Symmetry breaking and propulsion of vertically flapping foils

Luis H. BENETTI RAMOS^{1,2,3}, Olivier MARQUET¹, Angelo IOLLO^{2,3}, Michel BERGMANN^{2,3}

ONERA, The French Aerospace Lab (1) INRIA/MEMPHIS (2) Institut de Mathématiques de Bordeaux (3)

This work was funded by an ERC Starting Grant under the project AEROFLEX

Flapping propulsion

Introduction

Jnsteady simulations

Floquet analysis

Conclusions

Flapping wing propulsion:

Symmetry breaking and threshold – Time reciprocal movements and propulsion [Purcell 1977, Lauga 2007]

≻How does horizontal propulsion appear and evolve while increasing frequency?

When is flapping propulsion possible?

Introduction

Insteady simulations

loquet analysis

Conclusions

When is such flapping wing strategy possible?

[Childress et al 2004]

Ciliary + Flapping propulsion

(a/2) sin(2πft)

[Vandenberghe et al 2004]

Fluid non-linearities and propulsion

Followed by several numerical studies :

- Flow symmetry breaking only [Elston et al 2004,2005; Deng & Caulfield 2016]
- > Horizontal locomotion [Deng & Caulfield 2018; Alben & Shelley 2005; Lu & Liao 2006]

Different propulsive regimes and their connection with linear stability of the coupled system

- I. Unsteady non-linear simulations Horizontal locomotion
- II. Floquet stability analysis Coupled system
- III. Conclusions

Flow generated and locomotion of a wing under imposed vertical motion

Control parameters :

$$\beta = \frac{fc^2}{v}$$
, $A = \frac{\tilde{A}}{c}$, $\rho = \frac{\rho_s}{\rho_f}$

$$A = 0.5, \rho_s = 100\rho_f, h = 0.05c, \beta \in [1,35]$$

Flow and locomotion equations:

$$\begin{bmatrix} \partial_t \boldsymbol{u} + \nabla \boldsymbol{u} \cdot (\boldsymbol{u} - \boldsymbol{u}_{\boldsymbol{G}}) = -\nabla p + \beta^{-1} \Delta \boldsymbol{u} ; \nabla \cdot \boldsymbol{u} = 0 \\ \rho S \frac{d \boldsymbol{u}_{\boldsymbol{G}}}{d t} = F_{\boldsymbol{x}} \\ \boldsymbol{u}(Wing) = \boldsymbol{u}_{\boldsymbol{g}} \\ \boldsymbol{u}(|\boldsymbol{x}| \to \infty) = \boldsymbol{0} \end{bmatrix}$$

- Fluid/structure coupling: Non-linear volumic terms [Jallas et al 2017]
- Unsteady non-linear simulations (BDF2) semi-implicit scheme;
- FE discretization: P2/P1 Elements FreeFem [Hecht 2012].

> Can we explain these regimes through stability analysis of the non propulsive flow?

Stability analysis – MethodsIntroductionUnsteady simulationsFloquet analysisConclusions> Base flow – Time-periodic symmetry preserved solutions $\begin{pmatrix} u_s \\ p_s \end{pmatrix}(t)$:

Time Spectral Method [Sicot et al 2012]; Spatial symmetry imposition – Half plan with symmetry conditions

Floquet stability analysis of the symmetrical solutions

(\boldsymbol{u})	(u_s)		/ Û ∖	
(p)	$(t) = (p_s)^{T}$	$(t) + \epsilon$	\hat{p}	(t) $e^{\alpha t}$
$\langle u_G \rangle$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$		$\langle \hat{u}_G \rangle$	

 α : Floquet exponent ($\Re e(\alpha) > 0$: unstable) $f_{Floquet}$: $Im(\alpha)/2\pi$ \widehat{q} : Floquet mode

$$u_s(t) = u_s(t+T)$$
$$\hat{u}(t) = \hat{u}(t+T)$$

- > Hill method Jacobian of the TSM operator [O. Thomas et al 2010]
- FreeFem interface with PETSc/SLEPc Krylov-Schur methods

Symmetry preserving method

Introduction

nsteady simulation

Floquet analysis

Conclusions

Base flow – Time-periodic and symmetry preserved solutions:

- Time Spectral Method [Sicot et al 2012];
- Spatial symmetry imposition Half plan with symmetry conditions.

- Mode breaks spatial symmetry
- Synchronous $Im(\alpha) = 0$
- Net average speed

- Mode breaks spatial symmetry
- Asynchronous Changes base-flow frequency
- ▶ Zero average speed $< \hat{u}_g > = 0$

- Two Synchronous Modes
- Net average speed

Summary and prospects Introduction Unsteady simulations Floquet analysis Conclusions ➤ Conclusions:

- Regimes observed through unsteady non-linear simulations for a vertically flapping foil;
- Unidirectional propulsion can be explained by a synchronous unstable Floquet mode;
- Back & Forth regimes can be explained by asynchronous Floquet modes with zero average speed;
- Propulsive Oscillating Nonlinearities?
- A simple Floquet analysis with $\rho \rightarrow \infty$ fails to predict these thresholds

Prospects:

- Extend the presented analysis for other amplitudes and mass ratios;
- Adjoint modes;
- Interaction between flapping wings.

Questions?