

Passive control of fluid-structure instabilities by means of piezo-shunts

<u>Marco CARINI</u>, Jean-Lou PFISTER & Olivier MARQUET AEROFLEX project

th European Turbulence Conference - KTH Stockholm

return on innovation

Piezo-electricity : *Electric response of certain materials to a mechanical stress due to their microscopic structure*

Sensing & Actuation from everyday life

... to the Aerospace Research

Focus on : using piezos to control fluid-structure global instabilities

2D Model problem

- Rigid cylinder + elastic plate + piezo patches.
- Incompressible flow at $Re = U_{\infty}D/\nu = 80$.
- Solid-to-fluid density ratio $\rho = 50$ and plate bending stiffness K = 0.3.
- Electromechanical coupling coefficient $k_e = 0.57009$.

• Incompressible Navier-Stokes equations on the deforming domain :

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{\nabla} \cdot \left(\boldsymbol{u} \otimes \boldsymbol{u} + p\boldsymbol{I} - \frac{1}{Re} \left(\boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{u}^T \right) \right) = \boldsymbol{0},$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = \boldsymbol{0},$$

• Linear isotropic elastic material under small deformations :

$$ho rac{\partial^2 oldsymbol{\xi}_s}{\partial t^2} - oldsymbol{
abla} \cdot oldsymbol{\sigma}_s(oldsymbol{\xi}_s) = oldsymbol{0},$$

• Piezo-patch modelling :

$$\begin{split} \rho \frac{\partial^2 \pmb{\xi}_s}{\partial t^2} - \boldsymbol{\nabla} \boldsymbol{\cdot} \, \pmb{\sigma}_s(\pmb{\xi}_s, \pmb{V_e}) &= \pmb{0}, \\ \boldsymbol{\nabla} \boldsymbol{\cdot} \, \pmb{d}(\pmb{V_e}, \pmb{\xi}_s) &= 0. \end{split}$$

- Arbitrary Lagrangian Eulerian (ALE) formulation.
- Monolithic approach using FEM discretisation.

Electro-mechanical coupling

Discretized piezo-structure eqs.

$$M\frac{d^{2}\boldsymbol{\xi}_{s}}{dt^{2}} + K\boldsymbol{\xi}_{s} - K_{p} \Delta V_{e} = \mathbf{0},$$

$$K_{p}^{T}\boldsymbol{\xi}_{s} + C_{p} \Delta V_{e} = Q_{e},$$

$$M_{p}^{0} = Q_{e},$$

$$M_{p}^{0} = Q_{e},$$

$$M_{p}^{0} = Q_{e},$$

- C_p is the equivalent piezo-patches capacitance.
- K_p is the electromechanical coupling matrix bewteen σ^{xx}_s and the transverse electric field e_y.
- Parallel connection $\Delta V_e^t = \Delta V_e^b = \Delta V_e$.
- Opposite poling *y*-direction ⇒ only bending modes are affected :

$$K_p^T \boldsymbol{\xi}_s = 0$$
, for pure traction/compression

Connecting a R-shunt circuit

• Short-circuit \Rightarrow No electro-mechanical coupling \Rightarrow pure fluid-structure behaviour.

• **Open-circuit** \Rightarrow Maximal electro-mechanical coupling.

$$\mathcal{B}_f rac{\partial \boldsymbol{q}_f}{\partial t} - \mathcal{R}_f(\boldsymbol{q}_f, \boldsymbol{q}_s) = \mathbf{0}, \text{ on } \Omega_f^r$$
 Fluid Eqs.
 $\mathcal{B}_s rac{\partial \boldsymbol{q}_s}{\partial t} - \mathcal{R}_s(\boldsymbol{q}_s, \boldsymbol{q}_s) = \mathbf{0}, \text{ on } \Omega_s^r$ Solid Eqs.

$$\mathcal{B}_p \frac{d \boldsymbol{q}_e}{dt} - \mathcal{R}_p(\boldsymbol{q}_e, \boldsymbol{q}_s) = \boldsymbol{0}, \qquad \qquad \text{Electr. Eqs.}$$

where

$$oldsymbol{q}_f = egin{pmatrix} oldsymbol{u}\\ p \end{pmatrix}, \qquad oldsymbol{q}_s = egin{pmatrix} oldsymbol{\xi}_s\\ \partialoldsymbol{\xi}_s/\partial t \end{pmatrix}, \qquad oldsymbol{q}_e = egin{pmatrix} Q_e\\ V_e \end{pmatrix}.$$

and in compact abstract from :

$$\mathcal{B}\frac{\partial \boldsymbol{q}}{\partial t} = \mathcal{R}(\boldsymbol{q}).$$

where $\boldsymbol{q} = \{\boldsymbol{q}_f, \boldsymbol{q}_s, \boldsymbol{q}_e\}^T.$

Global stability analysis

Nonlinear fixed equilibrium solution q_B :

$$\mathcal{R}(\boldsymbol{q}_B) = 0.$$

• Linearized perturbations around \boldsymbol{q}_B :

$$\boldsymbol{q}(\boldsymbol{x},t) = \boldsymbol{q}_B(\boldsymbol{x}) + \epsilon \hat{\boldsymbol{q}}(\boldsymbol{x}) e^{\lambda t}, \text{ with } \epsilon \ll 1.$$

• Generalised Eigenvalue problem :

$$\lambda \mathcal{B} \hat{\boldsymbol{q}} = \mathcal{A} \hat{\boldsymbol{q}},$$

where :

$$\mathcal{A} = rac{\partial \mathcal{R}(\boldsymbol{q})}{\partial \boldsymbol{q}} \Big|_{\boldsymbol{q}_B} = egin{pmatrix} \mathcal{A}_{ff} & \mathcal{I}_{fs} & 0 \ \mathcal{I}_{fs} & \mathcal{A}_{ss} & \mathcal{A}_{sp} \ 0 & \mathcal{A}_{ps} & \mathcal{A}_{pp} \end{pmatrix}.$$

Global stability results

Base flow

- Global spectrum for Short and Open circuit case.
- Investigate the mode transition :
 - based on the added electrical stiffness effect.
 - by varying τ_e .

Short-circuit

Open-circuit

When using the same normalization, the maximum y-displacement is increased by 3 orders of magnitude in the open-circuit case.

Structure mode kinematic analysis

Projection of q_s on the structure free-vibration modes

Projection coefficient amplitude

	$Mode\;1$	Mode 2	$Mode\ 3$	$Mode\ 4$
Short-circuit mode	1.00	2.89×10^{-3}	1.99×10^{-4}	5.29×10^{-5}
Open-circuit mode	0.99	1.53×10^{-1}	2.61×10^{-2}	1.14×10^{-2}

Projection of q_s on the piezo-structure free-vibration modes

Projection coefficient amplitude

	$Mode\ 1$	$Mode\ 2$	Mode 3	Mode 4
Open-circuit mode	1.00	1.70×10^{-3}	4.42×10^{-4}	3.39×10^{-5}

For the free-vibrating piezo-elastic plate in open-circuit we have :

$$-\omega^2 M \hat{\boldsymbol{\xi}}_s + (K + K_p C_p^{-1} K_p^T) \hat{\boldsymbol{\xi}}_s = 0$$

By projection onto the base of free-vibrating modes of the elastic plate only, $X_{\boldsymbol{s}},$ we obtain

$$\omega^{2} \hat{\boldsymbol{\zeta}} = \begin{bmatrix} \omega_{0,1}^{2} & & \\ & \omega_{0,2}^{2} & \\ & & \ddots & \\ & & & \omega_{0,n}^{2} \end{bmatrix} \hat{\boldsymbol{\zeta}} + \Delta \Omega_{p} \hat{\boldsymbol{\zeta}}, \quad \text{with } \Delta \Omega_{p} = X_{s}^{H} K_{p} C_{p}^{-1} K_{p}^{T} X_{s}$$

Truncation at the first 6 modes yields $\omega_1 = 1.4$ (compared to $\omega_{1,exact} = 1.33$) and

$$abs(\hat{\boldsymbol{\zeta}}_1) = (0.9834, 0.1782, 0.0312, 0.0134, 3.33 \times 10^{-10}, 0.0050)$$

 \Rightarrow the first free-vibrating piezo mode essentially results from the combination of the first two free vibration modes of the elastic plate.

Leading eigenvalue

Varying the electrical resistance (continued)

Increasing τ_e

Leading mode

- The white area denotes the stabilization range.
- The red dashed line corresponds to the maximal damping of the leading mode.

Conclusions

- Structure-added electrical stiffness effect as expected.
- Fluid-structure mode (*mainly driven by the unstable fluid dynamics*) controlled by exploiting the piezo electro-mechanical coupling.
- Open/close circuit mode selection explained by continuosly varying R_e :
 - the original fluid-structure mode is increasingly damped as R_e is increased.
 - ▶ for large enough values of R_e a second mode is destabilized (water-bed effect).
 - effective stabilization by passive control within a finite range of R_e values.

Ongoing developments

- Varying elastic parameters to address other types of fluid-structure modes.
- Introducing a second-order electric dynamics.
- Active feedback control.

Thanks for your attention.

(Any Question?)