
Augmented Lagrangian Preconditioner
for Linear Stability Analysis

of incompressible fluid flows
on large configurations

J.Moulin1, J-L. Pfister1, O.Marquet1, P. Jolivet2

1 Office National d’Etudes et de Recherches Aérospatiales
2 ENSEEIHT – Institut de Recherche en Informatique de Toulouse

Funded by ERC Starting Grant

FreeFem++ Days, Paris, 14-15 december 2017

Introduction

2

What is Linear Stability Analysis ?

��
�� = � �

One wants to know if some steady solution of equation (1) is temporally stable or
unstable :

Step 1 : compute a steady solution � �� = �
Step 2 : test its stability for small monochromatic perturbations �� 	
�� around the

steady solution ����� = �(��)��
� = ℜ[]

Growth rate Frequency

� = ℑ[]
Jacobian matrix :

��
�� (��)

Mass matrix
(spatial discretization)

(1)

Method : Linear Stability Analysis

Introduction

3

A classical example

From [Goharzadeh & Molki, 2015]

Typical question :

What is the critical Reynolds number
above which the von Karman vortex street appears ?

Introduction

4

Steady Navier-Stokes
solution (�
 = 50)
[Sipp et al, 2010]

A classical example

Step 1 : compute a steady solution

Introduction

5

Step 1 : compute a steady solution

Step 2 : test its stability for small monochromatic perturbations �� 	
�� around the
steady solution ��

��� = �(��)��
� = ℜ[]
� = ℑ[]

Steady Navier-Stokes
solution (�
 = 50)
[Sipp et al, 2010]

A classical example

Introduction

6

Step 1 : compute a steady solution

Step 2 : test its stability for small monochromatic perturbations �� 	
�� around the
steady solution ��

��� = �(��)��
� = ℜ[]
� = ℑ[]

Steady Navier-Stokes
solution (�
 = 50)
[Sipp et al, 2010]

Unstable eigenmode at 	�
 = 50
[Sipp et al, 2010]

A classical example

Introduction

7

Why Linear Stability Analysis ?

Some nice features :

o Easy to determine a threshold value (sign of ℜ[])
o Less expensive than nonlinear time-integration

But some computational burdens :

o Find a (not necessarily stable) steady solution : Newton method
� Multiple inversions of �

o Find internal eigenvalues of generalized EV problems : Krylov-Schur +

shift-and-invert
� Multiple inversions of J − �	� , where � is the shift

Introduction

8

How to invert matrix of the type − !	" efficiently ?

� For reasonably small configurations : direct sparse solvers (MUMPS, SUPERLU, etc)
� For large configurations : iterative method (GMRES, BiCGSTAB, …) + good

preconditioner

Linearized incompressible Navier-Stokes operator (i.e. J − �	�) :

9

�	# + (#�⋅ &)# + (# ⋅ &)#� + &'	 − 1
�
 &²# = *

−& ⋅ # = +

Once discretized with FE : classical saddle-point problem

Complex shift
(� = 0 in Newton)

, -.
- 0

/
' = 0

1
How to precondition this ?

o SIMPLE [Patankar 1980]
o Stokes Preconditioner [Tuckerman, 1989] (based on adaptation of existing time-stepping code)
o Pressure Convection Diffusion [Silvester et al. 2001]
o Least-Squares Commutator [Elman et al. 2006]
o Augmentated Lagrangian [Benzi and Olshanskii 2006], [Heister and Rapin 2013]

Introduction

Linearized incompressible Navier-Stokes operator (i.e. J − �	�) :

10

�	# + (#�⋅ &)# + (# ⋅ &)#� + &'	 − 1
�
 &²# = *

−& ⋅ # = +

Once discretized with FE : classical saddle-point problem

Complex shift
(� = 0 in Newton)

, -.
- 0

/
' = 0

1

Introduction

How to precondition this ?

o SIMPLE [Patankar 1980]
o Stokes Preconditioner [Tuckerman, 1989] (based on adaptation of existing time-stepping code)
o Pressure Convection Diffusion [Silvester et al. 2001]
o Least-Squares Commutator [Elman et al. 2006]
o Augmentated Lagrangian [Benzi and Olshanskii 2006], [Heister and Rapin 2013]

11

1 – Augmentation-based preconditioners

2 – Performances

3 – FreeFem++ parallel implementation

4 – Parallel 3D numerical examples

5 – Some further refinement …

Overview

1- Augmentation-based preconditioners
Augmented problems

12

, -.
- 0

/
' = 0

1
,2 -.
- 0

/
' = 02

1
,2 = , + 3-.456-
02 = 0 + 3-.4561

Augmented Lagrangian (algebraic augmentation)

1- Augmentation-based preconditioners
Augmented problems

13

, -.
- 0

/
' = 0

1
,2 -.
- 0

/
' = 02

1
,2 = , + 3-.456-
02 = 0 + 3-.4561

Augmented Lagrangian (algebraic augmentation)

Grad-Div augmentation (variational augmentation)

7 �	# ⋅ #8 + (# ⋅ &)# ⋅ #8 + �
569#:9#8 − p9 ⋅ #8
<

+7 3(9 ⋅ #)(9 ⋅ #8)	
<

	= �

−7 9 ⋅ # �8 = �
<

1- Augmentation-based preconditioners
Augmented problems

14

, -.
- 0

/
' = 0

1
,2 -.
- 0

/
' = 02

1
,2 = , + 3-.456-
02 = 0 + 3-.4561

Augmented Lagrangian (algebraic augmentation)

Grad-Div augmentation (variational augmentation)

7 �	# ⋅ #8 + (# ⋅ &)# ⋅ #8 + �
569#:9#8 − p9 ⋅ #8
<

+7 3(9 ⋅ #)(9 ⋅ #8)	
<

	= �

−7 9 ⋅ # �8 = �
<

Augmented Lagrangian leaves the discrete solution unchanged
Grad-Div leaves the continuous solution unchanged

1- Augmentation-based preconditioners
Augmented problems

15

, -.
- 0

/
' = 0

1
,2 -.
- 0

/
' = 02

1
,2 = , + 3-.456-
02 = 0 + 3-.4561

Augmented Lagrangian (algebraic augmentation)

Grad-Div augmentation (variational augmentation)

7 �	# ⋅ #8 + (# ⋅ &)# ⋅ #8 + �
569#:9#8 − p9 ⋅ #8
<

+7 3(9 ⋅ #)(9 ⋅ #8)	
<

	= �

−7 9 ⋅ # �8 = �
<

Augmented Lagrangian leaves the discrete solution unchanged
Grad-Div leaves the continuous solution unchanged

1- Augmentation-based preconditioners
Classical vs. modified version

16

In both cases, the same block structure arises :

=>?@AA = BC = ,2 -.
0 D

,2 -.
- 0 = E 0

-,256 E
,2 0
0 D

E ,256-.
0 E

D56 ≃ Re56 + 3 �I56 − � -�J-. 56

with

,256 ≃ it’s complicated …

Main features :
� Mesh optimality
� Reynolds optimality
� The higher 3, the less iterations (,256 ouch !)

Classical preconditioner

D = −BA256BM

N B C

1- Augmentation-based preconditioners
Classical vs. modified version

17

In both cases, the same block structure arises :

=>?@AA = BC = ,2 -.
0 D

,2 -.
- 0 = E 0

-,256 E
,2 0
0 D

E ,256-.
0 E

=OPQRS =
,66,2 ,6U,2

0 ,UU,2 -.

0 D

D56 ≃ Re56 + 3 �I56 − � -�J-. 56

with

,256 ≃ it’s complicated …

with

,RR,256 	 ≃ off-the-shelf algebraic multigrid

Main features :
� Mesh optimality
� Reynolds optimality
� The higher 3, the less iterations (,256 ouch !)

Main features :
� Mesh optimality
� Reynolds dependent
� Exists an optimal and case dependent 3

Classical preconditioner Modified preconditioner

D56 ≃ Re56 + 3 �I56 − � -�J-. 56

N B C
D = −BA256BM

1- Augmentation-based preconditioners
Classical vs. modified version

18

In both cases, the same block structure arises :

=>?@AA = BC = ,2 -.
0 D

,2 -.
- 0 = E 0

-,256 E
,2 0
0 D

E ,256-.
0 E

=OPQRS =
,66,2 ,6U,2

0 ,UU,2 -.

0 D

D56 ≃ Re56 + 3 �I56 − � -�J-. 56

with

,256 ≃ it’s complicated …

with

,RR,256 	 ≃ off-the-shelf algebraic multigrid

Main features :
� Mesh optimality
� Reynolds optimality
� The higher 3, the less iterations (,256 ouch !)

Main features :
� Mesh optimality
� Reynolds dependent
� Exists an optimal and case dependent 3

Classical preconditioner Modified preconditioner

D56 ≃ Re56 + 3 �I56 − � -�J-. 56

N B C
D = −BA256BM

2- Performances
Choice of 3

19

The choice of a good 	3 is determinant for the preconditioning efficiency !

Figure : Influence of �
 ∈ [10,120] on optimal
3 for modified Grad-Div preconditioner

�
	 ↑Bright side : since the preconditioner is
independent of the mesh

� Optimal 3 can be found on a
coarse mesh

Dark side : Optimal 3 is problem and �
 –
dependent

2- Performances
CPU time in Newton method

20

Averaged timings for 1 Newton iteration (2D lid-driven cavity, �
 = 100, 3 = 0,1)

*All sub-systems are solved with MUMPS

Mesh
Velocity

DOFs
Pressure

DOFs

Full MUMPS Modified Grad-Div

Facto
(Y!)

Reso
(Y!)

tot/ndof
(Z!)

Facto
(Y!)

Reso
(Y!)

tot/ndof
(Z!)

32x32 9900 1300 140 0 20 30 50 14

64x64 39000 5000 810 10 27 320 250 20

96x96 88000 11000 2250 40 33 840 580 21

256x256 623400 78200 34480 290 62 8090 4780 25

2- Performances
CPU time in Newton method

21

Averaged timings for 1 Newton iteration (2D lid-driven cavity, �
 = 100, 3 = 0,1)

*All sub-systems are solved with MUMPS

Mesh
Velocity

DOFs
Pressure

DOFs

Full MUMPS Modified Grad-Div

Facto
(Y!)

Reso
(Y!)

tot/ndof
(Z!)

Facto
(Y!)

Reso
(Y!)

tot/ndof
(Z!)

32x32 9900 1300 140 0 20 30 50 14

64x64 39000 5000 810 10 27 320 250 20

96x96 88000 11000 2250 40 33 840 580 21

256x256 623400 78200 34480 290 62 8090 4780 25

Mesh
Velocity

DOFs
Pressure

DOFs

Full MUMPS Modified Grad-Div

Facto
(Y!)

Reso
(Y!)

tot/ndof
(Z!)

Facto
(Y!)

Reso
(Y!)

tot/ndof
(Z!)

8x8x8 9900 1300 3,2 0,01 263 0,6 0,26 112

16x16x16 39000 5000 295 0,3 2675 21 2,8 274

Averaged timings for 1 Newton iteration (3D lid-driven cavity, �
 = 100, 3 = 0,1)

2- Performances
CPU time for eigenvalue computation

22

Mesh
Velocity

DOFs
Pressure

DOFs

Full MUMPS Modified Grad-Div

Fact [[] Eig [[] Fact [[]
Eig [[]

(it. inner GMRES)

32x32 9890 1269 0,27 0,36 0,05 9 (29)

64x64 39306 4978 1,7 1,3 0,45 34 (30)

256x256 623482 78192 85 36 15 841 (30)

Timings for computing 10 ev with ARPACK (2D lid-driven cavity, �
 = 100, 3 = 0,1)

*All sub-systems are solved with MUMPS

Timings for computing 10 ev with ARPACK (3D lid-driven cavity, �
 = 100, 3 = 0,1)

2- Performances
CPU time for eigenvalue computation

23

Mesh
Velocity

DOFs
Pressure

DOFs

Full MUMPS Modified Grad-Div

Fact [[] Eig [[] Fact [[]
Eig [[]

(it. inner GMRES)

32x32 9890 1269 0,27 0,36 0,05 9 (29)

64x64 39306 4978 1,7 1,3 0,45 34 (30)

256x256 623482 78192 85 36 15 841 (30)

Timings for computing 10 ev with ARPACK (2D lid-driven cavity, �
 = 100, 3 = 0,1)

Mesh
Velocity

DOFs
Pressure

DOFs

Full MUMPS Modified Grad-Div

Fact [[] Eig [[] Fact [[]
Eig [[]

(it. inner GMRES)

8x8x8 14739 729 8 2 1,6 35 (24)

16x16x16 107811 4913 753 31 57 353 (23)

*All sub-systems are solved with MUMPS

2- Performances
What to remember ?

24

Iterative strategy will be faster than the direct solver when :
time facto >> time solving

� For Newton method : always the case because the jacobian is new at each
iteration

� For eigenvalue computation : true only for large configurations (3D typically)

2- Performances
Krylov subspace recycling techniques and eigenvalue computation

25

Idea : In Krylov-Schur + shift-invert, one has to perform many � − �	� 56 with the same matrix !
� Why not use Krylov subspace recycling from one linear solve to the next ?

26

Figure : Effect of recycling during eigenvalue computation. Test case : 2D
circular cylinder at	�
 = 50.
Preconditioner : Modified Grad-Div with 3 = 1
Eigenvalue solver : ARPACK with shift-invert

\]^_P?QR = +∞		(no restart) \]^_P?QR = 50		

Idea : In Krylov-Schur + shift-invert, one has to perform many � − �	� 56 with the same matrix !
� Why not use Krylov subspace recycling from one linear solve to the next ?

2- Performances
Krylov subspace recycling techniques and eigenvalue computation

3- Parallel implementation in FreeFem++
PETSc/SLEPc interface (P. Jolivet)

27

Ingredient 1 : handle the preconditioner’s block structure

PETSc solution : use of PCFIELDSPLIT preconditioner

FreeFem++ interface :

fespace Wh(th,[P2,P2,P2,P1]); // full space

Wh [u,v,w,p];

Wh [b,bv,bw,bp] = [1.0, 2.0, 3.0, 4.0];

string[int] names(4);

names[0] = "xvelocity" ;

names[1] = "yvelocity" ;

names[2] = "zvelocity" ;

names[3] = "pressure" ;

// Set PETSc solver

set(A, sparams = " -ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type multiplicative"

+ " -prefix_push fieldsplit_xvelocity_"

+ " -ksp_type preonly -pc_type lu -pc_factor_mat_solver_package mumps"

+ " -prefix_pop"

+ " -prefix_push fieldsplit_yvelocity_" , … … …

fields = b[], names = names);

3- Parallel implementation in FreeFem++
PETSc/SLEPc interface (P. Jolivet)

28

Ingredient 2 : provide a specific Schur complement approximation

PETSc solution : PCFieldSplitGetSubKSP(pc, &nfields, &subksp)
KSPSetOperators(subksp[nfields-1], Sapprox, Sapprox)

FreeFem++ interface :

fespace Wh(th,[P2,P2,P2,P1]); // full space

fespace Qh(th,P1); // pressure space

Wh [u,v,w,p];

Wh [b,bv,bw,bp] = [1.0, 2.0, 3.0, 4.0];

string[int] names(4);

names[0] = "xvelocity" ;

names[1] = "yvelocity" ;

names[2] = "zvelocity" ;

names[3] = "pressure" ;

Qh pind;

pind[] = 1:pind[].n;

Wh [list, listv, listw, listp]= [0, 0, 0, pind]; // correspondance between Wh and Qh pressure DOFs

matrix[int] S(1);

S[0]=vSchur(Qh,Qh); // Schur complement approximation

// Set PETSc solver

set(A, sparams = " … … … " ,

fields = b[], names = names, schurPreconditioner = S, schurList = list[]);

3- Parallel implementation in FreeFem++
PETSc/SLEPc interface (P. Jolivet)

29

Ingredient 3 : provide the inverse Schur complement approx. as a composition of two
simple inverses

PETSc solution : use of PCCOMPOSITE preconditioner

FreeFem++ interface :

matrix[int] S(2);

S[0]=vMp(Qh,Qh); // pressure mass matrix

S[1]=vLp(Qh,Qh); // pressure laplacian matrix

// Set PETSc solver

set(A, sparams = " … … … "

+ " -prefix_push fieldsplit_pressure_

-ksp_type preonly -pc_type composite -pc_composite_type additive"

+ " -prefix_push sub_0_"

+ " -pc_type ksp -ksp_ksp_type cg -ksp_pc_type jacobi"

+ " -prefix_pop"

+ " -prefix_push sub_1_"

+ " -pc_type ksp -ksp_ksp_type fgmres -ksp_pc_type gamg"

+ " -prefix_pop"

+ " -prefix_pop" ,

fields = b[], names = names, schurPreconditioner = S, schurList = list[]);

D56 ≃ Re56 + 3 �I56 − �NI56

3- Parallel implementation in FreeFem++
PETSc/SLEPc interface (P. Jolivet)

30

Ingredient 4 : Recycling of Krylov basis bewteen two consecutive solve � − �	� 56 in
SLEPc

PETSc solution : interface HPDDM’s solvers with PETSc/SLEPc

FreeFem++ interface :

// Set SLEPc eigensolver Ax = sigma Bx

int k = zeigensolver

(DistA,

DistB,

vectors = EigenVEC, // Array to store the FEM-EigenFunctions

values = EigenVAL, // Array to store the EigenValues

sparams = " -eps_type krylovschur -st_type sinvert -eps_target 0+0.6i"

+ " -st_ksp_type hpddm -hpddm_st_krylov_method gcrodr -hpddm_st_variant flexible … ",

fields = b[], names = names, schurPreconditioner = S, schurList = list[]);

4- Parallel 3D numerical examples
Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

31

Test case :
� 1 million tetrahedrons / Taylor-Hood FE pair / 4,8 millions DOFs
� �
 = 100

Solvers :
o Steady solution : Newton method with FGMRES preconditioned by Modified Grad-Div (3PI�RO@? = 0,3)

� velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1

� Schur complement sub-block solved with CG preconditionned by jacobi, tol=10-3

o Eigenvalues : Krylov-Schur + shift-invert + GCRO-DR(100,30) preconditioned by Modified Grad-Div (3PI�RO@? =
0,3)

� velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1

� Schur complement sub-block 1 solved with CG preconditionned by jacobi, tol=10-3

� Schur complement sub-block 2 solved with FMGRES preconditionned by gamg, tol=10-3

4- Parallel 3D numerical examples
Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

32

Steady solution (axial velocity)

Test case :
� 1 million tetrahedrons / Taylor-Hood FE pair / 4,8 millions DOFs
� �
 = 100

Solvers :
o Steady solution : Newton method with FGMRES preconditioned by Modified Grad-Div (3PI�RO@? = 0,3)

� velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1

� Schur complement sub-block solved with CG preconditionned by jacobi, tol=10-3

o Eigenvalues : Krylov-Schur + shift-invert + GCRO-DR(100,30) preconditioned by Modified Grad-Div (3PI�RO@? =
0,3)

� velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1

� Schur complement sub-block 1 solved with CG preconditionned by jacobi, tol=10-3

� Schur complement sub-block 2 solved with FMGRES preconditionned by gamg, tol=10-3

4- Parallel 3D numerical examples
Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

33

Steady solution (axial velocity) Marginally stable mode (� = 0	; � = 0,58)
from [Marquet & Larsson 2015]

Test case :
� 1 million tetrahedrons / Taylor-Hood FE pair / 4,8 millions DOFs
� �
 = 100

Solvers :
o Steady solution : Newton method with FGMRES preconditioned by Modified Grad-Div (3PI�RO@? = 0,3)

� velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1

� Schur complement sub-block solved with CG preconditionned by jacobi, tol=10-3

o Eigenvalues : Krylov-Schur + shift-invert + GCRO-DR(100,30) preconditioned by Modified Grad-Div (3PI�RO@? =
0,3)

� velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1

� Schur complement sub-block 1 solved with CG preconditionned by jacobi, tol=10-3

� Schur complement sub-block 2 solved with FMGRES preconditionned by gamg, tol=10-3

4- Parallel 3D numerical examples
Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

34

Newton Method

(average iteration time is represented)

4- Parallel 3D numerical examples
Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

35

Newton Method

(average iteration time is represented)

The loss of scaling for high number of procs is mainly due to the non-optimality of ASM w.r.t.
number of domains. To be improved …

4- Parallel 3D numerical examples
Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

36

Newton Method

(average iteration time is represented)
Eigenvalue computation

(10 ev requested with tolerance 105d)

The loss of scaling for high number of procs is mainly due to the non-optimality of ASM w.r.t.
number of domains. To be improved …

5- Some further refinement …
Influence of 3 on the solution ?

37

Grad-Div augmentation (variational augmentation)

7 �	# ⋅ #8 +	(# ⋅ &)# ⋅ #8 + �
569#:9#8 − p9 ⋅ #8
<

+7 3(9 ⋅ #)(9 ⋅ #8)	
<

	 = �

−7 9 ⋅ # �8 = �
<

Grad-Div leaves the continuous solution unchanged

But … changes the discrete solution !

Figure : Eigenvalue spectrum of the flow
around a 2D circular cylinder at �
 = 50
Spatial discretization : Taylor-Hood (eU, e6)

5- Some further refinement …
Influence of 3 on the solution ?

38

Grad-Div augmentation (variational augmentation)

Grad-Div leaves the continuous solution unchanged

But … changes the discrete solution !

Figure : Eigenvalue spectrum of the flow
around a 2D circular cylinder at �
 = 50
Spatial discretization : Taylor-Hood (eU, e6)

Not a divergence free element !!
& ⋅ eU ∉ e6

7 �	# ⋅ #8 +	(# ⋅ &)# ⋅ #8 + �
569#:9#8 − p9 ⋅ #8
<

+7 3(9 ⋅ #)(9 ⋅ #8)	
<

	 = �

−7 9 ⋅ # �8 = �
<

5- Some further refinement …
Influence of 3 on the solution ?

39

What if one uses a divergence-free element ?

� Scott-Vogelius FE pair : (eU, e6Q>) s.t.			 & ⋅ eU ∈ e6Q>	

Figure : Eigenvalue spectrum of the flow
around a 2D circular cylinder at �
 = 50
Spatial discretization : Taylor-Hood (eU, e6)

Figure : Eigenvalue spectrum of the flow
around a 2D circular cylinder at �
 = 50
Spatial discretization : Scott-Vogelius (eU, e6Q>)

A few remarks :

o (eU, e6Q>) is inf-sup stable only on specific types of mesh (Hsieh-Clough-Toucher triangulation)
o We showed that when using divergence-free elements the variational and discrete augmentations are

equivalent
o It is unprcatical to use the discrete augmentation without divergence free elements due to the unsparse

nature of the augmentation term …

40

o Krylov subspaces iterative method preconditioned by Modified Grad-Div where
shown to be efficient both for finding a steady solution and computing its spectrum

o Large 3D configurations and large number of processors accentuate the benefits of
using the iterative strategy w.r.t. direct solver.

o Ritz vector recycling was shown to provide significant acceleration of the
eigenvalue computation when using an iterative strategy for � − �	� 56

o A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

Conclusion

Conclusion :

41

Conclusion

o Scalings must be improved : find an optimal preconditioner for velocity sub-blocks
o Extension for preconditioning turbulence models (RANS equations)
o Towards coupled fluid-structure Linear Stability Analysis on large 3D configurations …

Conclusion :

Perspectives :

o Krylov subspaces iterative method preconditioned by Modified Grad-Div where
shown to be efficient both for finding a steady solution and computing its spectrum

o Large 3D configurations and large number of processors accentuate the benefits of
using the iterative strategy w.r.t. direct solver.

o Ritz vector recycling was shown to provide significant acceleration of the
eigenvalue computation when using an iterative strategy for � − �	� 56

o A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

42

Conclusion

o Scalings must be improved : find an optimal preconditioner for velocity sub-blocks
o Extension for preconditioning turbulence models (RANS equations)
o Towards coupled fluid-structure Linear Stability Analysis on large 3D configurations …

Conclusion :

Perspectives :

Fluid-structure Jacobian matrix =
�SS �SA
�AS �AA

o Krylov subspaces iterative method preconditioned by Modified Grad-Div where
shown to be efficient both for finding a steady solution and computing its spectrum

o Large 3D configurations and large number of processors accentuate the benefits of
using the iterative strategy w.r.t. direct solver.

o Ritz vector recycling was shown to provide significant acceleration of the
eigenvalue computation when using an iterative strategy for � − �	� 56

o A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

43

Conclusion

o Scalings must be improved : find an optimal preconditioner for velocity sub-blocks
o Extension for preconditioning turbulence models (RANS equations)
o Towards coupled fluid-structure Linear Stability Analysis on large 3D configurations …

Conclusion :

Perspectives :

Fluid-structure Jacobian matrix =
�SS �SA
�AS �AA

Modified
Grad-Div

o Krylov subspaces iterative method preconditioned by Modified Grad-Div where
shown to be efficient both for finding a steady solution and computing its spectrum

o Large 3D configurations and large number of processors accentuate the benefits of
using the iterative strategy w.r.t. direct solver.

o Ritz vector recycling was shown to provide significant acceleration of the
eigenvalue computation when using an iterative strategy for � − �	� 56

o A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

44

Questions

Memory requirements (2D lid-driven cavity, �
 = 100, 3 = 0,1)

2- Performances
Memory requirements in Newton method

45

Mesh
Velocity

DOFs
Pressure

DOFs

Memory
direct MUMPS

(Mb)

Memory
Modified Grad-Div (Mb)

Memory gain (%)

16x16 2600 340 5 2x2 20

32x32 9900 1300 16 2x4 50

64x64 39000 5000 75 2x17 55

96x96 88000 11000 191 2x41 57

256x256 623400 78200 1862 2x353 62

Memory requirements (3D lid-driven cavity, �
 = 100, 3 = 0,1)

*All sub-systems are solved with MUMPS

Mesh
Velocity

DOFs
Pressure

DOFs

Memory
direct MUMPS

(Mb)

Memory
Modified Grad-Div (Mb)

Memory gain (%)

8x8x8 14700 729 143 3x21 56

16x16x16 107800 4900 2565 3x260 70

