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The nonlinear saturation is due to two mechanisms

1 – Mean flow distortion (circular cylinder flow)

• Mean flow analysis - Barkley (2002)

Eigenvalue analysis of a mean flow (computed from DNS)  

Real Zero Imaginary Frequency property – Turton et al. (2015)

• Self-consistent model - Mantic-Lugo et al (2015)

Reconstruction of the mean flow assuming the RZIF property.
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The nonlinear saturation is due to two mechanisms

2 – Interaction of higher-harmonics (open-cavity flow)

• Weakly nonlinear analysis - Sipp & Lebedev (2007)

• Second-order self-consistent model - Meliga (2017)

Extended mean-flow analysis

An eigenvalue analysis that accounts for both effects.
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1 – Extended mean-flow analysis

2 – Results for laminar flows

• Circular-cylinder flow 

• Open-cavity flow

3 – Conclusion/Perspectives
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A set of time-independent coupled nonlinear equations
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A set of time-independent coupled nonlinear equations
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Eigenvalue analysis of the mean flow operator
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1 – Extended mean flow analysis of periodic flows

2 – Results for laminar flows

• Circular-cylinder flow 

• Open-cavity flow (with rounded corners)

3 – Conclusion/perspectives



Circular cylinder flow configuration
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Circular cylinder flow – Base flow analysis
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Base flow 

$4 = 0.125

�4 = 0.739



Circular cylinder flow – Mean-flow analysis
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Base flow Mean flow
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Circular cylinder flow – Mean-flow analysis
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Base flow Mean flow
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Mean flow� = 1.044
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First Fourier mode -	�
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Circular cylinder flow – Extended mean-flow analysis
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Second-Harmonic Mean flow� = 1.044
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Second-Harmonic Mean flow� = 1.044
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Second-Harmonic Mean flow
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Second-Harmonic Mean flow
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Second-Harmonic Mean flow
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Circular cylinder flow – Extended mean-flow analysis
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Open cavity flow configuration
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Open-cavity flow – Mean-flow analysis
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Open-cavity flow – Extended mean-flow analysis
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Second-harmonic Mean flow

Extended mean-flow
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Conclusion

• A new eigenvalue analysis of periodic flow accounting for the 

two mechanisms of nonlinear saturation

• This analysis gives a Real Zero Imaginay Frequency Mode

Perspectives

• Develop a model where the second-harmonic is reconstructed

• Extension to fluid/structure problems and turbulent flows

modelled with a RANS approach



Flow configuration and turbulent flow model
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• Turbulent flow modelled with Reynolds Averaged Navier Stokes equations

• Spalart-Almarras model for the turbulent eddy viscosity 2�

• Frozen-viscosity approach:

- Steady equations solved with the Spalart-Almarras model

- Unsteady equations solved with frozen turbulent eddy viscosity 2�



Base flow - Steady solution of RANS equations
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Turbulent eddy viscosity 2�/2

Streamwise velocity F

Leading-edge recirculation regions Trailing-edge recirculation regions



Stability analysis with frozen eddy-viscosity
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Streamwise velocity F

Unstable eigenmode

Eigenvalue spectrum



Stability analysis with frozen eddy-viscosity
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Streamwise velocity F

Unstable eigenmode – Zoom on trailing edge

Eigenvalue spectrum
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Unsteady solution with frozen-eddy viscosity
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Mean-flow analysis with frozen eddy-viscosity

33

Mean-flow eigenmode

Mean-flow eigenvalue spectrum
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Extended mean-flow analysis with frozen eddy-viscosity
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Extended mean-flow eigenvalue spectrum

$% = 0.192

�% = 14.604

(� = 14.714)

• Two eigenvalues characterized by zero growth rate



Extended mean-flow analysis with frozen eddy-viscosity
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• Two eigenvalues characterized by zero growth rate

• The frequency of one eigenmode is in excellent agreement

with the non-linear frequency ;

Extended mean-flow eigenvalue spectrum
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Extended mean-flow eigenvalue spectrum
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Extended mean-flow eigenmode
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Extended mean-flow eigenvalue spectrum

$% = 0.192

�% = 14.604

(; = �?. I�?)

:, = ��>��

;,
� = �?. I�?

�*
� = 14.479

1

2

First harmonic


