

Augmented Lagrangian Preconditioner for Linear Stability Analysis of incompressible fluid flows on large configurations

J.Moulin', J-L. Pfister ${ }^{1}$, O.Marquet ${ }^{1}$, P. Jolivet²
I Office National d'Etudes et de Recherches Aérospatiales
${ }^{2}$ ENSEEIHT - Institut de Recherche en Informatique de Toulouse

Funded by ERC Starting Grant
FreeFem++ Days, Paris, 14-15 december 2017

Introduction

What is Linear Stability Analysis ?

One wants to know if some steady solution of equation (1) is temporally stable or unstable:

$$
\begin{equation*}
\frac{\partial \boldsymbol{q}}{\partial t}=\boldsymbol{\mathcal { R }}(\boldsymbol{q}) \tag{1}
\end{equation*}
$$

Method : Linear Stability Analysis

Step 1: compute a steady solution

$$
\mathcal{R}\left(\boldsymbol{q}_{\boldsymbol{b}}\right)=\mathbf{0}
$$

Step 2: test its stability for small monochromatic perturbations $\widehat{\boldsymbol{q}}(x) e^{\sigma t}$ around the steady solution $\boldsymbol{q}_{\boldsymbol{b}}$

Introduction

A classical example

From [Goharzadeh \& Molki, 2015]

Typical question :

What is the critical Reynolds number above which the von Karman vortex street appears?

Introduction

A classical example

Step 1: compute a steady solution

Steady Navier-Stokes solution ($R e=50$) [Sipp et al, 2010]

Introduction

A classical example

Step 1: compute a steady solution

Steady Navier-Stokes
solution ($R e=50$)
[Sipp et al, 2010]

Step 2: test its stability for small monochromatic perturbations $\widehat{\boldsymbol{q}}(x) e^{\sigma t}$ around the steady solution $\boldsymbol{q}_{\boldsymbol{b}}$

$$
\begin{aligned}
\sigma M \widehat{\boldsymbol{q}} & =J\left(\boldsymbol{q}_{\boldsymbol{b}}\right) \widehat{\boldsymbol{q}} \\
\lambda & =\mathfrak{R}[\sigma] \\
\omega & =\Im[\sigma]
\end{aligned}
$$

Introduction

A classical example

Step 1: compute a steady solution

Steady Navier-Stokes
solution ($R e=50$)
[Sipp et al, 2010]

Step 2: test its stability for small monochromatic perturbations $\widehat{\boldsymbol{q}}(x) e^{\sigma t}$ around the steady solution $\boldsymbol{q}_{\boldsymbol{b}}$

$$
\begin{aligned}
\sigma M \widehat{\boldsymbol{q}} & =J\left(\boldsymbol{q}_{\boldsymbol{b}}\right) \widehat{\boldsymbol{q}} \\
\lambda & =\mathfrak{R}[\sigma] \\
\omega & =\Im[\sigma]
\end{aligned}
$$

[Sipp et al, 2010]

Introduction

Why Linear Stability Analysis?

Some nice features:

- Easy to determine a threshold value (sign of $\mathfrak{R}[\sigma]$)
- Less expensive than nonlinear time-integration

But some computational burdens:

- Find a (not necessarily stable) steady solution: Newton method > Multiple inversions of J
- Find internal eigenvalues of generalized EV problems : Krylov-Schur + shift-and-invert
$>$ Multiple inversions of $\mathrm{J}-s M$, where s is the shift

Introduction

How to invert matrix of the type J - s M efficiently?
> For reasonably small configurations : direct sparse solvers (MUMPS, SUPERLU, etc)
$>$ For large configurations : iterative method (GMRES, BiCGSTAB, ...) + good preconditioner

Introduction

Linearized incompressible Navier-Stokes operator (i.e. J -s M):

Once discretized with FE : classical saddle-point problem

$$
\left(\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right)\binom{u}{p}=\binom{f}{g}
$$

How to precondition this?

- SIMPLE [Patankar 1980]
- Stokes Preconditioner [Tuckerman, 1989] (based on adaptation of existing time-stepping code)
- Pressure Convection Diffusion [Silvester et al. 2001]
- Least-Squares Commutator [Elman et al. 2006]
- Augmentated Lagrangian [Benzi and Olshanskii 2006], [Heister and Rapin 2013]

Introduction

Linearized incompressible Navier-Stokes operator (i.e. J -s M):

Once discretized with FE : classical saddle-point problem

$$
\left(\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right)\binom{u}{p}=\binom{f}{g}
$$

How to precondition this?

Q SMAEE [Patankon 1980]

- Stokes Preconditioner Muckeman, 1989 (based on adaptotion of existing the stepping code)
- Pressure Convechon Difuson Shresteret al 20011
- Augmentated Lagrangian [Benzi and Olshanskii 2006], [Heister and Rapin 2013]

Overview

1 - Augmentation-based preconditioners

2 - Performances

3 - FreeFem++ parallel implementation

4 - Parallel 3D numerical examples

5 - Some further refinement ...

1-Augmentation-based preconditioners

Augmented problems

Augmented Lagrangian (algebraic augmentation)

$$
\left(\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right)\binom{u}{p}=\binom{f}{g} \quad \longrightarrow \quad\left(\begin{array}{cc}
A_{\gamma} & B^{T} \\
B & 0
\end{array}\right)\binom{u}{p}=\binom{f_{\gamma}}{g} \quad \begin{aligned}
& A_{\gamma}=A+\gamma B^{T} W^{-1} B \\
& f_{\gamma}=f+\gamma B^{T} W^{-1} g
\end{aligned}
$$

1-Augmentation-based preconditioners

Augmented problems

Augmented Lagrangian (algebraic augmentation)

$$
\left(\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right)\binom{u}{p}=\binom{f}{g} \quad \longrightarrow \quad\left(\begin{array}{cc}
A_{\gamma} & B^{T} \\
B & 0
\end{array}\right)\binom{u}{p}=\binom{f_{\gamma}}{g} \quad \begin{aligned}
& A_{\gamma}=A+\gamma B^{T} W^{-1} B \\
& f_{\gamma}=f+\gamma B^{T} W^{-1} g
\end{aligned}
$$

Grad-Div augmentation (variational augmentation)

$$
\begin{gathered}
\int_{\Omega} s \boldsymbol{u} \cdot \breve{\boldsymbol{u}}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \cdot \check{\boldsymbol{u}}+R e^{-1} \nabla \boldsymbol{u}: \nabla \check{\boldsymbol{u}}-\mathrm{p} \boldsymbol{\nabla} \cdot \check{\boldsymbol{u}} \\
+\int_{\Omega} \gamma(\nabla \cdot \boldsymbol{u})(\nabla \cdot \check{\boldsymbol{u}})=\mathbf{0} \\
\quad-\int_{\Omega}(\nabla \cdot \boldsymbol{u}) \check{\boldsymbol{q}}=\mathbf{0} \\
\hline
\end{gathered}
$$

1-Augmentation-based preconditioners

Augmented problems

Augmented Lagrangian (algebraic augmentation)

$$
\left(\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right)\binom{u}{p}=\binom{f}{g} \quad \longrightarrow \quad\left(\begin{array}{cc}
A_{\gamma} & B^{T} \\
B & 0
\end{array}\right)\binom{u}{p}=\binom{f_{\gamma}}{g} \quad \begin{aligned}
& A_{\gamma}=A+\gamma B^{T} W^{-1} B \\
& f_{\gamma}=f+\gamma B^{T} W^{-1} g
\end{aligned}
$$

Grad-Div augmentation (variational augmentation)

$$
\begin{gathered}
\int_{\Omega} s \boldsymbol{u} \cdot \breve{\boldsymbol{u}}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \cdot \check{\boldsymbol{u}}+R e^{-1} \nabla \boldsymbol{u}: \nabla \check{\boldsymbol{u}}-\mathrm{p} \nabla \cdot \breve{\boldsymbol{u}} \\
+\int_{\Omega} \gamma(\nabla \cdot \boldsymbol{u})(\nabla \cdot \breve{\boldsymbol{u}})=\mathbf{0} \\
-\int_{\Omega}(\nabla \cdot \boldsymbol{u}) \breve{\boldsymbol{q}}=\mathbf{0}
\end{gathered}
$$

Augmented Lagrangian leaves the discrete solution unchanged
Grad-Div leaves the continuous solution unchanged

1-Augmentation-based preconditioners

Augmented problems

Augmented Lagrangian (algebraic augmentation)

$f=f+\gamma B^{T} W^{-1} g$

Grad-Div augmentation (variational augmentation)

$$
\begin{gathered}
\int_{\Omega} s \boldsymbol{u} \cdot \breve{\boldsymbol{u}}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \cdot \check{\boldsymbol{u}}+R e^{-1} \nabla \boldsymbol{u}: \nabla \check{\boldsymbol{u}}-\mathrm{p} \boldsymbol{\nabla} \cdot \breve{\boldsymbol{u}} \\
+\int_{\Omega} \gamma(\nabla \cdot \boldsymbol{u})(\nabla \cdot \check{\boldsymbol{u}})=\mathbf{0} \\
-\int_{\Omega}(\nabla \cdot \boldsymbol{u}) \check{\boldsymbol{q}}=\mathbf{0}
\end{gathered}
$$

Augmented Lagrangian leaves the discrete solution unchanged
Grad-Div leaves the continuous solution unchanged

1- Augmentation-based preconditioners

Classical vs. modified version

In both cases, the same block structure arises :

$$
\left(\begin{array}{cc}
A_{\gamma} & B^{T} \\
B & 0
\end{array}\right)=(\underbrace{\left(\begin{array}{cc}
I & 0 \\
B A_{\gamma}^{-1} & I
\end{array}\right)} \underbrace{\left(\begin{array}{cc}
A_{\gamma} & 0 \\
0 & S
\end{array}\right)} \underbrace{\left(\begin{array}{cc}
I & A_{\gamma}^{-1} B^{T} \\
0 & I
\end{array}\right)} \quad S=-\mathrm{BA}_{\gamma}^{-1} \mathrm{~B}^{\mathrm{T}}
$$

Classical preconditioner

$$
\mathcal{P}_{\text {class }}=D U=\left(\begin{array}{cc}
A_{\gamma} & B^{T} \\
0 & S
\end{array}\right)
$$

with

$$
S^{-1} \simeq\left(\mathrm{Re}^{-1}+\gamma\right) M_{p}^{-1}-s\left(B M_{u} B^{T}\right)^{-1}
$$

$$
A_{\gamma}^{-1} \simeq \text { it's complicated ... }
$$

Main features:
> Mesh optimality
> Reynolds optimality
$>$ The higher γ, the less iterations (A_{γ}^{-1} ouch!)

1- Augmentation-based preconditioners

Classical vs. modified version

In both cases, the same block structure arises :

$$
\left(\begin{array}{cc}
A_{\gamma} & B^{T} \\
B & 0
\end{array}\right)=(\underbrace{\left(\begin{array}{cc}
I & 0 \\
B A_{\gamma}^{-1} & I
\end{array}\right)} \underbrace{\left.\begin{array}{cc}
A_{\gamma} & 0 \\
0 & S
\end{array}\right)}(\underbrace{\begin{array}{cc}
I & A_{\gamma}^{-1} B^{T} \\
0 & I
\end{array}}) \quad S=-\mathrm{BA}_{\gamma}^{-1} \mathrm{~B}^{\mathrm{T}}
$$

Classical preconditioner

$$
\begin{gathered}
\mathcal{P}_{\text {class }}=D U=\left(\begin{array}{cc}
A_{\gamma} & B^{T} \\
0 & S
\end{array}\right) \\
\text { with }
\end{gathered}
$$

$S^{-1} \simeq\left(\mathrm{Re}^{-1}+\gamma\right) M_{p}^{-1}-s\left(B M_{u} B^{T}\right)^{-1}$
$A_{\gamma}^{-1} \simeq i t$'s complicated ...
Main features:
> Mesh optimality
> Reynolds optimality
> The higher γ, the less iterations (A_{γ}^{-1} ouch!)

Modified preconditioner

$$
\mathcal{P}_{\text {modif }}=\left(\begin{array}{cc}
{\left[\begin{array}{cc}
A_{11, \gamma} & A_{12, r} \\
0 & A_{22, \gamma}
\end{array}\right]} & B^{T} \\
0 & S
\end{array}\right)
$$

$$
\begin{aligned}
& S^{-1} \simeq\left(\mathrm{Re}^{-1}+\gamma\right) M_{p}^{-1}-s\left(B M_{u} B^{T}\right)^{-1} \\
& A_{i i, \gamma}^{-1} \simeq \text { off-the-shelf algebraic multigrid }
\end{aligned}
$$

Main features:

> Mesh optimality
> Reynolds dependent
> Exists an optimal and case dependent γ

1- Augmentation-based preconditioners

Classical vs. modified version

In both cases, the same block structure arises :

$$
\left(\begin{array}{cc}
A_{\gamma} & B^{T} \\
B & 0
\end{array}\right)=(\underbrace{\left(\begin{array}{cc}
I & 0 \\
B A_{\gamma}^{-1} & I
\end{array}\right)} \underbrace{\left(\begin{array}{cc}
A_{\gamma} & 0 \\
0 & S
\end{array}\right)} \underbrace{\left(\begin{array}{cc}
I & A_{\gamma}^{-1} B^{T} \\
0 & I
\end{array}\right)} \quad S=-\mathrm{BA}_{\gamma}^{-1} \mathrm{~B}^{\mathrm{T}}
$$

Classical precondilioner

$$
\mathcal{P}_{\text {class }}=D U=\left(\begin{array}{cc}
A_{Y} & B^{T} \\
0 & S
\end{array}\right)
$$

with
$S^{-1} \approx\left(\operatorname{Re}^{-1}+\gamma\right) M_{p}^{-1}-s\left(B M_{u} B^{T}\right)^{-1}$
$A_{\gamma}^{-1} \simeq i t+s$ complicated....

$$
\begin{aligned}
& S^{-1} \simeq\left(\mathrm{Re}^{-1}+\gamma\right) M_{p}^{-1}-s\left(B M_{u} B^{T}\right)^{-1} \\
& A_{i i, \gamma}^{-1} \simeq \text { off-the-shelf algebraic multigrid }
\end{aligned}
$$

```
Main features:
* Mesh optimality
> Reynolds optimality
* The higher }\gamma\mathrm{ , the less iterations ( }\mp@subsup{A}{,}{-1}\mathrm{ - ouch!)
```


Main features:

> Mesh optimality
> Reynolds dependent

- Exists an optimal and case dependent γ

2- Performances

Choice of γ

The choice of a good γ is determinant for the preconditioning efficiency!

Bright side : since the preconditioner is independent of the mesh
> Optimal γ can be found on a coarse mesh

Dark side: Optimal γ is problem and $R e-$ dependent

Figure : Influence of $R e \in[10,120]$ on optimal γ for modified Grad-Div preconditioner

2- Performances

CPU time in Newton method

Mesh	Velocity DOFs	Pressure DOFs	Full MUMPS				Modified Grad-Div		
			Facto $(\mathbf{m} \boldsymbol{s})$	Reso $(\mathbf{m} \boldsymbol{s})$	tot/ndof $(\boldsymbol{\mu s})$	Facto $(\mathbf{m s})$	Reso $(\mathbf{m s})$	tot/ndof $(\boldsymbol{\mu} \boldsymbol{s})$	
32×32	9900		140	0	20	30	50	14	
64×64	39000	5000	810	10	27	320	250	20	
96×96	88000	11000	2250	40	33	840	580	21	
256×256	623400	78200	34480	290	62	8090	4780	25	

Averaged timings for 1 Newton iteration (2D lid-driven cavity, $R e=100, \gamma=0,1$)

2- Performances

CPU time in Newton method

Mesh	Velocity DOFs	Pressure DOFs	Fall MUMPS $(\mathbf{m s})$			Reso $(\mathbf{m s})$	tot/ndof $(\boldsymbol{\mu s})$	Facto $(\mathbf{m s})$
			140	0	20	30	50	Reso $(\mathbf{m s})$
64×64	39000		810	10	27	320	250	tot/ndof $(\boldsymbol{\mu s})$
96×96	88000	11000	2250	40	33	840	580	20
256×256	623400	78200	34480	290	62	8090	4780	25

Averaged timings for 1 Newton iteration (2D lid-driven cavity, $R e=100, \gamma=0,1$)

Mesh	Velocity DOFs	Pressure DOFs	Full MUMPS				Modified Grad-Div		
			Reso $(\mathbf{m s})$	tot/ndof $(\boldsymbol{\mu s})$	Facto $(\mathbf{m s})$	Reso $(\mathbf{m s})$	tot/ndof $(\boldsymbol{\mu s})$		
$8 \times 8 \times 8$	9900		3,2	0,01	263	0,6	0,26	112	
$16 \times 16 \times 16$	39000	5000	295	0,3	2675	21	2,8	274	

Averaged timings for 1 Newton iteration (3D lid-driven cavity, $R e=100, \gamma=0,1$)

2- Performances

CPU time for eigenvalue computation

Mesh	Velocity DOFs	Pressure DOFs	Full MUMPS		Modified Grad-Div		
		Fact [s]	Eig [s]	Fact [s]	Eig [s] (it. inner GMRES)		
32×32	9890	1269	0,27	0,36	0,05	$9(29)$	
64×64	39306	4978	1,7	1,3	0,45	$34(30)$	
256×256	623482	78192	85	36	15	$841(30)$	
Timings for computing 10 ev with ARPACK (2D lid-driven cavity, $R e=100, \gamma=0,1)$							

2- Performances

CPU time for eigenvalue computation

Mesh	Velocity DOFs	Pressure DOFs	Full MUMPS		Modified Grad-Div	
		Eig [s]	Fact [s]	Eig [s] (it. inner GMRES)		
32×32	9890	1269	0,27	0,36	0,05	$9(29)$
64×64	39306	4978	1,7	1,3	0,45	$34(30)$
256×256	623482	78192	85	36	15	$841(30)$

Timings for computing 10 ev with ARPACK (2D lid-driven cavity, $R e=100, \gamma=0,1$)

Mesh	Velocity DOFs	Pressure DOFs	Full MUMPS		Modified Grad-Div	
			Eig [s]	Fact [s]	Eig [s] (it. inner GMRES)	
$8 \times 8 \times 8$	14739	729	8	2	1,6	$35(24)$
$16 \times 16 \times 16$	107811	4913	753	31	57	$353(23)$

Timings for computing 10 ev with ARPACK (3D lid-driven cavity, $R e=100, \gamma=0,1$)

```
2- Performances
What to remember ?
```

Iterative strategy will be faster than the direct solver when : time facto >> time solving
> For Newton method : always the case because the jacobian is new at each iteration
> For eigenvalue computation : true only for large configurations (3D typically)

2- Performances

Krylov subspace recycling techniques and eigenvalue computation

Idea : In Krylov-Schur + shift-invert, one has to perform many $(J-s M)^{-1}$ with the same matrix ! > Why not use Krylov subspace recycling from one linear solve to the next ?

2- Performances

Krylov subspace recycling techniques and eigenvalue computation

Idea : In Krylov-Schur + shift-invert, one has to perform many $(J-s M)^{-1}$ with the same matrix ! > Why not use Krylov subspace recycling from one linear solve to the next?

Figure : Effect of recycling during eigenvalue computation. Test case : 2D circular cylinder at $R e=50$.
Preconditioner : Modified Grad-Div with $\gamma=1$
Eigenvalue solver : ARPACK with shift-invert

3- Parallel implementation in FreeFem++
 PETSc/SLEPc interface (P. Jolivet)

Ingredient 1 : handle the preconditioner's block structure
PETSC solution : use of PCFIELDSPLIT preconditioner

FreeFem++ interface :

```
fespace Wh(th,[P2,P2,P2,P1]); // full space
Wh [u,v,w,p];
Wh [b,bv,bw,bp] = [1.0, 2.0, 3.0, 4.0];
string[int] names(4);
names[0] = "xvelocity" ;
names[1] = "yvelocity" ;
names[2] = "zvelocity" ;
names[3] = "pressure" ;
// Set PETSc solver
set(A, sparams = " -ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type multiplicative"
    + " -prefix_push fieldsplit_xvelocity_
    + " -ksp_type preonly -pc_type lu -pc_factor_mat_solver_package mumps"
    + " -prefix_pop"
    + " -prefix_push fieldsplit_yvelocity_" , ... ... ..
    fields = b[], names = names);
```


3- Parallel implementation in FreeFem++
 PETSc/SLEPc interface (P. Jolivet)

Ingredient 2 : provide a specific Schur complement approximation
PETSC solution: PCFieldSplitGetSubKSP(pc, \&nfields, \&subksp) KSPSetOperators(subksp[nfields-1], Sapprox, Sapprox)

FreeFem++ interface :

```
fespace Wh(th,[P2,P2,P2,P1]); // full space
fespace Qh(th,P1); // pressure space
Wh [u,v,w,p];
Wh [b,bv,bw,bp] = [1.0, 2.0, 3.0, 4.0];
string[int] names(4);
names[0] = "xvelocity" ;
names[1] = "yvelocity" ;
names[2] = "zvelocity" ;
names[3] = "pressure" ;
Qh pind;
pind[] = 1:pind[].n;
Wh [list, listv, listw, listp]= [0, 0, 0, pind]; // correspondance between Wh and Qh pressure DOFs
matrix[int] S(1);
S[0]=vSchur(Qh,Qh); // Schur complement approximation
// Set PETSc solver
set(A, sparams = "
    fields = b[], names = names, schurPreconditioner = S, schurList = list[]);
```


3- Parallel implementation in FreeFem++
 PETSc/SLEPc interface (P. Jolivet)

Ingredient 3: provide the inverse Schur complement approx. as a composition of two simple inverses

$$
S^{-1} \simeq\left(\mathrm{Re}^{-1}+\gamma\right) M_{p}^{-1}-s L_{p}^{-1}
$$

PETSC solution : use of PCCOMPOSITE preconditioner
FreeFem++ interface :

```
matrix[int] S(2);
S[0]=vMp(Qh,Qh); // pressure mass matrix
S[1]=vLp(Qh,Qh); // pressure laplacian matrix
// Set PETSc solver
set(A, sparams = " ... ... ... "
    + " -prefix_push fieldsplit_pressure_
        -ksp_type preonly -pc_type composite -pc_composite_type additive"
                            + " -prefix_push sub_0_"
                                + " -pc_type ksp -ksp_ksp_type cg -ksp_pc_type jacobi"
    + " -prefix_pop"
    + " -prefix_push sub_1_"
        + " -pc_type ksp -ksp_ksp_type fgmres -ksp_pc_type gamg"
        + " -prefix_pop"
    + " -prefix_pop" ,
    fields = b[], names = names, schurPreconditioner = S, schurList = list[]);
```


3- Parallel implementation in FreeFem++
 PETSc/SLEPc interface (P. Jolivet)

Ingredient 4: Recycling of Krylov basis bewteen two consecutive solve $(J-s M)^{-1}$ in SLEPC

PETSc solution : interface HPDDM's solvers with PETSc/SLEPc
FreeFem++ interface :

```
// Set SLEPc eigensolver Ax = sigma Bx
int k = zeigensolver
(DistA,
DistB,
vectors = EigenVEC, // Array to store the FEM-EigenFunctions
values = EigenVAL, // Array to store the EigenValues
sparams = " -eps_type krylovschur -st_type sinvert -eps_target 0+0.6i"
    + " -st_ksp_type hpddm -hpddm_st_krylov_method gcrodr -hpddm_st_variant flexible ... ",
    fields = b[], names = names, schurPreconditioner = S, schurList = list[]);
```


4- Parallel 3D numerical examples

Flow around low aspect-ratio flat plates [Marquet \& Larsson 2015]

Test case :
>1 million tetrahedrons / Taylor-Hood FE pair / 4,8 millions DOFs
$>R e=100$
Solvers:

- Steady solution : Newton method with FGMRES preconditioned by Modified Grad-Div ($\gamma_{\text {optimal }}=0,3$)
> velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol $=10^{-1}$
> Schur complement sub-block solved with CG preconditionned by jacobi, tol $=10^{-3}$
- Eigenvalues : Krylov-Schur + shift-invert + GCRO-DR(100,30) preconditioned by Modified Grad-Div ($\gamma_{\text {optimal }}=$ $0,3)$
$>$ velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap $=1$, tol $=10^{-1}$
> Schur complement sub-block 1 solved with CG preconditionned by jacobi, tol=10-3
> Schur complement sub-block 2 solved with FMGRES preconditionned by gamg, tol=10-3

4- Parallel 3D numerical examples

Flow around low aspect-ratio flat plates [Marquet \& Larsson 2015]

Test case :
>1 million tetrahedrons / Taylor-Hood FE pair / 4,8 millions DOFs
$>R e=100$
Solvers:

- Steady solution : Newton method with FGMRES preconditioned by Modified Grad-Div ($\gamma_{\text {optimal }}=0,3$)
$>$ velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1
> Schur complement sub-block solved with CG preconditionned by jacobi, tol=10-3
- Eigenvalues : Krylov-Schur + shift-invert + GCRO-DR(100,30) preconditioned by Modified Grad-Div ($\gamma_{\text {optimal }}=$ $0,3)$
$>$ velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap $=1$, tol $=10^{-1}$
> Schur complement sub-block 1 solved with CG preconditionned by jacobi, tol=10-3
> Schur complement sub-block 2 solved with FMGRES preconditionned by gamg, tol=10-3

[^0] .

4- Parallel 3D numerical examples

Flow around low aspect-ratio flat plates [Marquet \& Larsson 2015]

Test case :
>1 million tetrahedrons / Taylor-Hood FE pair / 4,8 millions DOFs
$\Rightarrow R e=100$

Solvers:

- Steady solution : Newton method with FGMRES preconditioned by Modified Grad-Div ($\gamma_{\text {optimal }}=0,3$)
$>$ velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1
> Schur complement sub-block solved with CG preconditionned by jacobi, tol=10-3
- Eigenvalues : Krylov-Schur + shift-invert + GCRO-DR(100,30) preconditioned by Modified Grad-Div ($\gamma_{\text {optimal }}=$ 0,3)
$>$ velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap $=1$, tol $=10^{-1}$
> Schur complement sub-block 1 solved with CG preconditionned by jacobi, tol=10-3
> Schur complement sub-block 2 solved with FMGRES preconditionned by gamg, tol=10-3

4- Parallel 3D numerical examples

Flow around low aspect-ratio flat plates [Marquet \& Larsson 2015]

4- Parallel 3D numerical examples

Flow around low aspect-ratio flat plates [Marquet \& Larsson 2015]

The loss of scaling for high number of procs is mainly due to the non-optimality of ASM w.r.t. number of domains. To be improved ...

4- Parallel 3D numerical examples

Flow around low aspect-ratio flat plates [Marquet \& Larsson 2015]

Eigenvalue computation
(10 ev requested with tolerance 10^{-6})
The loss of scaling for high number of procs is mainly due to the non-optimality of ASM w.r.t. number of domains. To be improved ...

5- Some further refinement ...

Influence of γ on the solution ?

Grad-Div augmentation (variational augmentation)

$$
\begin{gathered}
\int_{\Omega} s \boldsymbol{u} \cdot \check{\boldsymbol{u}}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \cdot \check{\boldsymbol{u}}+R e^{-1} \nabla \boldsymbol{u}: \nabla \check{\boldsymbol{u}}-\mathrm{p} \nabla \cdot \check{\boldsymbol{u}} \\
+\int_{\Omega} \gamma(\nabla \cdot \boldsymbol{u})(\nabla \cdot \breve{\boldsymbol{u}})=\mathbf{0} \\
-\int_{\Omega}(\nabla \cdot \boldsymbol{u}) \breve{\boldsymbol{q}}=\mathbf{0}
\end{gathered}
$$

Grad-Div leaves the continuous solution unchanged But ... changes the discrete solution !

Figure : Eigenvalue spectrum of the flow around a 2D circular cylinder at $R e=50$

Spatial discretization: Taylor-Hood $\left(P_{2}, P_{1}\right)$

5- Some further refinement ...

Influence of γ on the solution ?

Grad-Div augmentation (variational augmentation)

$$
\begin{gathered}
\int_{\Omega} s \boldsymbol{u} \cdot \check{\boldsymbol{u}}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \cdot \check{\boldsymbol{u}}+R e^{-1} \nabla \boldsymbol{u}: \nabla \check{\boldsymbol{u}}-\mathrm{p} \nabla \cdot \check{\boldsymbol{u}} \\
+\int_{\Omega} \gamma(\nabla \cdot \boldsymbol{u})(\nabla \cdot \breve{\boldsymbol{u}})=\mathbf{0} \\
-\int_{\Omega}(\nabla \cdot \boldsymbol{u}) \breve{\boldsymbol{q}}=\mathbf{0}
\end{gathered}
$$

Grad-Div leaves the continuous solution unchanged But ... changes the discrete solution !

Figure : Eigenvalue spectrum of the flow around a 2D circular cylinder at $R e=50$

Not a divergence free element !!
$\nabla \cdot\left(P_{2}\right) \notin P_{1}$

5-Some further refinement ...

Influence of γ on the solution ?

What if one uses a divergence-free element ?
$>$ Scott-Vogelius FE pair: $\left(P_{2}, P_{1}^{d c}\right)$ s.t. $\nabla \cdot\left(P_{2}\right) \in P_{1}^{d c}$

Figure : Eigenvalue spectrum of the flow around a 2D circular cylinder at $R e=50$

Spatial discretization: Taylor-Hood $\left(P_{2}, P_{1}\right)$

Figure : Eigenvalue spectrum of the flow around a 2D circular cylinder at $R e=50$

Spatial discretization: Scott-Vogelius $\left(P_{2}, P_{1}^{d c}\right)$

A few remarks :

- $\quad\left(P_{2}, P_{1}^{d c}\right)$ is inf-sup stable only on specific types of mesh (Hsieh-Clough-Toucher triangulation)
- We showed that when using divergence-free elements the variational and discrete augmentations are equivalent
- It is unprcatical to use the discrete augmentation without divergence free elements due to the unsparse nature of the augmentation term ...

Conclusion

Conclusion :

- Krylov subspaces iterative method preconditioned by Modified Grad-Div where shown to be efficient both for finding a steady solution and computing its spectrum
- Large 3D configurations and large number of processors accentuate the benefits of using the iterative strategy w.r.t. direct solver.
- Ritz vector recycling was shown to provide significant acceleration of the eigenvalue computation when using an iterative strategy for $(J-s M)^{-1}$
- A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

Conclusion

Conclusion :

- Krylov subspaces iterative method preconditioned by Modified Grad-Div where shown to be efficient both for finding a steady solution and computing its spectrum
- Large 3D configurations and large number of processors accentuate the benefits of using the iterative strategy w.r.t. direct solver.
- Ritz vector recycling was shown to provide significant acceleration of the eigenvalue computation when using an iterative strategy for $(J-s M)^{-1}$
- A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

Perspectives:

- Scalings must be improved : find an optimal preconditioner for velocity sub-blocks
- Extension for preconditioning turbulence models (RANS equations)
- Towards coupled fluid-structure Linear Stability Analysis on large 3D configurations ...

Conclusion

Conclusion :

- Krylov subspaces iterative method preconditioned by Modified Grad-Div where shown to be efficient both for finding a steady solution and computing its spectrum
- Large 3D configurations and large number of processors accentuate the benefits of using the iterative strategy w.r.t. direct solver.
- Ritz vector recycling was shown to provide significant acceleration of the eigenvalue computation when using an iterative strategy for $(J-s M)^{-1}$
- A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

Perspectives:

- Scalings must be improved : find an optimal preconditioner for velocity sub-blocks
- Extension for preconditioning turbulence models (RANS equations)
- Towards coupled fluid-structure Linear Stability Analysis on large 3D configurations ...

$$
\text { Fluid-structure Jacobian matrix }=\left(\begin{array}{ll}
J_{f f} & J_{f s} \\
J_{s f} & J_{s s}
\end{array}\right)
$$

Conclusion

Conclusion :

- Krylov subspaces iterative method preconditioned by Modified Grad-Div where shown to be efficient both for finding a steady solution and computing its spectrum
- Large 3D configurations and large number of processors accentuate the benefits of using the iterative strategy w.r.t. direct solver.
- Ritz vector recycling was shown to provide significant acceleration of the eigenvalue computation when using an iterative strategy for $(J-s M)^{-1}$
- A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

Perspectives:

- Scalings must be improved : find an optimal preconditioner for velocity sub-blocks
- Extension for preconditioning turbulence models (RANS equations)
- Towards coupled fluid-structure Linear Stability Analysis on large 3D configurations ...

$$
\text { Fluid-structure Jacobian matrix }=\left(\begin{array}{ll}
J_{f f} & J_{f s} \\
J_{s f} & J_{s s}
\end{array}\right) \quad \text { Modified }
$$

$$
?
$$

2- Performances

Memory requirements in Newton method

Mesh	Velocity DOFs	Pressure DOFs	Memory direct MUMPS $($ Mb)	Memory Modified Grad-Div (Mb)	Memory gain (\%)
16×16	2600	340	5	2×2	20
32×32	9900	1300	16	2×4	50
64×64	39000	5000	75	2×17	55
96×96	88000	11000	191	2×41	57
256×256	623400	78200	1862	2×353	62

Memory requirements (2D lid-driven cavity, $R e=100, \gamma=0,1$)

Mesh	Velocity DOFs	Pressure DOFs	Memory direct MUMPS (Mb)	Memory Modified Grad-Div (Mb)	Memory gain (\%)
$8 \times 8 \times 8$	14700	729	143	3×21	56
$16 \times 16 \times 16$	107800	4900	2565	3×260	70

Memory requirements (3D lid-driven cavity, $R e=100, \gamma=0,1$)

[^0]: Steady solution (axial velocity)

