

Bifurcations and Instabilies in Fluid Mechanics July 11-14, 2017, The Woodlands, TX – USA

Fluid/elastic modes of a flexible plate clamped on a cylinder

Jean-Lou PFISTER

hD student at ONERA (Meudon, France)

Advisor : Olivier MARQUET (ONERA)

return on innovation

Problem statement

Problem statement

Spontaneous plate deviation \rightarrow non-zero lift force.

- S How to predict the instabilities onset?
- S What are the underlying mechanisms?

Literature review - spontaneous deviations in fluid/solid systems

Motivation : flow control, bio-inspired systems...

1. Lacis, et *al*, Nature, 2014

2. Cimbala, J. and Garg, S., AIAA, 1991

Jean-Lou PFISTER

- 3. Xu, J.C. et *al* , Phys. Fluids, 1990
- 4. Bagheri, S. et al., Phys. Rev. Lett., 2012

3 / 21

Literature review - spontaneous deviations in fluid/solid systems

Motivation : flow control, bio-inspired systems...

Low-Reynods flow, freely rotatable plate $^{\rm 1}$

Higher-Reynods flow, freely rotatable plate 2

Rigid rotatable plate (numeric study)³

Flexible attached plate (numeric study)⁴

- 1. Lacis, et *al*, Nature, 2014
- 2. Cimbala, J. and Garg, S., AIAA, 1991

Jean-Lou PFISTER

Xu, J.C. et al., Phys. Fluids, 1990
Bagheri, S. et al., Phys. Rev. Lett., 2012

Literature review - spontaneous deviations in fluid/solid systems

Motivation : flow control, bio-inspired systems...

Low-Reynods flow, freely rotatable plate $^{\rm 1}$

Rigid rotatable plate (numeric study) 3

Higher-Reynods flow, freely rotatable plate²

Flexible attached plate (numeric study)⁴

🛿 We propose an approach based on linear stability analysis.

- 1. Lacis, et *al*, Nature, 2014
- 2. Cimbala, J. and Garg, S., AIAA, 1991

Jean-Lou PFISTER

Xu, J.C. et al., Phys. Fluids, 1990
Bagheri, S. et al., Phys. Rev. Lett., 2012

BIFD 2017

Fluid/solid stability analysis of the symmetric state

Outline

1 Introduction

3 Fluid/solid stability analysis of the deviated state

Fluid-solid interaction model problem⁵

5. Lee, J. and You, D., Phys. Fluids, 2013

Fluid-solid interaction model problem⁵

5. Lee, J. and You, D., Phys. Fluids, 2013

Fluid-solid interaction model problem⁵

- 3 Parameters :
 - $\rho_{\text{solid}}/\rho_{\text{fluid}} = 1$,
 - Poisson coefficient $\nu_s = 0.4$, variable **rigidity** coefficient \mathcal{K}_B ,
 - Variable **Reynolds number** $\mathcal{R}e = U_{\infty}D/\nu$.
- Physics modeling :
 - Incompressible laminar flow,
 - Non-linear elastic solid (Saint-Venant Kirchhoff).
- 5. Lee, J. and You, D., Phys. Fluids, 2013

How to handle the fluid-structure coupling

To handle the moving domain : Arbitrary Lagrangian Eulerian formulation⁶

6. Donea, J. et al. Enc. Comp. Mech., 2004

How to handle the fluid-structure coupling

To handle the moving domain : Arbitrary Lagrangian Eulerian formulation⁶

The coupled problem is then written as

$$\mathcal{B}rac{\partial \mathbf{q}}{\partial t} - \mathcal{R}(\mathbf{q}) = 0$$
 in a fixed domain Ω_0

 $\mathbf{q} = \begin{cases} \text{velocity (solid/fluid)} \\ \text{displacement (solid/fluid)} \\ \text{pressure (fluid)} \end{cases} \quad \mathcal{B}, \mathcal{R} = \begin{cases} \text{Navier-Stokes equations (fluid)} \\ \text{Elasticity equations (solid)} \\ \text{Stress/velocity continuity (interface)} \\ \text{Fluid mesh equation} \end{cases}$

6. Donea, J. et al. Enc. Comp. Mech., 2004

Case $\mathcal{R}e = 80$, $\mathcal{K}_B = 0.015$ (same as in the video). Let us solve ⁷

 $\mathcal{R}(\mathbf{q}_b) = 0$

7. Newton method implemented in the finite element software FreeFem++ (www.freefem.org)

Case $\mathcal{R}e = 80$, $\mathcal{K}_B = 0.015$ (same as in the video). Let us solve ⁷

$$\mathcal{R}(\mathbf{q}_b) = 0$$

7. Newton method implemented in the finite element software FreeFem++ (www.freefem.org)

Case $\mathcal{R}e = 80$, $\mathcal{K}_B = 0.015$ (same as in the video). Let us solve ⁷

$$\mathcal{R}(\mathbf{q}_b) = 0$$

7. Newton method implemented in the finite element software FreeFem++ (www.freefem.org)

Case $\mathcal{R}e = 80$, $\mathcal{K}_B = 0.015$ (same as in the video). Let us solve ⁷

$$\mathcal{R}(\mathbf{q}_b) = 0$$

 ${f S}$ Small compression (\simeq 0.01% of the length) in the solid due to viscous shear

7. Newton method implemented in the finite element software FreeFem++ (www.freefem.org) Jean-Lou PFISTER 7 / 21 BIFD 2017

Methods

Linear stability problem

Non-linear problem

$$\mathcal{B}rac{\partial \mathbf{q}}{\partial t}(\mathbf{x}) - \mathcal{R}(\mathbf{q})(\mathbf{x}) = 0 \quad \mathbf{x} \in \Omega_0$$

Methods

Linear stability problem

Non-linear problem

$$\mathcal{B}rac{\partial \mathbf{q}}{\partial t}(\mathbf{x}) - \mathcal{R}(\mathbf{q})(\mathbf{x}) = \mathbf{0} \quad \mathbf{x} \in \Omega_{\mathbf{0}}$$

Long-term asymptotic stability

$$\mathbf{q}(\mathbf{x},t) = \mathbf{q}_b(\mathbf{x}) + \varepsilon \, \mathbf{q}'(\mathbf{x},t)$$
 $\varepsilon \ll 1$

Linear stability problem

Non-linear problem

$$\mathcal{B}rac{\partial \mathbf{q}}{\partial t}(\mathbf{x}) - \mathcal{R}(\mathbf{q})(\mathbf{x}) = \mathbf{0} \quad \mathbf{x} \in \Omega_{\mathbf{0}}$$

Long-term asymptotic stability

$$\mathbf{q}(\mathbf{x},t) = \mathbf{q}_b(\mathbf{x}) + \varepsilon \, \hat{\mathbf{q}}(\mathbf{x}) \exp(\lambda + \mathbf{i}\omega)t \qquad \varepsilon \ll 1$$

Linear stability problem

Non-linear problem

$$\mathcal{B}rac{\partial \mathbf{q}}{\partial t}(\mathbf{x}) - \mathcal{R}(\mathbf{q})(\mathbf{x}) = 0 \quad \mathbf{x} \in \Omega_0$$

Long-term asymptotic stability

$$\mathbf{q}(\mathbf{x},t) = \mathbf{q}_b(\mathbf{x}) + \varepsilon \, \hat{\mathbf{q}}(\mathbf{x}) \exp(\lambda + \mathbf{i}\omega)t \qquad \varepsilon \ll 1$$

Linear stability problem \rightarrow look for *unstables* modes ($\lambda > 0, \omega, \hat{\mathbf{q}}$)

$$(\lambda + i\omega) \mathcal{B} \hat{\mathbf{q}} - \left. \frac{\partial \mathcal{R}}{\partial \mathbf{q}} \right|_{\mathbf{q}_b} \hat{\mathbf{q}} = \mathbf{0}$$

Monolithic fluid-solid coupling :

- **3** $\hat{\mathbf{q}}_{f}$: fluid velocity/pressure,
- $\ensuremath{\mathfrak{S}}$ \hat{q}_{s} : displacement.

Full coupled problem :

$$(\lambda + i\omega) \begin{bmatrix} \mathcal{B}_{ff} & 0\\ 0 & \mathcal{B}_{ss} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{q}}_{f}\\ \hat{\mathbf{q}}_{s} \end{bmatrix} - \begin{bmatrix} \mathcal{A}_{ff} & \mathcal{A}_{fs}\\ \mathcal{A}_{sf} & \mathcal{A}_{ss} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{q}}_{f}\\ \hat{\mathbf{q}}_{s} \end{bmatrix} = 0$$

Monolithic fluid-solid coupling :

- $\mathbf{\overline{q}}_{\mathbf{f}}$: fluid velocity/pressure,
- 🕄 $\hat{\mathbf{q}}_{s}$: displacement.

Fluid-only subproblem :

$$(\lambda + i\omega) \begin{bmatrix} \mathcal{B}_{ff} & 0\\ 0 & \mathcal{B}_{ss} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{q}}_{f}\\ \hat{\mathbf{q}}_{s} \end{bmatrix} - \begin{bmatrix} \mathcal{A}_{ff} & \mathcal{A}_{fs}\\ \mathcal{A}_{sf} & \mathcal{A}_{ss} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{q}}_{f}\\ \hat{\mathbf{q}}_{s} \end{bmatrix} = \mathbf{0}$$

Monolithic fluid-solid coupling :

- $\mathbf{\overline{q}}_{\mathbf{f}}$: fluid velocity/pressure,
- 🕄 $\hat{\mathbf{q}}_{s}$: displacement.

Solid-only subproblem :

$$(\lambda + i\omega) \begin{bmatrix} \mathcal{B}_{ff} & 0\\ 0 & \mathcal{B}_{ss} \end{bmatrix} \begin{bmatrix} \hat{q}_f\\ \hat{q}_s \end{bmatrix} - \begin{bmatrix} \mathcal{A}_{ff} & \mathcal{A}_{fs}\\ \mathcal{A}_{sf} & \mathcal{A}_{ss} \end{bmatrix} \begin{bmatrix} \hat{q}_f\\ \hat{q}_s \end{bmatrix} = 0$$

symmetric state

Eigenvalue problem

Monolithic fluid-solid coupling :

- $\mathbf{s} \, \hat{\mathbf{q}}_{f}$: fluid velocity/pressure,
- $\ensuremath{\mathfrak{S}}$ \hat{q}_{s} : displacement.

Couplings :

$$(\lambda + i\omega) \begin{bmatrix} \mathcal{B}_{ff} & 0\\ 0 & \mathcal{B}_{ss} \end{bmatrix} \begin{bmatrix} \hat{q}_f\\ \hat{q}_s \end{bmatrix} - \begin{bmatrix} \mathcal{A}_{ff} & \mathcal{A}_{fs}\\ \mathcal{A}_{sf} & \mathcal{A}_{ss} \end{bmatrix} \begin{bmatrix} \hat{q}_f\\ \hat{q}_s \end{bmatrix} = 0$$

Monolithic fluid-solid coupling :

- 🖸 $\hat{\mathbf{q}}_{\mathrm{f}}$: fluid velocity/pressure,
- 🖸 $\hat{\mathbf{q}}_{s}$: displacement.

Full coupled problem :

$$(\lambda + i\omega) \begin{bmatrix} \mathcal{B}_{ff} & 0\\ 0 & \mathcal{B}_{ss} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{q}}_{f}\\ \hat{\mathbf{q}}_{s} \end{bmatrix} - \begin{bmatrix} \mathcal{A}_{ff} & \mathcal{A}_{fs}\\ \mathcal{A}_{sf} & \mathcal{A}_{ss} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{q}}_{f}\\ \hat{\mathbf{q}}_{s} \end{bmatrix} = 0$$

Large eigenvalue problem, solved in FreeFem++/ARPACK⁸ with finite-elements and an exact Jacobian matrix.

^{8.} www.caam.rice.edu/software/ARPACK/

Fluid-solid linear stability analysis of the symmetric solution

Spectrum ($\mathcal{R}e = 80, \mathcal{K}_B = 0.015$) :

Fluid-solid linear stability analysis of the symmetric solution

Modes (u velocity and solid displ.) :

Spectrum ($\mathcal{R}e = 80, \mathcal{K}_B = 0.015$) :

Fluid-solid linear stability analysis of the symmetric solution

Modes (u velocity and solid displ.) :

Spectrum ($Re = 80, K_B = 0.015$) :

Fluid/solid stability analysis of the symmetric state

Results

Effect of the bending stiffness \mathcal{K}_{B}

Effect of the bending stiffness \mathcal{K}_{B}

Effect of the bending stiffness \mathcal{K}_{B}

Effect of the bending stiffness \mathcal{K}_{B}

- The steady mode is unstable over a finite range of rigidities, 3
- 3 In what follows we focus on this range.

Steady mode shape, $\mathcal{R}e = 80$ $\mathcal{K}_{B} = 0.0290$

Steady mode shape, $\mathcal{R}e = 80$

Steady mode shape, $\mathcal{R}e = 80$ $\mathcal{K}_{B} = 0.0150$
Neutral curve for the steady mode

Steady mode shape, $\mathcal{R}e = 80$ $\mathcal{K}_B = 0.0030$

Neutral curve for the steady mode

Steady mode shape, $\mathcal{R}e = 80$

 $\mathcal{K}_{B} = 0.0014$

Neutral curve for the steady mode

Can we describe the steady mode neutral curve with a simple model?

Results

Reduced model

Coupled system :

$$(\lambda + i\omega) \begin{bmatrix} \mathcal{B}_{ff} & 0\\ 0 & \mathcal{B}_{ss} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{q}}_{f}\\ \hat{\mathbf{q}}_{s} \end{bmatrix} - \begin{bmatrix} \mathcal{A}_{ff} & \mathcal{A}_{fs}\\ \mathcal{A}_{sf} & \mathcal{A}_{ss} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{q}}_{f}\\ \hat{\mathbf{q}}_{s} \end{bmatrix} = 0$$

Coupled system :

$$\begin{split} \left(\lambda+\mathsf{i}\omega\right)\mathcal{B}_{\mathsf{f}\mathsf{f}}\,\hat{\mathbf{q}}_{\mathsf{f}}-\mathcal{A}_{\mathsf{f}\mathsf{f}}\,\hat{\mathbf{q}}_{\mathsf{f}}-\mathcal{A}_{\mathsf{f}\mathsf{s}}\,\hat{\mathbf{q}}_{\mathsf{s}}=0\\ \left(\lambda+\mathsf{i}\omega\right)\mathcal{B}_{\mathsf{s}\mathsf{s}}\,\hat{\mathbf{q}}_{\mathsf{s}}-\mathcal{A}_{\mathsf{s}\mathsf{f}}\,\hat{\mathbf{q}}_{\mathsf{f}}-\mathcal{A}_{\mathsf{s}\mathsf{s}}\,\hat{\mathbf{q}}_{\mathsf{s}}=0 \end{split}$$

$$\begin{split} & (\lambda + \dot{\imath} \omega) \, \mathcal{B}_{\rm ff} \, \hat{\mathbf{q}}_{\rm f} - \mathcal{A}_{\rm ff} \, \hat{\mathbf{q}}_{\rm f} - \mathcal{A}_{\rm fs} \, \hat{\mathbf{q}}_{\rm s} = \mathbf{0} \\ & (\lambda + \dot{\imath} \omega) \, \mathcal{B}_{\rm ss} \, \hat{\mathbf{q}}_{\rm s} - \mathcal{A}_{\rm sf} \, \hat{\mathbf{q}}_{\rm f} - \mathcal{A}_{\rm ss} \, \hat{\mathbf{q}}_{\rm s} = \mathbf{0} \end{split}$$

$$\begin{split} \lambda \, \mathcal{B}_{\rm ff} \, \hat{\mathbf{q}}_{\rm f} - \mathcal{A}_{\rm ff} \, \hat{\mathbf{q}}_{\rm f} - \mathcal{A}_{\rm fs} \, \hat{\mathbf{q}}_{\rm s} = 0 \\ \lambda \, \mathcal{B}_{\rm ss} \, \hat{\mathbf{q}}_{\rm s} - \mathcal{A}_{\rm sf} \, \hat{\mathbf{q}}_{\rm f} - \mathcal{A}_{\rm ss} \, \hat{\mathbf{q}}_{\rm s} = 0 \end{split}$$

$$\lambda \mathcal{B}_{ss} \, \hat{\mathbf{q}}_{s} - \mathcal{A}_{ss} \, \hat{\mathbf{q}}_{s} = \mathcal{A}_{sf} \, (\lambda \, \mathcal{B}_{ff} - \mathcal{A}_{ff})^{-1} \mathcal{A}_{fs} \, \hat{\mathbf{q}}_{s} \qquad (a)$$

$$\underbrace{\lambda \mathcal{B}_{ss} \, \hat{\mathbf{q}}_{s} - \mathcal{A}_{ss} \, \hat{\mathbf{q}}_{s}}_{\text{inearized solid equation}} = \underbrace{\mathcal{A}_{sf} \, (\lambda \, \mathcal{B}_{ff} - \mathcal{A}_{ff})^{-1} \mathcal{A}_{fs} \, \hat{\mathbf{q}}_{s}}_{\text{linearized fluid load}} \qquad (a)$$

Coupled system : stationary modes

$$\underbrace{\lambda \, \mathcal{B}_{ss} \, \hat{\mathbf{q}}_{s} - \mathcal{A}_{ss} \, \hat{\mathbf{q}}_{s}}_{\text{linearized solid equation}} = \underbrace{\mathcal{A}_{sf} \, (\lambda \, \mathcal{B}_{ff} - \mathcal{A}_{ff})^{-1} \mathcal{A}_{fs} \, \hat{\mathbf{q}}_{s}}_{\text{linearized fluid load}} \qquad (a)$$

Free solid modes are orthogonal, solution of

(1)

Coupled system : stationary modes

$$\underbrace{\lambda \, \mathcal{B}_{ss} \, \hat{\mathbf{q}}_{s} - \mathcal{A}_{ss} \, \hat{\mathbf{q}}_{s}}_{\text{linearized solid equation}} = \underbrace{\mathcal{A}_{sf} \, (\lambda \, \mathcal{B}_{ff} - \mathcal{A}_{ff})^{-1} \mathcal{A}_{fs} \, \hat{\mathbf{q}}_{s}}_{\text{linearized fluid load}} \qquad (a)$$

Free solid modes are orthogonal, solution of

Modal basis

$$\hat{\mathbf{q}}_{\mathsf{s}} = \sum_{j} y_{j} \, \hat{\mathbf{q}}_{\mathsf{s}}^{(j)}$$

(1)

Coupled system : stationary modes

$$\underbrace{\lambda \, \mathcal{B}_{ss} \, \hat{\mathbf{q}}_{s} - \mathcal{A}_{ss} \, \hat{\mathbf{q}}_{s}}_{\text{linearized solid equation}} = \underbrace{\mathcal{A}_{sf} \, (\lambda \, \mathcal{B}_{ff} - \mathcal{A}_{ff})^{-1} \mathcal{A}_{fs} \, \hat{\mathbf{q}}_{s}}_{\text{linearized fluid load}} \qquad (a)$$

Free solid modes are orthogonal, solution of

Modal basis \rightarrow projection of (a)

$$y_{i}\left[\hat{\mathbf{q}}_{s}^{(i)}\cdot\left(\lambda\,\mathcal{B}_{ss}-\mathcal{A}_{ss}\right)\hat{\mathbf{q}}_{s}^{(i)}\right]=\sum_{j}y_{j}\left[\hat{\mathbf{q}}_{s}^{(i)}\cdot\mathcal{A}_{sf}\left(\lambda\mathcal{B}_{ff}-\mathcal{A}_{ff}\right)^{-1}\mathcal{A}_{fs}\,\hat{\mathbf{q}}_{s}^{(j)}\right]\quad\forall i$$

(1)

Coupled system : stationary modes

$$\underbrace{\lambda \, \mathcal{B}_{ss} \, \hat{\mathbf{q}}_{s} - \mathcal{A}_{ss} \, \hat{\mathbf{q}}_{s}}_{\text{linearized solid equation}} = \underbrace{\mathcal{A}_{sf} \, (\lambda \, \mathcal{B}_{ff} - \mathcal{A}_{ff})^{-1} \mathcal{A}_{fs} \, \hat{\mathbf{q}}_{s}}_{\text{linearized fluid load}} \qquad (a)$$

Free solid modes are orthogonal, solution of

Modal basis \rightarrow projection of (a) \rightarrow marginality

$$y_{i}\left[\hat{\mathbf{q}}_{s}^{(i)}\cdot\left(\boldsymbol{\lambda}\mathcal{B}_{ss}-\mathcal{A}_{ss}\right)\hat{\mathbf{q}}_{s}^{(i)}\right]=\sum_{j}y_{j}\left[\hat{\mathbf{q}}_{s}^{(i)}\cdot\mathcal{A}_{sf}\left(\boldsymbol{\lambda}\mathcal{B}_{ff}-\mathcal{A}_{ff}\right)^{-1}\mathcal{A}_{fs}\hat{\mathbf{q}}_{s}^{(j)}\right]\quad\forall i$$

Coupled system : stationary modes

$$\underbrace{\lambda \, \mathcal{B}_{ss} \, \hat{\mathbf{q}}_{s} - \mathcal{A}_{ss} \, \hat{\mathbf{q}}_{s}}_{\text{linearized solid equation}} = \underbrace{\mathcal{A}_{sf} \, (\lambda \, \mathcal{B}_{ff} - \mathcal{A}_{ff})^{-1} \mathcal{A}_{fs} \, \hat{\mathbf{q}}_{s}}_{\text{linearized fluid load}} \qquad (a)$$

Free solid modes are orthogonal, solution of

Modal basis \rightarrow projection of (a) \rightarrow marginality \rightarrow modal equilibrium

$$y_{i} \underbrace{\left[\hat{\mathbf{q}}_{s}^{(i)} \cdot \mathcal{A}_{ss} \, \hat{\mathbf{q}}_{s}^{(i)}\right]}_{\text{modal stifness } ki(\mathcal{K}_{B})} = \sum_{j} y_{j} \underbrace{\left[\hat{\mathbf{q}}_{s}^{(i)} \cdot \mathcal{A}_{sf} \, \mathcal{A}_{ff}^{-1} \mathcal{A}_{fs} \, \hat{\mathbf{q}}_{s}^{(j)}\right]}_{\text{fluid linearized load projection}} \quad \forall i$$

Coupled system : stationary modes

$$\underbrace{\lambda \, \mathcal{B}_{ss} \, \hat{\mathbf{q}}_{s} - \mathcal{A}_{ss} \, \hat{\mathbf{q}}_{s}}_{\text{linearized solid equation}} = \underbrace{\mathcal{A}_{sf} \, (\lambda \, \mathcal{B}_{ff} - \mathcal{A}_{ff})^{-1} \mathcal{A}_{fs} \, \hat{\mathbf{q}}_{s}}_{\text{linearized fluid load}} \qquad (a)$$

Free solid modes are orthogonal, solution of

Modal basis \rightarrow projection of (a) \rightarrow marginality \rightarrow modal equilibrium

$$k_i(\mathcal{K}_{\mathsf{B}}) y_i = \sum_j y_j \underbrace{\left[\hat{\mathbf{q}}_{\mathsf{s}}^{(i)} \cdot \mathcal{A}_{\mathsf{sf}} \mathcal{A}_{\mathsf{ff}}^{-1} \mathcal{A}_{\mathsf{fs}} \, \hat{\mathbf{q}}_{\mathsf{s}}^{(j)} \right]}_{\text{fluid linearized load projection}} \quad \forall i$$

Coupled system : stationary modes

$$\underbrace{\lambda \, \mathcal{B}_{ss} \, \hat{\mathbf{q}}_{s} - \mathcal{A}_{ss} \, \hat{\mathbf{q}}_{s}}_{\text{linearized solid equation}} = \underbrace{\mathcal{A}_{sf} \, (\lambda \, \mathcal{B}_{ff} - \mathcal{A}_{ff})^{-1} \mathcal{A}_{fs} \, \hat{\mathbf{q}}_{s}}_{\text{linearized fluid load}} \qquad (a)$$

Free solid modes are orthogonal, solution of

Modal basis \rightarrow projection of (a) \rightarrow marginality \rightarrow modal equilibrium

$$k_i(\mathcal{K}_{\mathsf{B}}) y_i = \sum_j \frac{\partial F_{(i)}^{\mathsf{f} o \mathsf{s}}}{\partial \hat{\mathsf{q}}_{\mathsf{s}}^{(j)}} y_j \qquad \forall i \qquad (a')$$

Equilibrium between the solid stiffness and a fluid added stiffness⁹

$$\left(-k_{1}(\mathcal{K}_{\mathsf{B}})+\frac{\partial \mathcal{F}_{(1)}^{\mathrm{f}\to\mathrm{s}}}{\partial \hat{\mathbf{q}}_{\mathrm{s}}^{(1)}}\right) \, y_{1}=0$$

9. Dowell, et al, Springer, 2004

Equilibrium between the solid stiffness and a fluid added stiffness⁹

$$\left(-k_{1}(\mathcal{K}_{\mathsf{B}})+\frac{\partial \mathcal{F}_{(1)}^{\mathsf{f}\to\mathsf{s}}}{\partial \hat{\mathsf{q}}_{\mathsf{s}}^{(1)}}\right) y_{1}=0$$

9. Dowell, et al, Springer, 2004

Equilibrium between the solid stiffness and a fluid added stiffness⁹

$$\left(-k_{1}(\mathcal{K}_{\mathsf{B}})+\frac{\partial \mathcal{F}_{(1)}^{\mathsf{f}\to\mathsf{s}}}{\partial \hat{\mathsf{q}}_{\mathsf{s}}^{(1)}}\right) y_{1}=0$$

9. Dowell, et al, Springer, 2004

Equilibrium between the solid stiffness and a fluid added stiffness⁹

$$\left(-k_{1}(\mathcal{K}_{\mathsf{B}})+\frac{\partial \mathcal{F}_{(1)}^{\mathsf{f}\to\mathsf{s}}}{\partial \hat{\mathsf{q}}_{\mathsf{s}}^{(1)}}\right) y_{1}=0$$

9. Dowell, et al, Springer, 2004

Equilibrium between the solid stiffness and a fluid added stiffness⁹

$$\left(-k_{1}(\mathcal{K}_{\mathsf{B}})+\frac{\partial \mathcal{F}_{(1)}^{\mathsf{f}\to\mathsf{s}}}{\partial \hat{\mathsf{q}}_{\mathsf{s}}^{(1)}}\right) y_{1}=\mathsf{0}$$

9. Dowell, et al, Springer, 2004

Equilibrium between the solid stiffness and a fluid added stiffness⁹

$$\left(-k_{1}(\mathcal{K}_{\mathsf{B}})+\frac{\partial \mathcal{F}_{(1)}^{\mathsf{f}\to\mathsf{s}}}{\partial \hat{\mathsf{q}}_{\mathsf{s}}^{(1)}}\right) y_{1}=0$$

9. Dowell, et al, Springer, 2004

Equilibrium between the solid stiffness and a fluid added stiffness⁹

$$\left(-k_{1}(\mathcal{K}_{\mathsf{B}})+\frac{\partial \mathcal{F}_{(1)}^{\mathsf{f}\to\mathsf{s}}}{\partial \hat{\mathsf{q}}_{\mathsf{s}}^{(1)}}\right) y_{1}=0$$

Approximation of the linearized fluid load

$$-k_1(\mathcal{K}_{\mathsf{B}}) + \frac{\partial F_{(1)}^{f \to \mathsf{s}}}{\partial \hat{\mathbf{q}}_{\mathsf{s}}^{(1)}}(\mathcal{R}_{\mathsf{e}}) = 0 \qquad \text{(solid stiffness cancelled by the fluid added stiffness)}$$

9. Dowell, et al, Springer, 2004

Equilibrium between the solid stiffness and a fluid added stiffness⁹

$$\left(-k_{1}(\mathcal{K}_{\mathsf{B}})+\frac{\partial F_{(1)}^{\mathsf{f}\to\mathsf{s}}}{\partial \hat{\mathsf{q}}_{\mathsf{s}}^{(1)}}\right) y_{1}=0$$

Approximation of the linearized fluid load

$$-k_1(\mathcal{K}_{\mathsf{B}}) + \frac{\partial F_{(1)}^{f \to s}}{\partial \hat{\mathbf{q}}_{s}^{(1)}}(\mathcal{R}_{\mathsf{e}}) = 0 \qquad \text{(solid stiffness cancelled by the fluid added stiffness)}$$

Same mechanism as the *divergence instability* in aeroelasticity

9. Dowell, et al, Springer, 2004

Results

Model results

Model results

Neutral curve vs. one-mode approximation

Model results

Neutral curve vs. two-modes approximation

Results

Model results

Neutral curve vs. two-modes approximation

Good agreement : the hypothesis is validated.

Outline

Introduction

2) Fluid/solid stability analysis of the symmetric state

3 Fluid/solid stability analysis of the deviated state

Deviated steady solutions

Starting form \mathbf{q}_{b} , we now follow the deviated stationary solutions

 $\mathcal{R}(\boldsymbol{q}_{\text{dev}})=0$

 $\mathcal{K}_{\mathsf{B}} = 0.1000$

Deviated steady solutions

Starting form \mathbf{q}_{b} , we now follow the deviated stationary solutions

 $\mathcal{R}(\boldsymbol{q}_{\text{dev}})=0$

 $\mathcal{K}_{\mathsf{B}} = 0.0310$

Deviated steady solutions

Starting form \mathbf{q}_{b} , we now follow the deviated stationary solutions

 $\mathcal{R}(q_{\text{dev}}) = 0$

$$\mathcal{K}_{\mathsf{B}}=0.0290$$

Supercritical pitchfork bifurcation

Deviated steady solutions

Starting form \mathbf{q}_{b} , we now follow the deviated stationary solutions

 $\mathcal{R}(\boldsymbol{q}_{\text{dev}})=0$

 $\mathcal{K}_{\mathsf{B}} = 0.0240$

Deviated steady solutions

Starting form \mathbf{q}_{b} , we now follow the deviated stationary solutions

 $\mathcal{R}(\boldsymbol{q}_{\text{dev}})=0$

 $\mathcal{K}_{\mathsf{B}} = 0.0150$

Deviated steady solutions

Starting form \mathbf{q}_{b} , we now follow the deviated stationary solutions

 $\mathcal{R}(\boldsymbol{q}_{\text{dev}})=0$

$$\mathcal{K}_{B} = 0.0030$$

Deviated steady solutions

Starting form \mathbf{q}_{b} , we now follow the deviated stationary solutions

 $\mathcal{R}(\boldsymbol{q}_{\text{dev}})=0$

 $\mathcal{K}_{\mathsf{B}} = 0.0014$
Fluid/solid stability analysis of the deviated state

Deviated steady solutions

Starting form \mathbf{q}_{b} , we now follow the deviated stationary solutions

 $\mathcal{R}(\boldsymbol{q}_{\text{dev}})=0$

 $\mathcal{K}_{\mathsf{B}} = 0.0010$

Fluid-solid linear stability analysis of the deviated solution

Spectrum ($\mathcal{R}e = 80$, $\mathcal{K}_B = 0.015$):

Fluid-solid linear stability analysis of the deviated solution

Spectrum ($\mathcal{R}e = 80$, $\mathcal{K}_B = 0.015$):

Mode (u velocity and solid displ.) :

Now we compute the linear global modes of the deviated state $q_{dev}(x)$:

Now we compute the linear global modes of the deviated state $q_{dev}(x)$:

Now we compute the linear global modes of the deviated state $q_{dev}(x)$:

Now we compute the linear global modes of the **deviated** state $q_{dev}(x)$:

Only one unstable, unsteady branch now.

Evolution of the lift coefficient in the non-linear solution, $\mathcal{K}_{\mathsf{B}}=0.015$

Evolution of the lift coefficient in the non-linear solution, $\mathcal{K}_{\mathsf{B}}=0.015$

(1) Modes σ_s and σ_u grow on the symmetric steady solution,

Evolution of the lift coefficient in the non-linear solution, $\mathcal{K}_{\mathsf{B}}=0.015$

Modes σ_s and σ_u grow on the symmetric steady solution,
 Non-linear, steady deviated solution,

Evolution of the lift coefficient in the non-linear solution, $\mathcal{K}_{\mathsf{B}}=0.015$

- (1) Modes σ_s and σ_u grow on the symmetric steady solution,
- ② Non-linear, steady deviated solution,
- 3 The mode σ_u^{dev} develops on the deviated solution.

Conclusion

- Linearized fluid/solid stability analysis can predict well the instability thresholds,
- The static fluid/solid bifurcation mechanism is a solid stiffness cancellation due to negative fluid added stiffness.

Thank you – Questions

Appendix – Parameters

Non-dimensional parameters :

$$\mathcal{R}e = rac{DU_{\infty}}{
u}, \quad \mathcal{K}_{\mathsf{B}} = rac{EH^3}{12
ho_f U_{\infty}^2 L^3}, \quad \mathcal{M}_{
ho} =
ho_s /
ho_f$$

In this study :

- $H/L \sim 1\%$
- $\Im~{\cal R}$ e ~ 100
- ${\color{black} \hline {\bf 3}} ~ {\mathcal K}_B \sim 10^{-3}-1$
- $\Im \mathcal{M}_{
 ho} = 1$

Corresponding values in the real world (e.g. in a water chanel) : $O_{\rm m} = 0.1 \, {\rm mm}, \ U_{\infty} \sim 0.1 \, {\rm m/s}, \ E \sim 1 - 100 \, {\rm MPa}$ (rubber)

 \rightarrow Haemodynamics, small water-swimmers,...

Appendix – Spatial discretization

- Solution $x/D \in [-20, 50], y/D \in [-20, 20]$
- So Finite elements P2 for velocity/displacement, P1 for the pressure
- $\ensuremath{\mathfrak{O}}$ Conformal mesh with \sim 30k elements \rightarrow 200k d.o.f. in the stability problem

Appendix – Non-linear ALE system

Local equations ¹⁰

$$\begin{split} \mathbf{J} & \frac{\partial \mathbf{u}}{\partial t} + \nabla \mathbf{u} \mathbf{\Phi} \left(\mathbf{u} - \frac{\partial \boldsymbol{\xi}}{\partial t} \right) - \nabla \cdot \mathbf{\Sigma}^{f} = \mathbf{0}, & \text{fluid momentum eq.} \\ \nabla \mathbf{u} : \mathbf{\Phi}^{\mathsf{T}} &= \mathbf{0}, & \text{fluid continuity eq.} \\ \nabla^{2} \boldsymbol{\xi} &= \mathbf{0}, & \text{extension eq.} \\ \mathcal{M}_{\rho} & \frac{\partial^{2} \boldsymbol{\xi}}{\partial t^{2}} - \nabla \cdot \mathbf{\Sigma}^{s} = \mathbf{0} & \text{solid momentum eq.} \end{split}$$

Constitutive relations

$$\begin{split} \boldsymbol{\Sigma}^{f} &= \left(-\rho \mathbf{I} + \frac{1}{\mathcal{R} e} \frac{1}{J} \left(\nabla \mathbf{u} \boldsymbol{\Phi} + \boldsymbol{\Phi}^{\mathsf{T}} \nabla \mathbf{u}^{\mathsf{T}} \right) \right) \boldsymbol{\Phi}^{\mathsf{T}}, \qquad \text{viscous fluid} \\ \boldsymbol{\Sigma}^{s} &= \lambda \operatorname{tr} \left(\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I} \right) \mathbf{I} + 2\mu \left(\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I} \right) \qquad \text{Saint-Venant Kirchhoff solid} \end{split}$$

Interface conditions : stress, displacement and velocity continuity.

10. $\Phi = \int \mathbf{F}^{-1} \mathbf{F} = \mathbf{I} + \nabla \boldsymbol{\xi}$. $\mathbf{J} = \det \mathbf{F}$ (geometric transformation operators)

Appendix – Stationary solver

Problem : Solve the stationary *non-linear* system :

$$\mathcal{R}(\mathbf{q}) = 0.$$

Approach : Newton method \rightarrow solve successively *linear* systems :

$$\left. \frac{\partial \mathcal{R}}{\partial \mathbf{q}} \right|_{\mathbf{q}^k} \left(\mathbf{q}^{k+1} - \mathbf{q}^k \right) = -\mathcal{R}(\mathbf{q}^k).$$

- Monolithic approach : the fluid, solid and extension equation are solved simultaneously.
- So *Exact Jacobian* implementation : an analytical derivation of $\partial \mathcal{R}/\partial \mathbf{q}$ is done rather than finite-differences \rightarrow gain in convergence.
- S Direct solver MUMPS for linear systems.

Appendix – Eigenvalue solver

Problem : Solve the eigenvalue problem :

$$\sigma \mathcal{B}\hat{\mathbf{q}} - \left. \frac{\partial \mathcal{R}}{\partial \mathbf{q}} \right|_{\mathbf{q}_b} \hat{\mathbf{q}} = 0$$

Unknowns (on the whole domain) in \mathbf{q} : 2×velocity + 4×displacement + 4×displacement velocity (fluid/solid, overlapping) + 1×pressure + interface Lagrange multipliers \rightarrow symmetric \mathcal{B} matrix.

Procedures :

- S Exact Jacobian implementation,
- Shift-and-invert & ARNOLDI method,
- MUMPS solver for LU matrix decomposition,
- S ARPACK interface in FreeFem++.

Appendix – DNS

Approach : ALE equations in reference conf. + monolithic weak form ¹¹ :

- + No mesh-moving procedure (except for post-treatments)
- + No numerical added-mass effect
- Strongly non-linear

Procedure : At each time-step n the fully implicit problem

$$\frac{\partial \mathbf{q}}{\partial t} \bigg|^{n+1} + \mathcal{R}(\mathbf{q}^{n+1}, \mathbf{q}^n, ...) = 0$$

is solved using FreeFem++, with

- a (evtl. shifted) Crank-Nicholson time-discretization scheme (2nd order),
- 🖸 a Newton method + exact Jacobian expressions,
- parallel matrix assembly & MUMPS direct solver.

Validated by comparison with popular FSI benchmarks (Turek & Hron)

^{11.} Richter, T. et Wick, T. Finite elements for lerian coordinates Comp. Meth. in Appl. Mech. fluid-structure interaction in ALE and fully Eu- Eng., 2010