Brief paper

Distributed event-triggered control strategies for multi-agent formation stabilization and tracking

Christophe Viela, Sylvain Bertranda, Michel Kieffer\textsuperscript{b,*}, Hélène Piet-Lahaniera

a ONERA—The French Aerospace Lab, F-91123 Palaiseau, France
b L2S, Univ Paris-Sud, CNRS, CentraleSupelec, F-91190 Gif-sur-Yvette, France

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 22 September 2017
Received in revised form 19 December 2018
Accepted 26 March 2019
Available online 17 May 2019

\textbf{Keywords:}
Communication constraints
Event-triggered control
Formation stabilization
Multi-agent system (MAS)

\textbf{A B S T R A C T}

This paper addresses the problem of formation control and tracking of some reference trajectory by an Euler–Lagrange multi-agent systems. The reference trajectory is only known by a subset of agents. This work is inspired by recent results by Yang et al. and adopts an event-triggered control strategy to reduce the number of communications between agents. For that purpose, to evaluate its control input, each agent maintains estimators of the states of its neighbor agents, as well as an estimate of its reference trajectory. Communication is triggered when the discrepancy between the actual state of an agent and the estimate of this state as evaluated by neighboring agents reaches some threshold. Communications are also triggered when the reference trajectory estimate is degraded. The impact of additive state perturbations on the formation control is studied. A condition for the convergence of the multi-agent system to a stable formation is studied. The time interval between two consecutive communications by the same agent is shown to be strictly positive. Simulations show the effectiveness of the proposed approach.

This paper proposes a strategy to reduce the number of communications for displacement-based formation control while following a desired reference trajectory, only known by a subset of agents. Agent dynamics are described by Euler–Lagrange models and include perturbations. This work extends results presented in Yang, Cao, Fan, Chen, and Huang (2015) by introducing an event-triggered strategy, and results of Liu, Sun, Qin, and Yu (2015), Sun, Liu, Yu, and Anderson (2015) and Tang, Liu, and Chen (2011) by addressing systems with more complex dynamics than a simple integrator.

To evaluate its control input in a distributed way, each agent estimates the state of its neighbors and as well as its reference trajectory. In absence of permanent communication, the quality of the state and reference trajectory estimates is difficult to evaluate. To address this issue, each agent maintains also an estimate of its own state using only the information it has shared with its neighbors. Information is communicated by the considered agent with its neighbors as soon as the discrepancy between its actual state and its own state estimate reaches some threshold. Communication is also used to maintain the quality of the estimate of the reference trajectory of each agent. The main difficulty consists in determining the communication triggering condition (CTC) that will ensure the completion of the task assigned to the MAS while reducing the number of communications between agents.

This paper is organized as follows. Some assumptions are introduced in Section 2 and the formation parametrization is

1. Introduction

Distributed cooperative control of a multi-agent system (MAS) usually requires significant exchange of information between agents. In early contributions, see, e.g., Olfati-Saber, Fax, and Murray (2007) and Wei (2008), communication was considered permanent. Recently, more practical approaches have been proposed. For example, in Wen, Duan, Li and Chen (2012, 2012, 2013), communication is intermittent, alternating phases of permanent communication and of absence of communication. Alternatively, communication may only occur at discrete time instants, either periodically as in Garcia, Cao, Wang, and Casbeer (2014), or triggered by some event, as in Dimarogonas, Frazzoli, and Johansson (2012), Fan, Feng, and Wang (2013), Viel, Bertrand, Piet-Lahanier, and Kieffer (2016) and Zhang, Yang, Yan, and Chen (2015).

This work has been partly supported by the Direction Generale de l’Armement (DGA), France and by ICODE, France. The material in this paper was partially presented at the 20th World Congress of the International Federation of Automatic Control, July 9–14, 2017, Toulouse, France. This paper was recommended for publication in revised form by Associate Editor Dimos V. Dimarogonas under the direction of Editor Christos G. Cassandras.

* Corresponding author.

E-mail addresses: christophe.viel@gadz.org (C. Viel), sylvain.bertrand@onera.fr (S. Bertrand), michel.kieffer@l2s.centralesupelec.fr (M. Kieffer), helene.piet-lahanier@onera.fr (H. Piet-Lahanier).

https://doi.org/10.1016/j.automatica.2019.04.024
0005-1098/© 2019 Elsevier Ltd. All rights reserved.
described in Section 3. As the problem considered here is to drive a formation of agents along a desired reference trajectory, the designed distributed control law consists of two parts. The first part (see Section 3) drives the agents to some target formation and maintains the formation, despite the presence of perturbations. It is based on estimates of the states of the agents described in Section 5.3. The second part (see Section 4) is dedicated to the tracking of the desired trajectory. Communication instants are chosen locally by each agent using an event-triggered approach introduced in Section 6. A simulation example is considered in Section 7 to illustrate the reduction of the communications obtained by the proposed approach. Finally, conclusions are drawn in Section 8.

2. Notations and hypotheses

Consider a MAS consisting of a network of N agents whose topology is described by an undirected connected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$, \mathcal{N} is the set of nodes and $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ the set of edges of the network. The set of neighbors of Agent i is $\mathcal{N}_i = \{j \in \mathcal{N} | (i, j) \in \mathcal{E}, i \neq j\}$. N_i is the cardinal number of \mathcal{N}_i. For some vector $x = [x_1, x_2, \ldots, x_n]^T \in \mathbb{R}^n$, we define $|x| = [|x_1|, |x_2|, \ldots, |x_n|]^T$ where $|x|$ is the absolute value of the ith component of x. Similarly, $x \geq 0$ indicates that each component x_i of x is non-negative, i.e., $x_i \geq 0 \forall i \in \{1 \ldots n\}$.

Let $q_i \in \mathbb{R}^n$ be the vector of coordinates of Agent i in some global fixed reference frame \mathcal{R} and let $q = [q_1^T, q_2^T, \ldots, q_N^T]^T \in \mathbb{R}^{N \times n}$ be the configuration of the MAS. The dynamics of each agent is described by the Euler–Lagrangian model

$$M_i(q_i) \ddot{q}_i + C_i(q_i, \dot{q}_i) \dot{q}_i + G = t_i + d_i,$$

where $t_i \in \mathbb{R}^n$ is some control input, $M_i(q_i) \in \mathbb{R}^{n \times n}$ is the inertia matrix, $C_i(q_i, \dot{q}_i) \in \mathbb{R}^{n \times n}$ is the matrix of the Coriolis and centripetal term, G accounts for gravitational acceleration supposed to be known and constant, and d_i is a time-varying state perturbation satisfying $\forall t \|d_i(t)\| \leq D_{\text{max}}$. The state vector of Agent i is $x_i^T = [q_i^T, \dot{q}_i^T]$. The convergence proof of the control strategy developed in this paper requires considering the following assumptions on the dynamics. Assumptions A1–A3 have been already considered, e.g., in Makkar, Hu, Sawyer, and Dixon (2007) and Mei, Ren, and Ma (2011).

(A1) $M_i(q_i)$ is symmetric positive and there exists $k_M > 0$ satisfying $\forall x, x^T M_i(q_i) x \leq k_M x^2$.

(A2) $M_i(q_i) - 2C_i(q_i, \dot{q}_i)$ is skew symmetric or negative definite and there exists $k_C > 0$ satisfying $\forall x, x^T C_i(q_i, \dot{q}_i) x \leq k_C \|\dot{x}\| x^2$.

(A3) The left-hand side of (1) is linearly parametrized as

$$M_i(q_i) x_1 + C_i(q_i, \dot{q}_i) x_2 = Y_i(q_i, \dot{q}_i, x_1, x_2) \theta_i,$$

for all vectors $x_1, x_2 \in \mathbb{R}^n$, where $Y_i(q_i, \dot{q}_i, x_1, x_2)$ is a regressor matrix with known structure and θ_i is a vector of unknown constant parameters associated with the ith agent.

(A4) For each $i = 1, \ldots, N$, θ_i is such that $\theta_{\text{min},i} < \theta_i < \theta_{\text{max},i}$ with known $\theta_{\text{min},i}$ and $\theta_{\text{max},i}$.

Moreover, one assumes that

(A5) Each Agent i measures its state x_i without error,

(A6) There are no packet losses or communication delays.

In what follows, the notations M_i and C_i are used to replace $M_i(q_i)$ and $C_i(q_i, \dot{q}_i)$.

3. Formation control problem

This section describes first the target formation parametrization. The potential energy of a MAS is introduced to quantify the discrepancy between the current and target formations. It will have to be minimized. The notion of bounded convergence is also described.

3.1. Formation parametrization

Consider the relative coordinate vector $r_{ij} = q_i - q_j$ between two agents i and j and the target relative coordinate vector r_{ij}^* for all $(i, j) \in \mathcal{N}$. A target formation is defined by the set $\{r_{ij}^*, (i, j) \in \mathcal{N}\}$. In what follows, one assumes that Agent i has only access to r_{ij}^*, with $j \in \mathcal{N}_i$. The potential energy

$$P(q, t) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} k_{ij} \|r_{ij} - r_{ij}^*\|^2$$

of the formation represents the disagreement between r_{ij} and r_{ij}^*, see Yang et al. (2015). In (3), the spring coefficients $k_{ij} = k_{ji}$ can be positive or null, and $k_0 = 0$. The minimum number of non-zero coefficients k_{ij} to properly define a target formation is $N - 1$ since \mathcal{G} is connected. Then, one may choose $k_{ij} \neq 0$ if $(i, j) \in \mathcal{E}$. As will be seen, with this choice of the spring coefficients, each agent will have to estimate only the state of its neighbors to evaluate its control input.

Definition 1 (Yang et al., 2015). The MAS asymptotically converges to the target formation with a bounded error iff there exists some $\epsilon > 0$ such that

$$\lim_{t \to \infty} \|P(q, t)\| \leq \epsilon.$$

A control law designed to reduce the potential energy $P(q, t)$ leads to a bounded convergence of the MAS.

4. Time-varying formation and trajectory

4.1. Main idea and notations

In this section, the MAS has to follow some reference trajectory, only known by a subset $\mathcal{N}_1 \subset \mathcal{N}$ of N_i agents, named leaders. Moreover, one assumes that the target formation may be time-varying and is represented by the relative configuration matrix $r^*(t)$. Each agent i is only assumed to know $r_{ij}^*(t)$ for all $j \in \mathcal{N}_i$.

Without communication constraint, in Mei et al. (2011) and Sun, Wang, Shang, and Feng (2009), the entire formation is driven by the leaders using some spring effect. A direct adaptation of this idea to event-triggered methods leads to a large amount of communications to update the estimates of the states of leaders by other agents.

Here each agent maintains a first estimate $\tilde{q}_i^*(t) = [\tilde{q}_1^{T}(t), \tilde{q}_2^{T}(t), \ldots, \tilde{q}_N^{T}(t)]^T$ of its own reference trajectory $q_i^*(t) = [q_1^{T}(t), q_2^{T}(t), \ldots, q_N^{T}(t)]^T$ using all information it has access to.

When a communication is triggered at time t by some Agent i, it transmits to its neighbors either its reference $q_i^*(t)$ if $i \in \mathcal{N}_1$, or its estimated reference $\tilde{q}_i^*(t)$ if $i \notin \mathcal{N}_1$. In both cases, the neighbors $j \in \mathcal{N}_i$ may update the estimate of their own reference trajectories $\tilde{q}_j^*(t)$ using $q_i^*(t) + r_{ij}^*$ or $\tilde{q}_i^*(t) + r_{ij}^*$ where $r_{ij}^* = [r_{ij1}^*, r_{ij2}^*, \ldots, r_{ijn}^*]^T$ (see Section 4.2). Reference trajectory estimates are thus forwarded through the network when agents trigger communications.
Each agent $i \in \mathcal{N}$ uses in its control input either the reference trajectory $\mathbf{q}_i^*(t)$ if $i \in \mathcal{N}_i$ or an estimate $\hat{\mathbf{q}}_i(t)$ of $\mathbf{q}_i^*(t)$ if $i \notin \mathcal{N}_i$. Additionally, an estimate of the reference trajectory $\mathbf{q}_i^*(t)$ or $\hat{\mathbf{q}}_i(t)$ used by Agent i is required by Agent j to evaluate $\mathbf{q}_i^*(t)$, its estimate of the state q_i of Agent i (see Section 5.3). The estimate of $\mathbf{q}_i(t)$ or $\hat{\mathbf{q}}_i(t)$ evaluated by Agent j is denoted $\hat{\mathbf{q}}_{ij}(t)$. This estimate only uses information received from Agent i and is updated only when Agent i broadcasts a message. To evaluate the quantity of $\hat{\mathbf{q}}_{ij}$, each agent maintains a second estimate $\mathbf{q}_{ij}^*(t)$ of its own reference trajectory $\mathbf{q}_i^*(t)$ or $\hat{\mathbf{q}}_i(t)$ using only information it has provided to its neighbors. Since $\mathbf{q}_{ij}^*(t)$ and $\hat{\mathbf{q}}_{ij}(t)$ are evaluated using the same information broadcast by Agent i, using Assumption A6, one has for all t, $\mathbf{q}_{ij}^*(t) = \hat{\mathbf{q}}_{ij}^*(t)$. A communication is triggered by Agent i when the discrepancy between $\mathbf{q}_i(t)$ or $\hat{\mathbf{q}}_i(t)$ and $\mathbf{q}_{ij}^*(t)$, i.e., between its (actual or estimated) reference trajectory and that estimated by its neighbors becomes too large.

One assumes that the evolution of the reference trajectories for all $i \in \mathcal{N}_i$ are described by

$$\dot{\mathbf{q}}_i^*(t) = f(\mathbf{q}_i^*(t), t),$$

whereas the estimate of the reference trajectories by Agent $i \notin \mathcal{N}_i$ is assumed to be described by

$$\hat{\mathbf{q}}_i^*(t) = \overline{f}(\hat{\mathbf{q}}_i(t), t).$$

In what follows, the time instant at which the kth message is sent by Agent i is denoted as $t_{i,k}$. Let $t_{i,k}$ be the time at which the kth message sent by Agent i is received by Agent j. According to Assumption A6, $t_{i,k} = t_{j,k}$ for all $j \in \mathcal{N}_i$. Let t_j be the time at which Agent i received its kth message from any other agent in the network.

To simplify description, one assumes that \mathcal{N}_i consists of a single agent $\mathcal{N}_i = \{1\}$, so the MAS reference trajectory is $\mathbf{q}_1^*(t)$. Extension to multiple leaders is straightforward.

Definition 2. The MAS reaches its tracking objective iff there exists $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$ such that (4) is satisfied and

$$\lim_{t \to \infty} \|q_i(t) - q_i^*(t)\| < \varepsilon_2,$$

i.e., iff the reference agent asymptotically converges to the reference trajectory, and the MAS asymptotically converges to the target formation with bounded errors.

4.2. Estimation of the reference trajectory

The aim of this section is to determine when an Agent j has to update the estimate of its own reference trajectory $\mathbf{q}_{ij}^*(t)$ using $\mathbf{q}_i^*(t) + \mathbf{r}_{ij}$ or $\hat{\mathbf{q}}_i^*(t) + \mathbf{r}_{ij}$ when a message has been received from Agent i. The update is only performed when the estimate becomes more accurate. This is always the case when $\mathbf{q}_i^*(t)$ is received from the leader. When $\hat{\mathbf{q}}_i(t)$ is received, the update is performed only when $\hat{\mathbf{q}}_i(t)$ has been updated from $\mathbf{q}_i^*(t)$ more recently than $\hat{\mathbf{q}}_i(t)$.

For that purpose, at time t, let t_{ij}^* be the time of the most recent information about \mathbf{q}_{ij}^* available by Agent i. The leader knows \mathbf{q}_i^* and thus, $\mathbf{q}_{ij}^*(t) = \mathbf{q}_i^*(t)$ and $t_{ij}^* = t$ for all t. If Agent i receives a message at time $t = t_{ij}^*$ from Agent j, it compares t_{ij}^* with t_{ij}^*. If $t_{ij}^* < t_{ij}^*$, Agent i uses the information provided by Agent j to update its estimate of \mathbf{q}_i^* as $\mathbf{q}_{ij}^*(t) = \hat{\mathbf{q}}_{ij}(t_{ij}^*) + \mathbf{r}_{ij}$. If $t_{ij}^* = t_{ij}^*$, $\mathbf{q}_{ij}^*(t_{ij}^*) = \mathbf{q}_{ij}^*(t_{ij}^*)_k + \mathbf{r}_{ij}$ and $t_{ij}^* = t_{ij}^*$.

If t_{ij}^* is the time instant of the last message received by Agent i, the evolution of $\hat{\mathbf{q}}_i(t)$ for $t > t_{ij}^*$ is then described by (6) with $\hat{\mathbf{q}}_i(t_{ij}^*_k)$ known.

5. Distributed control approach

A distributed control law is designed to achieve bounded convergence of the MAS. Consider the trajectory error $e_i = q_i - q_i^*$, $\hat{e}_i = q_i - \hat{q}_i^*$, and $\tilde{e}_i = q_i - \tilde{q}_i^*$, where \tilde{q}_i^* is the estimation of q_i^* performed by Agent j as described in Section 4.1. To describe the evolution of $P(q, t)$ and e_i, one introduces

$$\dot{q}_i = \frac{\partial P(q, t)}{\partial q_i} + k_0 e_i = \sum_{j \in \mathcal{N}_i} k_{ij} (q_j - r_j^*) + k_0 e_i^*$$

(8)

$$\hat{\dot{g}}_i = \sum_{j \in \mathcal{N}_i} k_{ij} (\hat{q}_j - \hat{r}_j^*) + k_0 \dot{e}_i$$

(10)

where g_i and \hat{g}_i characterize the evolution of the discrepancy between the current and target formations, $k_0 \geq 0$ and $k_0 \geq 0$ are scalar design parameters. The parameter k_0 adjusts the trade-off between the trajectory tracking error and the potential energy of the formation. When no reference trajectory is considered, $k_0 = 0$.

5.1. Control design

In a distributed context with limited communications between agents, agents cannot have permanent access to q. Thus, for all $j \in \mathcal{N}_i$, one introduces the estimate \hat{q}_i of q_i performed by Agent i to replace the missing information in the control law. The evaluation of \hat{q}_i is described in Section 5.3.

Using \hat{q}_i, \tilde{q}_i^*, \mathcal{N}_i, Agent i can estimate (8) and (10) as

$$\dot{\mathbf{g}}_i = \sum_{j \in \mathcal{N}_i} k_{ij} (\mathbf{g}_j - \mathbf{r}_j^*) + k_0 \mathbf{e}_i$$

(11)

$$\tilde{s}_i = \tilde{q}_i - \tilde{q}_i^* + k_0 \mathbf{g}_i$$

(12)

with $\mathbf{r}_j = q_j - \tilde{q}_i$, and \mathbf{g}_i. Agent i can evaluate the following adaptive distributed control input to be used in (1)

$$\tau_i = -k_0 \mathbf{s}_i + k_0 \mathbf{g}_i + G - Y \left(q_i, \dot{q}_i, \mathbf{p}_i, \mathbf{p}_i^* \right) \mathbf{s}_i$$

(13)

$$\hat{\dot{\mathbf{s}}}_i = L \mathbf{g}_i + G - k_0 \mathbf{e}_i$$

(14)

where $\mathbf{p}_i = k_0 \mathbf{g}_i - \mathbf{s}_i$ and $\mathbf{p}_i^* = k_0 \mathbf{g}_i - \mathbf{s}_i^*$.

5.2. Communication protocol

When a communication is triggered at $t_{i,k}$ by Agent i, it transmits a message containing $t_{i,k}$, $q_i(t_{i,k})$, $\dot{q}_i(t_{i,k})$, $\mathbf{q}_{ij}^*(t_{i,k})$, t_{ij}^* and $\hat{\mathbf{q}}_i(t_{i,k})$. Upon reception of this message, the neighbors of Agent i update their estimate of the state of Agent i and of the reference trajectory using this information as described in Section 4.2.

5.3. Estimator dynamics

To evaluate its control law, Agent i maintains estimates $\hat{\mathbf{q}}_i$ of q_i for its neighbors $j \in \mathcal{N}_i$, such that

$$\mathbf{r}_j(t_{i,k}) = \mathbf{r}_j(t_{i,k})$$

(15)

and $\forall t \in [t_{i,k}, t_{i,k} + 1]$, $\hat{\mathbf{q}}_i(t_{i,k})$.

$$\tilde{\mathbf{q}}_i(t_{i,k}) = \left(\hat{\mathbf{q}}_i(t_{i,k}) \right)^*$$. $\hat{\mathbf{q}}_i(t_{i,k}) + G = \tilde{\mathbf{q}}_i(t_{i,k})$. $\tilde{\mathbf{q}}_i(t_{i,k})$.
where \(\hat{X}_i^T = [\hat{q}_{i1}, \hat{q}_{i2}]^T, \hat{M}_i([\hat{q}_i]) \), and \(C_j([\hat{q}_i], \hat{q}_i^j) \) are estimates of \(M_j \) and \(C_j \) evaluated from \(Y_j([\hat{q}_i], \hat{q}_i^j, x_1, x_2) \), and \(\tau_j(t_{j+1}) \) using \(V(x_1, x_2) \in \mathbb{R}^2 \).

The estimator (16) managed by Agent \(i \) requires an estimate \(\hat{\tau}_i^j \) of \(\tau_j \) evaluated by Agent \(j \). This estimate is evaluated by Agent \(i \) as follows:

\[
\hat{\tau}_i^j = -k_i \left(\hat{e}_j^i + k_p k_0 \hat{e}_j^i \right) - k_p k_0 \hat{e}_j^i + G
- Y_j \left(\hat{q}_i, \hat{q}_i^j, \hat{m}_i, \hat{m}_j \right) \hat{\tau}_i^j \tag{17}
\]

\[
\hat{\tau}_i^{j^e} = G \tau_j \left(\hat{q}_i, \hat{q}_i^j, \hat{m}_i, \hat{m}_j \right) \left(\hat{\tau}_i^j \right)^T \left(\hat{e}_j^i + k_p k_0 \hat{e}_j^i \right) \tag{18}
\]

\[
\hat{\tau}_i^{j^e} \left(t_{j+1} \right) = \hat{\tau}_i^{j^e} \left(t_j \right) \tag{19}
\]

where \(\hat{\tau}_i^{j^e} \) is the estimate of \(\bar{\tau}_j, \hat{\tau}_i^{j^e} = \hat{\tau}_j - \hat{\tau}_i^{j^e} \), and \(\hat{m}_i = k_p k_0 \hat{e}_j^i - \hat{\tau}_j \) if \(k_0 > 0 \), i.e., in the case of a reference trajectory to be tracked and \(\bar{\tau}_j = 0 \) else. Note that if \(k_0 = 0, \hat{\tau}_j = 0 \).

The term \(\hat{\tau}_i^{j^e} \) is the estimate of \(\hat{q}_i^{j^e} \) performed by Agent \(j \), using (20). The evolution of \(\hat{q}_i^{j^e} \) is described by (6) and is described by

\[
\hat{q}_i^{j^e} \left(t_{j+1} \right) = \hat{q}_i \left(t_{j+1} \right) \tag{20}
\]

\[
\hat{q}_i^{j^e} \left(t_j \right) = \hat{\tau}_j \left(\hat{q}_i^{j^e} \left(t_j \right) \right) \forall t \in \left[t_j, t_{j+1} \right] \tag{21}
\]

Note that \(\hat{q}_i^{j^e} \) is updated only when Agent \(i \) broadcasts a message, while \(\hat{q}_i^j \) is potentially updated each time Agent \(i \) receives information from other agents.

To evaluate (16)–(19) as well as \(\hat{q}_i^j \), Agent \(i \) only requires messages from Agent \(j \in \mathcal{N}_i \).
Assumption A6 and the structure of the estimator (16)–(17) ensure that \(\hat{q}_i^j \left(t \right) = \hat{q}_i \left(t \right) \) for all \(i \in \mathcal{N} \) and \(j \in \mathcal{N}_i \). This simplifies the convergence and stability analysis detailed in Viel, Bertrand, Piet-Lahanier and Kieffer (2017).

6. Event-triggered communications

Due to the presence of state perturbations, the non-permanent communication, and the mismatch between \(\theta_i, \hat{\theta}_i \), and \(\tau_i \), there is usually a discrepancy between \(q_i \) and its estimate \(\hat{q}_i \) by Agent \(j \) denoted as

\[
\hat{e}_j^i = q_i - \hat{q}_i, j \in \mathcal{N}_i, \tag{22}
\]

which is used to trigger communications. Agent \(i \) can estimate \(\hat{e}_j^i \) by running an estimator of its own state using only information transmitted to its neighbors. This is useful to detect when the discrepancy between \(\hat{q}_i \) and \(q_i \) is large.

Theorem 3 introduces a CTC used to trigger communications to ensure a bounded asymptotic convergence of the MAS to the reference trajectory. Each agent is assumed to know the initial value of the state of its neighbors. This condition can be satisfied by triggering a communication at time \(t = 0 \).

Let \(k_{\min} = \min \{ k_i \neq 0 \}, k_{\max} = \max \{ k_i \}, \alpha_i = \sum_{j=1}^{N} k_j, \alpha_m = \min \alpha_i, \) and \(\alpha_M = \max \alpha_i. \) Define also for \(\theta_i \in \mathbb{R}^P, \Delta \theta_i = \hat{\theta}_i - \theta_i, \hat{\theta}_i = [\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p}]^T \), and, using Assumption A4,

\[
\Delta \theta_{i, \max} = \max \left\{ \max \left[\hat{\theta}_{i,1} - \min_{i,1}, I \right], \hat{\theta}_{i,1} - \max_{i,1}, I \right\}.
\]

Theorem 3. Consider a MAS with agent dynamics given by (1) and the control law (13). Consider some design parameters \(\eta_i \geq 0, \eta_2 > 0, 0 < b_i < \frac{k_p}{\alpha_m} \),

\[
\hat{\theta}_i \left(t \right) = \hat{\theta}_i \left(\tau \right) \tag{29}
\]

\[
\hat{\theta}_i \left(t, k \right) = \hat{\theta}_i \left(\tau \right) \tag{30}
\]

\[c_i \begin{pmatrix} 3 \min \left(\frac{1}{2}, k_1, k_p, k_0 \right) + 2 \left(k_0 + \frac{\min \{ k_{m_{\min}} k_{m_{\max}} \}}{k_{\max}} \right) \end{pmatrix} \max \{ 1, k_M \}
\]

\[c_1 = \frac{4}{\max \{ 1, k_M \}}
\]

and \(k_1 = k_0 - (1 + k_0 (k_M + 1)) \). In absence of communication delays, the system (1) is input-to-state practically stable (ISPS), see Jiang, Mareels, and Wang (1996), and the agents can be driven to some target formation such that

\[
\lim_{t \to \infty} \left(\sum_{i \in \mathcal{N} \setminus \mathcal{N}_i} k_0 \| \hat{q}_i \| + \sum_{i \in \mathcal{N}_i} k_0 \| \hat{q}_i \| + \frac{1}{2} \| q_i \left(t \right) \| \right) \leq \xi
\]

with

\[
\xi = \frac{N}{k_0} c_3 \left(D_{\max} + \eta + c_3 \Delta_{\max} \right) \tag{24}
\]

where \(\Delta_{\max} = \max_{m_{\min}} \sup_{t \geq 0} \left(\Delta \theta_i \right) \), if the communications are triggered when one of the following conditions is satisfied

\[
\| \hat{q}_i \| \geq \| \hat{q}_i \| + \eta_2 \tag{25}
\]

\[
k_0 \hat{e}_j^i + k_p k_0 \hat{e}_j^i + \eta \leq \alpha_m^2 \left(k_e \hat{e}_j^i + \hat{e}_j^i \right) \tag{26}
\]

\[
\| \hat{q}_i \| + \eta_2 \tag{27}
\]

\[
\| \hat{q}_i \| + \eta_2 \tag{28}
\]

\[
\| \hat{q}_i \| + \eta_2 \tag{29}
\]

\[
\eta_2 > 0, 0 < b_i < \frac{k_p}{\alpha_m} \tag{30}
\]

\[
\hat{\theta}_i \left(t \right) = \hat{\theta}_i \left(\tau \right) \tag{29}
\]

\[
\hat{\theta}_i \left(t, k \right) = \hat{\theta}_i \left(\tau \right) \tag{30}
\]
\[
\tilde{q}_{ij}^p(t) = \tilde{q}_{ij}^p(t) \quad (31)
\]
\[
\tilde{q}_{ij}^{\alpha i}(t, k_j) = \tilde{q}_{ij}^{\alpha i}(t, k_j) \quad (32)
\]
These properties are actually satisfied if the communication protocol described in Section 5.3 and the state estimator (26) and reference trajectory estimator (20) are employed. Theorem 3 is valid independently of the way the estimate \(\hat{x}_j \) of \(x_i \) is evaluated provided that (29) and (32) are satisfied.

From (24) and (28), one sees that \(\eta \) can be used to adjust the trade-off between the bound \(\xi \) on the formation and tracking errors and the amount of triggered communications. If \(\eta = 0 \), there is no perturbation, and \(\theta_i \) is perfectly known, the system converges asymptotically.

The left term in (26) depends on the potential energy of the formation, which measures the discrepancy of the MAS with its target formation. When this term is large, larger estimation errors may be tolerated than when the potential energy is low, since the MAS requires more estimation accuracy to reach its formation.

The right term in (26) mainly depends on \(e_i^j \) and \(e_i^j \), the error of Agent \(i \) state estimate. When the discrepancy between the estimate \(\hat{x}_j \) of its own state \(x_i \) is large, the estimates \(\hat{x}_{ij}^j, j \in N_i \) of \(x_i \) are also of poor quality. A message has to be sent by Agent \(i \) to update \(\hat{x}_{ij}^j \) in \(N_i \). To reduce the number of triggered communications, one has to keep \(e_i^j \) and \(e_i^j \) as small as possible. This may be achieved by more sophisticated estimators, as proposed in Viel, Bertrand, Kieffer and Piet-Lahanier (2017).

The term (27) is the error of Agent \(i \) dynamic parameters estimation. The discrepancy between the actual values of \(M_i \) and \(C_i \) and of their estimates \(M_i^r \) and \(C_i^r \) determines the accuracy of \(\theta_i \), that of \(\Delta \theta_{i, \max} \), and the estimation errors. Even in absence of state perturbations, due to the linear parametrization, it is likely that \(M_i^r \neq M_i, C_i^r \neq C_i \) and \(\Delta \theta_{i, \max} > 0 \), which leads to the satisfaction of the CTCs at some time instants. Thus, the CTC (27) is more frequently satisfied when the model of the agent dynamics is not accurate, requiring thus subsequent increase of the number of updates of the estimate of the states of agents.

The discrepancy between the estimate of the reference trajectory made by Agent \(i \) and by its neighbors is evaluated via (28). The estimates have to remain close to the reference trajectory known by the leaders. The reference trajectory estimation process differs from the state estimation process. In the state estimation process, when Agent \(j \) receives a message from Agent \(i \), Agent \(j \) updates its estimate \(\hat{x}_j \) using \(x_i \). In the reference trajectory estimation, Agent \(j \) updates its reference trajectory estimate \(\tilde{q}_{ij}^{\alpha i} \) using \(\tilde{q}_{ij}^p \) only when the information provided by Agent \(i \) is more recent than that already known by Agent \(j \). The terms \(\tilde{q}_{ij}^{\alpha i} \) are used to keep track of the last estimate of the reference trajectory shared between Agents \(i \) and \(j \) and avoid sending too many useless messages.

The CTC (25) is related to the discrepancy between \(\dot{q}_i \) and \(\dot{q}_j \). The norm of the actual value \(\dot{q}_i \) has to remain lower than that of the estimate \(\dot{q}_j \) evaluated by neighboring agents to avoid that the discrepancy increases faster than that could be predicted by the other agents. Satisfaction of CTC (25) is obtained for small value of \(n_j \), whereas large value of \(n_j \) to (28) being satisfied more frequently. A value of \(n_j \) that corresponds to a trade-off between the two CTCs (25) and (28) has thus to be found.

The choice of the parameters \(\alpha_i \), \(k_2 \), \(k_3 \), and \(k_0 \) also determines the number of messages broadcast. Choosing the spring coefficients \(k_2 \) such that \(\alpha_i = \sum_{j=1}^{N_i} k_2 \) is small leads to a reduction in the number of communications triggered resulting from the satisfaction of (28), at the cost of a less precise formation.

7. Simulation results

The proposed approach is evaluated considering \(N = 6 \) agents and two different models of their dynamics.

7.1. Models of the agent dynamics and estimator

7.1.1. Double integrator with Coriolis term (DI)

The first model is such that \(q_i = [x_i, y_i]^T \in \mathbb{R}^2, M_i = I_2, C_i(q_i) = 0.1 \|q_i\| I_2, \) and \(G = 0_{2 \times 1} \). The vectors \(\tilde{r}_i(t) = \tilde{r}_i^0(t), i = 1, \ldots, N \) are obtained using (2). To better observe the trade-off between the potential energy of the formation and the communication requirements, a first less accurate estimate of \(q_j \) made by Agent \(i \) is evaluated as

\[
\hat{x}_j^0(t) = x_i^0(t) \quad \forall t \in [t_k, t_{k+1}]
\]

The parameters of the control law (13) and the CTC (28) are \(k_M = \|M_i\| = 1, k_c = \|C_i\| = 0.1, k_p = 1, k_g = 15, k_i = 1 + k_p (k_m + 1), b_i = \frac{1}{k_g}, \) and \(k_0 = 2 \).

7.1.2. Surface ship (SS)

The second model considers surface ships with coordinate vectors \(q_i = [x_i, y_i, \psi_i]^T \in \mathbb{R}^3, i = 1 \ldots N, \) in a local earth-fixed frame. For Agent \(i \), \((x_i, y_i) \) represents its position and \(\psi_i \) its heading angle. The agent dynamics are assumed identical for all agents and are taken from Kyrkjeb, Pettersen, Wondergem, and Nijmeijer (2007). They are expressed in the body frame as

\[
M_{b,i} \dot{v}_i + C_{b,i} (v_i) v_i + D_{b,i} v_i = r_{b,i} + d_{b,i},
\]

where \(v_i \) is the velocity vector in the body frame. The values of \(M_{b,i}, D_{b,i}, \) and \(C_{b,i} \) are taken from Kyrkjeb et al. (2007). At \(t = 0 \), each Agent \(i \) has access to estimates \(\hat{M}_{b,i}, \hat{C}_{b,i}, \hat{D}_{b,i} \) of \(M_{b,i}, C_{b,i}, \) and \(D_{b,i} \), described as

\[
\hat{M}_{b,i} = (1_{3 \times 3} + 0.1 \Xi^M), \quad \hat{C}_{b,i} = (1_{3 \times 3} + 0.1 \Xi^C), \quad \hat{D}_{b,i} = (1_{3 \times 3} + 0.1 \Xi^D),
\]

where \(1_{3 \times 3} \) is the \(3 \times 3 \) matrix of ones, \(\Xi^M, \Xi^C, \) and \(\Xi^D \) are matrices whose components are independent uniform random variables with values in \([-1, 1]\), and \(\Xi \) is the Hadamard product. These estimates are transmitted at \(t = 0 \) to neighboring agents. As a consequence, the estimates of \(M_{b,i}, \) and \(C_{b,i} \) made by all agents at \(t = 0 \) are all identical.

The model (34) may be expressed as (1) with \(\psi = 0 \). To ensure an appropriated number of messages sampled, the vectors \(\tilde{r}_i(t) = \tilde{r}_i^0(t), i = 1, \ldots, N \) are obtained using (2).

The estimator described in Section 5.3 is employed.

The parameters of (13) and (28) are \(k_M = \|M_i\| = 33.8, k_c = \|C_i(1_{3 \times 3})\| = 43.96, k_p = 6, k_g = 20, k_i = 1 + k_p (k_m + 1), b_i = \frac{1}{k_g}, \) and \(k_0 = 1.5 \).

7.1.3. Parameters

The initial value are \(q(0) = [x(0)^T, y(0)^T]^T, q(0) = 0_{2N \times 1} \) for the DI and \(q(0) = [x(0)^T, y(0)^T, \psi(0)^T]^T, q(0) = 0_{3N \times 1} \) for the SS, where

\[
x(0) = [-0.35, 4.59, 4.72, 0.64, 3.53, -1.26]^T
\]
\[
y(0) = [-1.11, -4.59, 2.42, 1.36, 1.56, 3.36]^T
\]

and \(\psi(0) = 0_{N \times 1} \). An hexagonal target formation is considered with \(r^*(0) = \left[r_{11}(0)^T \quad r_{22}(0)^T \quad r_{33}(0)^T \right]^T \) for DI and \(r^*(0) = \left[r_{11}(0)^T \quad r_{22}(0)^T \quad r_{33}(0)^T \right]^T \) for SS where

\[
r_{11}(0) = [0, 2, 3, 2, 0, -1]^T
\]
\[
r_{22}(0) = \left[0, 0, \sqrt{3}, 2\sqrt{3}, 2\sqrt{3}, \sqrt{3} \right]^T
\]
\[
r_{33}(0) = 0_N
\]
Each agent communicates with $N/2 = 3$ other agents. From Yang et al. (2015), one obtains $k_{ij} = 0 \forall j$, except $k_{i,(i+1)} = k_{i,(i-1)} = 0.185$ and $k_{i,(i+3)} = 0.0926$. One has $\alpha_i = \sum_{j=1}^{N} k_{ij} = 0.463$, for all $i = 1, \ldots, N$ and $\alpha_M = 0.463$.

The simulation duration is $T = t$ with $T = 4$ s, taken sufficiently large to have a steady-state behavior, with an integration step size $\Delta t = 0.01$ s. Since time has been discretized, the minimum delay between the transmission of two messages by the same agent is set to Δt. The perturbation $d_i(t)$ is assumed constant over each interval $[k_i \Delta t, (k + 1) \Delta t]$. The components of $d_i(t)$ are independent realizations of zero-mean uniformly distributed noise $U(0, \sqrt{3})$, $D_{max} / \sqrt{3}$ and are thus such that $\|d_i(t)\| \leq D_{max}$. Let N_m be the total number of messages transmitted during a simulation. The performance of the proposed approach is evaluated with $R_{com} = \sum_{m=1}^{N_m} \|R_m\| / R_m$, where $R_m = NT / \Delta t \geq N_m$.

The tracking target trajectory speed of the first agent is $\hat{q}_1^q(t) = 4|\sin(0.4t)|, \cos(0.4t), 0.1t|^T$, the other agents having to remain in formation. Agent 1 is taken as the leader, i.e. $N_1 = \{1\}$. The estimation model $\hat{q}_j^i(t) = \bar{f}(\hat{q}_j^i(t))$ is taken as a double integrator initialized at each t_0^j by $\hat{q}_j^{i*}(t_0^j)$ so that $\hat{q}_j^{i*}(t) = \hat{q}_j^{i*}(t_0^j) (t-t_0^j)^2 + \hat{q}_j^{i*}(t_0^j) (t-t_0^j) + \hat{q}_j^{i*}(t_0^j)$.

7.2. Tracking control with DI

Fig. 1 shows the evolution of R_{com} and of $P(q(t)) + \|\epsilon\|$ at $t = T$ for different values of $D_{max} \in \{0, 2, 4, \ldots, 12\}$, $\eta \in \{4, 16, 36, 64, 100, 144\}$, and $\eta_2 = 7.5$.

In Fig. 1(a), one observes that R_{com} decreases with η and increases with D_{max}, as expected observing the CTC (28). In Fig. 2(b), one observes that when η increases, $P(q(t)) + \|\epsilon\|$ also increases. The evolution with D_{max} is more complex to explain, since D_{max} impacts both sides of the CTC (28). When D_{max} increases, the threshold for the CTC to be satisfied increases, but due to the noise, the CTC is also more likely to be satisfied. For all considered values of η, the increase of D_{max} is well compensated by the increase of R_{com} leading to small variations of $P(q(t)) + \|\epsilon\|$.

Fig. 1. Evolution of R_{com} and $P(q(t)) + \|\epsilon\|$ for different values of D_{max} and η, with $\eta_2 = 7.5$. The DI model as well as the constant estimator (33) are considered.

7.3. Tracking with surface ship model

The simulation duration is $T = 5$ s. Fig. 2 shows the evolution of R_{com} and of $P(q(t)) + \|\epsilon\|$ at $t = T$, for different values of $D_{max} \in \{0, 100, 200, 400, 600, 700\}$ and $\eta \in \{10^2, 200^2, 400^2, 600^2, 700^2\}$ with $\eta_2 = 7.5$.

In Fig. 2 left, one observes again that R_{com} decreases when η increases, and increases with D_{max}. Fig. 2 right shows that larger values of $P(q(t)) + \|\epsilon\|$ are obtained for larger values of η since less communications are triggered. Moreover, as previously observed, whatever the value of η, $P(q(t)) + \|\epsilon\|$ increases only slightly with D_{max} due to the increased amount of communications which compensates increasing perturbation levels. The trajectory of agents and the communication instants are illustrated in Fig. 3 when a trajectory has to be tracked. Fig. 4 shows the influence of the accurate state estimator (16) and the coarse constant state estimator (33), in absence of trajectory tracking.

Fig. 2. Evolution of R_{com}, $P(q(t))$ and ϵ_0 for different values of D_{max} and η, with $\eta_2 = 7.5$. The SS model (34) and the accurate estimator (16) are considered.

8. Conclusion

This paper presents a distributed event-triggered control strategy to drive a MAS to some possibly time-varying target formation. Perturbed Euler–Lagrangian dynamics are considered. The event-triggered approach requires that each agent maintains an
estimate of the state of its neighbors, to be able to evaluate its control law, without requiring a permanent communication between agents. Each agent has also to estimate its own state using information it has transmitted to the other agents. The discrepancy between its actual state value and its estimate is used to trigger communications to other agents, so that they can update their estimates. Convergence properties and influence of state perturbations on the amount of required communications have been studied. Tracking of time-varying formations has also been considered. The time interval between consecutive communications has been shown to be strictly positive in Viel, Bertrand et al. (2017).

Simulations have shown the effectiveness of the proposed method in presence of state perturbations when their level remains moderate. In future work, the considered problem will be extended to communication delay and packet losses.

References

Christophe Viel received a master degree in “Advanced System and Robotics” and an engineering degree at the Arts et Metier ParisTech School in Paris (France) in 2014. He prepared his Ph.D. at the ONERA (The French Aerospace Lab) within the Paris-Saclay University on the topic “Determination of command control and observer for multi-agent system with reduced information by event-triggered” in 2017.

After a post-doctorate in 2018 at the University of Plymouth (UK) on control strategies for autonomous sailboat, he is currently a post-doctorate at the Institute of Science of Movement in Marseille (France) on the topic of distance evaluations using optical flow.

His research interests are in distributed control and communication for multi-agent system, described by non-linear models in a bounded-error context.

Sylvain Bertrand graduated from Ecole Centrale de Lille in 2004 and obtained his Ph.D. in 2007 from University of Nice Sophia-Antipolis. Since 2007 he has been working as a Research Scientist in the System Department of ONERA—The French Aerospace Lab. His research interests include optimization-based control and estimation, multi-agent systems and risk analysis with applications to aerospace and robotic systems.

Michel Kieffer is a full professor in signal processing for communications at the Paris-Sud University and a researcher at the Laboratoire des Signaux et Systèmes, Gif-sur-Yvette. From 2009 to 2016, he was part-time invited professor at the Laboratoire Traitement et Communication de l’Information, Telecom ParisTech, Paris.

His research interests are in signal processing for multimedia, communications, and networking, distributed source coding, network coding, joint source-channel coding and decoding, joint source-network coding. Applications are mainly in the reliable delivery of multimedia contents over wireless channels. He is also interested in guaranteed and reliable parameter and state bounding for systems described by non-linear models in a bounded-error context.

Michel Kieffer is co-author of more than 150 contributions in journals, conference proceedings, or books. He is one of the co-authors of the book *Applied Interval Analysis* published by Springer-Verlag in 2001 (this book was translated in Russian in 2005) and of the book *Joint source-channel decoding: A crosslayer perspective with applications in video broadcasting* published by Academic Press in 2009. He serves as associate editor of Signal Processing since 2008 and of the IEEE Transactions on Communications from 2012 to 2016.

From 2011 to 2016, Michel Kieffer was junior member of the Institut Universitaire de France.

Hélène Piet-Lahanier graduated from Suphero (Toulouse) and obtained her Ph.D. in Physics and her Habilitation à Diriger les Recherches (HDR), both from the University Paris-Sud, Orsay. She is currently Scientific Deputy of the department of Information Processing and System in ONERA. Her research interests include modeling under uncertainty, bounded error estimation, cooperative guidance and event-triggered estimation. Hélène Piet-Lahanier has co-authored over a hundred contributions in journals, conference proceedings, or books. She co-edited the book Bounding approaches to system identification. She is a member of the IFAC technical committee on Aerospace.

...