can parametrize stochastic transform of
interests through R*. We can decompose each element of
the family into one stochastic identity transform T (X, n,0)
and one deterministic transform T(X,0,60) thanks to the
following equality that can be easily verified for MVINS
model:

T(X,n,0) =T (T(X,0,0),7,0) =T (7(X,0,7),0,0) .
(40)
So, to prove that the filter is invariant to all unobservable
stochastic transforms, we first prove that it is invariant
to all element’s deterministic part in the family: X, n —
T(X,0,0) then prove that it is invariant to stochastic
identity transform X,n — 7(X,n,0).



2) Property 1 verification: The condition (24) is verified
for our parametrization with:

0 0
sc
wp= |0 w00 (41)
0 0 . 0
0 0 0wy
r 01g 0
with W5k = € ,
D | [09:4] big g
e 0 0 0
and WH = 0 &0 0
D [92:4]>< 6€1g 0 601g 0
) 0 0 s

which proves the invariance to 7(-,0,6). The proof
consists mainly in calculus with SO(3) properties and
is not presented here: it can be found in [27].

3) Property 2 verification: Note that, in the Property 2,
the measurement Hs and transition ®s matrices are those
used effectively by the filter, je. linearized at the estimated
values, different of the real unknown values. In contrast
with [7], we work here directly on the MSCKF state
for proving the property of invariance to unobservable
stochastic transform, which is a more straightforward but
unusual way to tackle the problem.

The outline of subsequent calculus is the following: first,
we will compute N;, as in Definition 1. Secondly, we will
compute the structure of the transition matrix ®. We
will be able to show that N; is left unchanged by left
multiplication with transition matrix ®. We will show
that for both magnetic and visual measurement update,
the linearized measurement matrices H involved verifies
Property 2. We will then conclude.

a) Computation of N;: Taking into account the
stochastic cloned part of the state. The computation
of N; following Definition 1 leads to:

-
g' 03 03 03
03 03 I3 O3

.
: 0

Ni:[ 05 I

’ 3 3

Remarkably, this matrix does not depend on the state
estimate, thanks to the choice of the parametrization.

(42)

b) Structure of transition matriz ®: We only need
some part of the structure of @, to prove our property.
In the MSCKF algorithm, the prediction step can also
involve stochastic cloning: we write ® in the following
form:

@SCl (1)502 ) ; .
=] gm | VB[R RIS (43)
[IGnc 0] or g Iﬁ(noc-l) ﬂ 8 8 8 c R61’1C,6HC+12
0 0 00I30

depending on if stochastic cloning occurs at time k while

@} structure writes:

1373 * 03’3 *
Atk [g] % * 033 =x

o) = A2 (44)
T2 ] XT * 13,3 *
RpABg.piy1Ry [8]x * 033 =

With this structure, we verify easily that ®;, 1N = Ny
and that, by recursion, we have:

Vn and ¢ >0, (Dn-i-lq)n-‘rl—].q)’LNZ = N’L (45)

This is very handy to prove condition (25) as it is now
sufficient to show that HN; = 0. We now prove it both
for magnetic and visual measurement.

¢) Magnetic update: The magnetic update is related
directly to the current states :

hmagn (Xg) = R} By
Computing the first order approximation yields:

hmagn(Xk H e) = R—]!‘.—e_eR (6eRBk + Jr(—eR)eB)
T
= hmagn(X) + Ry e + o([e]))

Thus the measurement matrix to use is:

_ T
Hmagny, = [036nc 039 RL 03]

And we have by simple computation: Hmagn;,N; = 0.

This proves the condition (25) if we had only the
magnetic measurement equation. At that point we have
thus exhibited a pure magneto-inertial filter that fulfills
invariance to stochastic transform. Such a filter was not
presented before as far as we know.

d) Visual update: For visual measurements, showing
the relation by a direct computation is more cumbersome
because of the way the landmark position parameters are
eliminated from the measurement function in the MSCKF.
Instead, we are going to leverage the invariance of the
reprojection function hg,,; without having to compute
Hg.,. explicitly to show that Hg,,;N; = 0.

We assume here that landmarks are parameterized by
their position 1 € R? in world frame. We can write the
following equality:

VR € M,n e R} 1€ R3,

h’feat(Xv )= Pfeat (T(X, n,0), eM& 1+ n2:4) (46)

which merely expresses frame invariance of the calibrated
monocular reconstruction problem.
Differentiation of the equality with respect to n gives:

(47)
(48)

FN; + Edy(e™ 814 19.4) = 0
FN, =E[[l], g,I3] .

Starting from (20) and substituting previous equation
one has

(20) T (48) T
Hpoat N 2 Oy FN; = OgE [[U x 8 13] . (49)
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Fig. 2: top: heading uncertainty propagated by the invariant
filter; bottom: the x position estimated by the filters. Both
are with five different initial heading uncertainties. The five
curves on bottom figure cannot be distinguished. With the
new parametrization, the initial heading uncertainty does not
influence the position estimate of the filter, and the estimation
of heading uncertainty stays constant as expected. Please
compare to Fig. 1 depicting the behavior of the filter of [3].

And by definition (20) of Og: O§E = 0 and finally the
condition (25) Hge,¢N; = 0 holds™.

We thus have proven that the output of RI-MI-MSCKF
for the MVINS system is invariant under 7(-,-,0).

Combined with the invariance to deterministic trans-
form proved in (41) and using the equality noticed in
(40), we prove that the RI-MI-MSCKF is invariant to any
stochastic unobservable transform of the MVINS system.

Note: 0C-EKF method can be applied to the MVINS
problem [3]. The resulting estimator also verifies Def-
inition 2. However, such approach is less theoretically
satisfying and it is not clear that it does not introduce
errors, as it is quite arbitrarily build from a Frobenius
norm minimization. We name this estimator OC-MI-
MSCKF in the next section.

VI. EXPERIMENT AND COMPARISON ON REAL DATA

We implemented the two alternate versions, RI-MI-
MSCKF and OC-MI-MSCKF of the MI-MSCKF and conducted
a comparative study on real datasets described in [3]. In
these implementations, we parameterize landmarks with
an inverse depth in the first ray, and use Harris corner and
KLT for features detection and tracking. Visual outliers
are rejected with a two views gyro-aided RANSAC and a
X2 gating test. Stochastic cloning occurs at least at 10Hz.

A. Improved behaviour with inaccurate heading

First, we verify on the data of Section IV that the
RI-MI-MSCKF heading uncertainty and position outputs
are in line with the proven invariance results (compare
Fig. 2 with Fig. 1).

For further analysis, we run the three filters equally
initialized with the true heading and a large heading
covariance, while taking care to use the same parameters
and measurements (we bypass non deterministic outlier
rejection for this experiment). Thus, we expect the three

4if we were to use an inverse depth in first ray parametrization of
features, the condition is also true, and can be demonstrated sim-
ilarly. VX, n,1, h(X,1) = h(T (X, n,0),d) so that by differentiating
with respect to n one directly has: 0 = FIN;.

e MI-MSCKF
s RI-MI-MSCKF
——— OC-MI-MSCKF |

1 tick = 10 meters

Fig. 3: Results on TRAJ1 when initialized with the correct
heading value with a large covariance. OC- and MI- trajecto-
ries can hardly be distinguished. MI-MSCKF output is rotated.

% /deg TraJ1 TRAJ2 TRAJ3 TRrRAJ4 TRAIS

MI-MSCKF 0.35/0.40  0.33/2.44  0.54/0.05 0.32/3.46 0.23/1.96
MI-MSCKF-LCOV 0.33/2.58 0.38/7.17  0.56/5.15  0.30/12.05  0.20/8.23
RI-MI-MSCKF 0.38/0.72  0.33/2.51  0.55/0.06 0.30/3.91 0.23/2.00
RI-MI-MSCKF-LCOV 0.38/0.72  0.34/2.51  0.55/0.06 0.30/3.91 0.23/2.00
OC-MI-MSCKF 0.38/0.72 0.33/2.49  0.55/0.01 0.30/3.85 0.23/1.99
OC-MI-MSCKF-LCOV ~ 0.38/0.72 0.33/2.49  0.55/0.01 0.30/3.85 0.23/1.99

TABLE I: Final translational (% of trajectory length) and
angular drift (degree) for various filters. The LCov suffix
denotes try with a high covariance of the initial heading. For
MI-MSCKF of [3], the angular drift strongly depends on the
initial heading uncertainty, while it does not for the others.
For this experiment, every filter uses exactly the same visual
information, non-deterministic outlier detection was bypassed.

trajectories to register nicely on a satellite map on Fig. 3.
We observe MI-MSCKF does not superimpose with the two
others and the map: its output trajectory is rotated. In
fact, because of lack of invariance of the MI-MSCKF, the
heading gets corrupted near the start, while the heading
covariance decreases as in Fig. 1.

Table I shows that this behavior of MI-MSCKF is general
on the entire dataset of [3]. For the two other methods RI-
MI-MSCKF and OC-MI-MSCKF both the final translational
and rotational drifts are not strongly affected by the
magnitude of initial heading covariance. This improve-
ment opens the way to delayed heading initialization,
a process that could be invoked in our indoor/outdoor
dataset as outdoor the north direction is observable
with magnetometers. In that specific scenario, it is likely
that the standard MI-MSCKF would suffer badly from
linearization error.

B. Better long-term behaviour

Traditionally in VIO, one want to solve for the relative
pose with respect to initialization and the true value of
heading is not of interest. In that case the filter is just
initialized with a small heading covariance. We found the
consistency improvement also helps in this case.

We compare the three filters on TRAJ1 and run them
10 times to sample the non deterministic outlier visual
features detection. Fig. 4 displays a close-up of a selection
of the estimated trajectories in the vicinity of the starting
point, where all the trajectories also end. At the end
of the trajectory, the sensor comes back to the starting
point and is moved around while fixing a calibration
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Fig. 4: Left: Normalized Estimation Error at the end of the
trajectory for position and heading; statistics over the 10 run.
Right: Zoom over the starting point of TRAJ1 for the three
filters MI-MSCKF, RI-MI-MSCKF and OC-MI-MSCKF initialized
with a zero heading uncertainty. Non deterministic outlier
removal of visual features is activated: for each algorithm we
display only the best and worst trajectories of ten runs.

pattern to improve the accuracy of estimating the final
location. We observe two interesting facts from the final
part of the trajectories. First, the MI-MSCKF trajectory
is more chaotic than RI-MI-MSCKF and OC-MI-MSCKF
which stay smooth the entire trajectory long. Secondly,
Fig. 4 shows statistics of the Normalized Estimation
Errors measured at the end of trajectory; a low value
is a proof of consistency, it reveals that RI-MI-MSCKF
is slightly more consistent than 0C-MI-MSCKF. We also
unexpectedly observe that the final locations of MI-MSCKF
are more dispersed than the two others, MI-MSCKF seems
to be more sensitive to the input visual features than
the others. An explanation could be that consistency
improves in return the xo outlier gating test.

VII. CONCLUSION

We derived an original invariant parametrization of the
MI-MSCKF and demonstrated its invariance to unobserv-
able stochastic transform, a property naturally expected
from an EKF when filtering with partially unobservable
state. We have shown on real data that the proposed
parametrization gives to the filter the ability to handle
correctly the case of inaccurate heading initialization, as
well as it significantly improves the smoothness of the
estimation over long trajectories. According to our tests
the proposed invariant of MI-MSCKF is more consistent
than the observability constrained version. Also, we
believe that the use of the Lie Group could be beneficial
in the case of delayed or/and temporary observability
of the heading. This specific case would deserve further
analysis though.
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