

Passive control of fluid-structure instabilities by means of piezo-shunts

Marco CARINI, Jean-Lou PFISTER & Olivier MARQUET

AEROFLEX project

return on innovation

Piezo-electricity : *Electric response of certain materials to a mechanical stress due to their microscopic structure*

Sensing & Actuation from everyday life

... to the Aerospace Research

Our Goal : using piezos to control fluid-structure instabilities

2D Model problem

- Rigid cylinder + elastic plate + piezo patches.
- $Re = U_{\infty}D/\nu = 80$, density ratio $m_{\rho} = 50$ and bending stiffness K = 0.3.
- Electro-mechanical coupling only acting for bending modes (*transverse effect* + *opposite poiling direction*).

Arbitrary Lagrangian Eulerian approach

- Lagrangian for the solid.
- Eulerian description for the fluid.
- Eqs. in the underformed configuration
- Fully coupled nonlinear fluid-electro-mechanical system in compact form

$$\mathcal{B}\frac{\partial \boldsymbol{q}}{\partial t} = \mathcal{R}(\boldsymbol{q}).$$

• Linearization around a fixed equilibrium solution q_B , i.e. $\mathcal{R}(q_B) = 0$, with $q(x,t) = \hat{q}(x)e^{\lambda t}$

$$\lambda \mathcal{B} \hat{\boldsymbol{q}} = rac{\partial \mathcal{R}(\boldsymbol{q})}{\partial \boldsymbol{q}} igg|_{\boldsymbol{q}_B} \hat{\boldsymbol{q}},$$

which is a Generalised Eigenvalue Problem, for $\lambda = \sigma + \imath \omega \in \mathbb{C}$:

Base flow & Leading (unstable) modes

Base flow

No Piezos

Piezos

Without vs With Piezos

Connecting a R-shunt circuit

1st order electr. dynamics

$$\frac{dQ_e}{dt} + \frac{1}{RC_p}Q_e = 0,$$

• $\tau_e = RC_p$ is the characteristic electrical time.

- Energy dissipation by Joule's effect, $P_e = C_p V_e^2 / \tau_e$.
- For $\tau_e \rightarrow 0$, electro-mechanical coupling becomes negligible (short-circuit).
- For $\tau_e \to \infty$, electro-mechanical coupling becomes maximal (open-circuit).

Leading eigenvalue

Varying the electrical resistance (continued)

Increasing τ_e

Leading mode

A conjecture on two possible distinct stabilization mechanisms :

- **Frequency desynchronization** by means of the added electric stiffness (*original flutter mode*).
- Electrical damping through Joule effect (new selected flutter mode).

Thanks for your attention.

(Any Questions?)