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ABSTRACT

Large static and dynamic deformations arise when elastic solids interact with viscous flows. They
may accurately be captured by considering a strong numerical coupling between the Lagrangian
solid dynamics and the Eulerian fluid dynamics, especially when large added-mass effects are at
play. Besides running unsteady non-linear simulations, linearised modal approaches are useful to
identify hydro-elastic instabilities at the origin of those vibrations. They can also be used to design
passive control strategies aiming at attenuating or even suppressing the structural vibrations. The
objectives of this thesis are to develop and apply methods, first to accurately describe the linear
dynamics of strongly coupled fluid-solid systems, and then to optimize the shape or the elastic
properties of the solid so as to control the linear dynamics.

The first part of this thesis presents the theoretical and numerical methods developed to in-
vestigate the linear dynamics of fluid-solid perturbations around non-linear steady states. The
fluid dynamics is governed by the incompressible Navier-Stokes equations, while the solid is de-
scribed by hyperelastic models. An Arbitrary Lagrangian Eulerian coupling is chosen, resulting
in a conformal description of the fluid-solid interface in a time-independent reference configura-
tion. An exact linearisation of this formulation is derived, and two analyses of the resulting fully
coupled, linearised fluid-solid operator are considered. An eigenvalue analysis allows to determine
self-sustained fluid-solid instabilities responsible, for instance, for the vortex-induced vibrations of
bluff bodies or the flutter of slender bodies. The resolvent analysis, i.e. a singular value analysis of
the fluid-solid operator, allows to determine the linear response of the fluid-solid system to external
forcings, such as gusts.

The second part is devoted to the analysis and control of the vibrations of elastic plates at-
tached behind a rigid circular cylinder, and immersed in a uniform incoming flow. First, complex
eigenmodes, related to vortex-induced vibrations, are identified by means of the eigenvalue anal-
ysis. These modes become unstable when reducing the stiffness. A further decrease of stiffness
yields to the destabilization of a real eigenmode, characteristic of a symmetry-breaking divergence
instability. Non-linear steady and unsteady simulations are performed to elucidate the non-linear
interactions between the unstable modes. Secondly, an adjoint-based shape optimization of the
rigid body supporting the elastic plate is proposed to control the unstable complex modes, aiming
either at decreasing the growth rate or varying the frequency. A stabilization of the complex mode
is achieved by a thinning of the rigid body. More exotic shapes are obtained when considering
the variation of the frequency. A frequency decrease is achieved by “D-shaped” cylinders, while a
frequency increase is obtained with “C-shaped” cylinders.

The last part of the thesis is dedicated to the delay of laminar/turbulent transition in two-
dimensional boundary-layer flows thanks to visco-elastic, finite-length coatings. A resolvent anal-
ysis of the fluid-solid operator is used to quantify the attenuation of low-frequency Tollmien-
Schlichting instability waves when the stiffness of the coating is reduced. On the other hand, the
eigenvalue analysis shows that high-frequency solid-based modes are destabilized when the solid
viscous damping is too low. A gradient-based strategy to optimize the stiffness distribution of
the coating with respect to the energy amplification of both instabilities is eventually proposed.
The optimized coatings have an overall structure organized in layers aligned with the flow, with
a much stronger anisotropy in both the streamwise and transverse directions close to the edges,
and make it possible both to attenuate Tollmien-Schlichting waves and to limit the development
of solid-based instabilities.






TABLE OF NOTATIONS

Q stress-free reference domain: quantities §(&,t)

Q steady deformed reference domain: quantities g(a,t)

Q instantaneous, time-dependent deformed domain: quantities q(&;,t)
i imaginary number

A=\ +i\ complex eigenvalue

w forcing frequency

Re(-), IJm(-) real, imaginary part

complex conjugate

Q(x) steady, base field

q'(x,t) perturbation field

q°(x) eigenmode or optimal forcing/response

q'(x) adjoint pertubation field

QT(a}) adjoint steady base field

u fluid velocity

P fluid pressure

I3 solid displacement (capital letter: =)

Ug solid velocity

&, extension displacement

A interface stress (capital letter: A)

Ae interface extension pseudo-stress

V =09/0%, differentiation operator in the instantaneous domain

V =09/0x differentiation operator in the steady deformed reference domain

V =0/0% differentiation operator in the stress-free reference domain

P first Piola-Kirchhoff stress tensor in stress-free configuration (Eq. (1.1.6) page 18)
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INTRODUCTION

FLUID and solid mechanics are traditionally treated as two different subjects. Their coupling,
leading to fluid-structure interactions, is consequently a challenging issue. Large benefits could
be retrieved from a deeper, and more precise understanding of the mutual interaction of fluids
and solids. On one hand, this can help to prevent the appearance of undesirable vibrations, for
they often come with an increased energy dissipation, materials fatigue and even failure. The most
well-known example being probably the flow-induced torsional vibrations that lead to the destruc-
tion of the Tacoma Narrows bridge. On the other hand, the large-amplitude deformations that
spontaneously appear in fluid-elastic systems might be exploited for designing new, bio-inspired
locomotion modes (Gadelha et al., 2010) or energy-harvesting devices (Abdelkefi, 2016). The
present work follows this path, by looking upon both the analysis of fluid-solid instabilities and
their control.

Fluid-structure instabilities

The notion of stability is of paramount importance in engineering sciences. The pre-sizing of
mechanical structures is often carried out under an assumption of a steady-state equilibrium,
in order to be able to quickly determine which loads apply and which material properties are
required. In many cases, the assumption of stationarity unfortunately gives completely erroneous
results, because the hypothetical stationary state on which they have relied is unstable with respect
to small disturbances: any small perturbation triggers a reconfiguration towards a new, often more
complex equilibrium.

Fluid, solid and coupled instabilities

A major topic in fluid mechanics is to understand how steady, “gentle” flows degenerate towards
complex, unsteady, three-dimensional turbulent flows when intrinsic (size of the obstacle, velocity,
viscosity, etc.) or external (acoustic noise, heat source, etc.) characteristic parameters are varied.
The route to turbulence is not straightforward at all to follow, but the early stages are often
characterized by linear instability mechanisms that make the transition between the steady flow
and an unsteady flow with a relatively simple structure.

It is for instance well-known that the fluid flow about an obstacle suddenly ceases to be sta-
tionary when the velocity is increased: the shear layers generated by the presence of the obstacle
give birth to unsteady vortices that detach periodically from the object and are advected in the
wake, which results in oscillatory loads on the obstacle and an increased mixing downstream. For
the flow about a rigid circular cylinder, a bifurcation occurs at a Reynolds number slightly be-
low 50 (Tritton, 1959; Sipp & Lebedev, 2007). Below this threshold, the flow is steady. Above
the critical Reynolds number, the so-called bi-dimensional, unsteady von Karman vortex wake is
observed, as represented in Fig. la where a soap-film visualization is shown. This unsteady wake
appears under the form of localized disturbances that spread upstream and downstream, following
the mechanism of an absolute instability (Huerre & Monkewitz, 1990). In that case, the convection
by the steady flow is not sufficient to prevent from a temporal amplification of the instability.
These type of flows are often referred to as oscillator flows, for they are associated to dominant
frequency peaks. Increasing further the Reynolds number results in secondary instabilities leading
to three-dimensional vortices (Williamson, 1996), then to more and more irregular structures and
eventually, a turbulent flow.
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(b)

Figure 1 — Two typical fluid instabilities. (a) The von Kdrmén vortex wake behind a fixed circular
cylinder that results from a flow instability. Pictures taken by the author, on a soap-film flow
experiment at ONERA set-up by Rémi Allandrieu and Marie Couliou. Visualisation by white-light
interferometry: visible colours are related to the local thickness of the film, which itself is related
to the local flow velocity (Zhang et al., 2000). The mean flow is from the left to the right. (b)
Boundary-layer flow on an inlined plate in a water channel, picture from H. Werlé taken from
Van Dyke (1982)

Boundary-layers are another typical example of unstable flows. For the simple case of a flat
plate without any adverse pressure gradient, while the flow remains stationary near the leading
edge when the free-stream turbulence level is low, unsteady structures appear under the form of
the so-called Tollmien-Schlichting waves (Schubauer & Skramstad, 1947) as one moves away from
the leading edge. The instability mechanism is however different from the case of the cylinder.
The dynamics is of the amplifier type: instabilities appear in the flow when it is subjected to an
external forcing which allows to maintain the appearance of disturbances. These perturbations are
first advected by the flow without being amplified, up to a critical point where an amplification
sets in. The region where an amplification occurs is qualified as convectively unstable (Huerre
& Monkewitz, 1990). These amplified convective waves eventually trigger secondary bifurcations
when they reach a sufficient amplitude (Kachanov, 1994), that then degenerate into a cascade of
bifurcations and a turbulent flow farther downstream. A visualization of a boundary-layer flow in a
water channel is reproduced in Fig. 1b, that illustrates the successive transition steps — Tollmien-
Schlichting waves are observed on the form of the small variations of the contrast on the left, while
more and more complex structures appear as one moves to the right, downstream. On the contrary
to oscillator flows, noise-amplifiers flows are particularly sensitive to external perturbations. Note
that for the boundary-layer flow, in addition to the transition through Tollmien-Schlichting waves,
many other laminar-turbulent transition scenarios may also happen depending on the level of
free-stream turbulence (Saric et al., 2002).

The study of hydrodynamic instabilities thus represents an active domain of research (Drazin
& Reid, 2004; Charru, 2007; Schmid & Henningson, 2012). Despite a constant interest for these
questions dating back to the nineteenth century, many questions stay however unanswered, espe-
cially because of the very large numerical power needed for computational fluid mechanics (Slotnick



et al., 2014) and the difficulty for investigating experimentally the behaviour of fluid flows.

Elastic solids are also subject to instabilities. For instance, when an elongated structure is
subjected to a compressive stress, a sudden sideways deflection of a structural member may occur.
This self-developing instability can lead to structural failure.

Starting especially with the study of the buckling instability of columns by Leonhard Euler as
early as the year 1757, the study of the stability of elastic structures has greatly flourished until
today, where for instance basically every computer-aided design software has a linear buckling pre-
diction module. An introduction to the domain can be found in the classical book by Timoshenko
& Gere (1961). Compared to fluids, solids linear instabilities are simpler to analyse, for their kine-
matics remains often more easily tractable (both experimentally, numerically and conceptually).
Furthermore, the computational power involved in numerical simulations is dramatically reduced.
For these reasons, recent developments are essentially devoted to non-linear solid instabilities (Au-
doly & Pomeau, 2010).

When coupled together, fluids and solids present on one hand typical pre-existent fluid and solid
instabilities, but with features modified by the interaction: for instance, the vortex-shedding past
bluff-bodies is altered by solid vibrations that might develop in the solid (Williamson & Govardhan,
2004). On the other hand, new classes of instabilities appear, resulting from an unstable coupling
of the solid and fluid dynamics.

For instance, the flow past a rigid cylinder behind which a flexible filament is attached is re-
ported in Fig. 2a. The pre-existing instability in the wake generates unsteady loads on the structure
that are amplified, resulting in the large-amplitude oscillations of the filament. The development
of the boundary-layer instabilities are also affected by the flexibility of the underlying surface.
Static reconfigurations as those observed in solids might also be produced by the loads exerted
by the surrounding fluid: an apparent negative stiffness can appear, that can ultimately trigger a
buckling instability usually referred to as the divergence instability in aeroelasticity (Bisplinghoff
et al., 1955). Studying the interaction of a boundary-layer flow with a flexible compliant viscoelas-
tic coating, Gad-El-Hak et al. (1984) observed quasi-steady ripples developing at the surface of
the coating, as reported in Fig. 2b. The development of boundary-layer instabilities is then greatly
affected by the waves travelling in the solid, that can interact with the flow and generate new types
of instabilities (Carpenter & Garrad, 1986, 1985). Even if the flow by itself and the elastic solid do
not present intrinsic instability mechanisms, their mutual interaction may result in unstable situ-
ations. The most classical instability of such type is probably the coupled-mode flutter instability
of wing profiles, that arises when the flexion and torsion modes of vibration of the solid interact
favourably under the action of the fluid (de Langre, 2002).

Linear stability analyses

Even if the world is deeply non-linear, in some cases it is nevertheless useful and relevant to forget
about this inherent complexity. Close to the onset of the instability, one can indeed hope that
the perturbation amplitudes are small, and small things usually grow exponentially before they
become too big to grow. This reasoning forms the basis of the linear stability analysis: how will the
“small thing” grow or decay (exponentially, as a solution of a linearised problem) in space and time
? This approach is of great practical interest, for linear problems are considerably easier to solve
than non-linear problems. In the most general case, the fluid-structure system can be described
by a dynamical system of type

Tusla) 2
where q is a state vector containing the fluid velocity field, the solid displacement field, etc.
Depending on the models chosen for the fluid and the structure, its dimension can range from a
few degrees of freedom, like for the introductory spring-mounted flutter model found in every good
aeroelasticity textbook (Bisplinghoff et al., 1955; de Langre, 2002; Dowell et al., 2004), to more than
108 for numerical three-dimensional models of non-linear elasticity coupled with the Navier-Stokes
equations (Deparis et al., 2016). As mentioned above, rather than trying to solve this equation

r/sti(q) =0
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Figure 2 — Fluid-structure instabilities. (a) The von Karman vortex wake behind a fixed circular
cylinder is strongly modified when a flexible filament is attached behind the cylinder. Pictures
taken by the author, on a soap-film flow experiment at ONERA set-up by Rémi Allandrieu and
Marie Couliou, visualisation by white-light interferometry. The mean flow is from the left to the
right. (b) Boundary-layer flow over a viscoelastic patch (view from the top), from Gad-El-Hak
et al. (1984).

and determine the full history of q(x,t) as a function of the time ¢ and the space coordinate x,
one could instead try to determine only one steady, non linear state and then investigate whether
an unsteady perturbation q'(x,t) of steady state non-linear solution Q(x) is likely to grow or not
in time and/or space. Setting

a(z,1) = Q@) + = q (=, 1)

with € < 1, a linearised equation for the fully coupled fluid-structure perturbation is found by
injecting the above decomposition in the non-linear equation and expanding up to the order e:

(@ -s@fa=r.

where 0.445/0q|q is the linearised fluid-structure operator. In this linearised problem, a forcing
term f’' has been added in the right-hand side so as to model small external perturbations akin
for instance to free-stream turbulence or gusts, vibrations in the solid, etc. Once the linear pertur-
bation problem () is derived, there is still to analyse the behaviour of the perturbation field ¢’ in
time and space. Several questions can be raised at this point, for instance: what is the asymptotic
behaviour of ¢’ as t — oo ? How is q’ affected if some components of the system are forced by
the external noise signal f’ ? What would be the most detrimental type of signal for the stability
of the system 7 What initial condition results in the maximum amplification of the perturbation
energy 7 When is this maximal value reached 7 Where is the energy located ? Does the evolution
of the perturbation give interesting information on the behaviour of the full non-linear system ? etc.

Depending on the nature of the physical problem, different classes of analyses are appropriate
to describe the linear regime of all of these instabilities. As exemplified before, while some systems
tend to spontaneously evolve towards an oscillating state, some other systems are on the other
hand rather known to amplify external perturbations. This distinction is usually made in fluid
mechanics (Huerre & Monkewitz, 1990) where the low-Reynolds number flow behind a cylinder
is probably the most famous example of an oscillator flow, while a boundary layer represents a



typical noise-amplifier flow. It is thus appropriate to conceptually and mathematically split the
linear behaviour between a self-sustained part and a second part that depends on external forcings.

The eigenvalue analysis of the linearised operator is appropriate for characterizing the self-
developing dynamics (Sipp et al., 2010; Theofilis, 2011; Juniper et al., 2014): the long-term
evolution of the perturbation can indeed be characterized by the evolution of normal modes
MRe{q°(x) exp(At)}, A € C, determined by solving the complex eigenvalue problem

{A (@ - (@} =0.

We then obtain modes of instability, oscillating at the frequency Jm(\) and growing or decaying
exponentially with time according to Pe()\), and having the spatial structure q°(«). These modes
are representative of the long-term evolution of the perturbation, since at large times the least
stable mode dominates over the other modes and is representative of the perturbation ¢’. In
the context of fluid dynamics, the predictions of eigenvalue analysis were found to match the
experiments in several cases. For instance, it can predict the onset for Rayleigh-Bénard convection
(Bodenschatz et al., 2000), or the von Kdrmén vortex street behind a cylinder (Tritton, 1959; Sipp
& Lebedev, 2007) evoked above. This approach is typically adapted for oscillator flows that exhibit
one single dominant instability mode. The onset of solid buckling is also well characterized by an
eigenvalue analysis (Audoly & Pomeau, 2010). In the context of fluid-solid instabilities, it is for
instance appropriate to determine the onset of vortex-induced vibrations (Mittal & Singh, 2005)
or some flag instabilities (de Langre, 2002; Dowell et al., 2004; Shoele & Mittal, 2016).

The eigenvalue analysis however overshadows an important effect: if eigenvalues give the asymp-
totic behaviour when ¢ — oo, large amplifications of e.g. an initial condition, external noise, etc.
can occur at a finite time-horizon (Trefethen et al., 1993; Schmid, 2007). This transient growth
of perturbations may then be sufficient to trigger non-linear bifurcations not anticipated by the
eigenvalue analysis. The non-orthogonal superposition of the eigenmodes representing the per-
turbation ¢’ may indeed produce, at finite time-horizon, a considerable growth of the norm —
that is usually chosen so as to represent an energy — of the perturbation. This can occur even
when all eigenvalues are stable (i.e. with a negative real part). In some situations, the spectrum
thus completely fails to explain the experiments. For instance, a Poiseuille flow is found to be
unstable experimentally for Reynolds numbers above about 1000 (Carlson et al., 1982), while an
eigenvalue analysis (Orszag, 1971) predicts a critical Reynolds number of 5772 | Mathematically,
the non-normalilty of the linearised Navier-Stokes equations leads actually in some cases to a large
transient growth of energy, as reported in the landmark paper by Trefethen et al. (1993). The
corresponding operator is indeed far from having orthogonal eigenmodes. Physically, this is be-
cause of advection that allows for the perturbations to be transported, stretched and spatially
amplified. For a comprehensive overview of non-normality effects in fluid dynamics, the reader is
referred to the review by Schmid (2007) and the book by Schmid & Henningson (2012). In the
context of coupled fluid-structure problems, in addition to the intrinsic non-normality of the solid
or the fluid alone, extra causes of non-normality may arise because of non-normal couplings. In
particular, it has been shown that large transient growth may occur below the onset (as predicted
by eigenvalues) for coupled-mode flutter (Schmid & de Langre, 2002), but also that non-linear
transitions could be triggered by the amplification of the energy of gusts (Schwartz et al., 2009;
Amandolese et al., 2013). Rather than the eigenvalues, it is thus more appropriate to determine
which forcings result in the largest energy amplification. Assuming an harmonic forcing at the
frequency w, the resolvent analysis consists in determining the optimal forcing f° that produces
the largest response q°, solution to the optimization problem

-1
max gl sueh that ¢ = {iw Zu(Q) ~ HEQ)) F°

Depending on the physical mechanisms at play, one should therefore favour one or the other
approach. For the reader not familiar with these concepts, a more detailed, practical introduction
is reported in Appendix A, on an example of a very simplified fluid-structure system represented
by two coupled oscillators. Let us now introduce more specifically how fluid-structure instabilities
may be described.
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Description of linear fluid-structure instabilities

Classical approaches for studying fluid-solid vibrations often reduce the problem to a solid mechan-
ics analysis, where vibration modes of the structure are coupled through models for aerodynamic
forces (Bisplinghoff et al., 1955; Dowell et al., 2004). For instance, the spanwise deformation of the
wing is often modelled by a spring-mounted two-dimensional airfoil section, and the so-called gen-
eralized aerodynamic forces are proportional to the displacement and/or the velocity of the solid.
This approach is well adapted for studying classical aeroelastic phenomenons: the characteristic
time-scale for the flow (transit time of the fluid particles over the wing) is usually much smaller
than the characteristic time-scale for the solid (wing vibration period), and the intrinsic dynamic
in the flow (turbulent wake, vortex shedding) has no influence. The aerodynamic forces then only
depend on the static position of the wing and the aeroalstic analysis reduces to the computation
of the steady aerodynamic forces at different angles of attack (de Langre, 2002).

The complexity dramatically increases when it is no longer possible to separate the solid from
the fluid dynamics. In that case, the dynamical reaction of the flow to geometry changes is of
a much more complicated nature, and may depend on the type of flow as well as on the type of
geometry. These cases are referred to as being strongly coupled. More evolved models for the aero-
dynamic forces can in some extent integrate unsteady effects when the flow is assumed potential
(Theodorsen, 1949), while semi-empirical models with parameters estimated from experiments or
time-marching numerical simulations are used where the flow features are more complex (Karpel,
1982). In some cases, the flow itself has its own — possibly unstable — dynamics, as is for instance
the case for the vortex shedding past bluff bodies (Williamson & Govardhan, 2004). In this case,
no general approaches are available. If phenomenological models are available (Facchinetti et al.,
2004), they often lack of generality.

Thanks to recent progress in fluid mechanics, new developments can be however considered
today. One of the goals of the present thesis is to elaborate such new methods. Because of the
special nature of fluid-solid interactions, there are primarily three axes according to which we can
progress: the solid modelling, the fluid modelling, and the fluid-solid coupling. These axes are
not strictly orthogonal, since the coupling between models depends also on their content — for
instance, the coupling between a potential flow to any elasticity model would never exhibit the
complicated time-delay effects between the fluid and the solid dynamics, since they are provoked
by the momentum diffusion by the viscosity of the flow. On the other hand, very fine models can
also interact weakly, as would be the case in a simulation of the fully turbulent flow about a non-
linear, anisotropic elastic wing in standard flight conditions. Generally speaking, as the models
are refined, it is possible (but not necessary) to take into account of more and more feedback loops
between the solid and the fluid.

Developments along the two first axes are illustrated in Fig.3. As evoked before, the classic
wing flutter analysis (a) can be carried out on a spring-damper model where the two oscillators are
coupled by means of aerodynamic forces proportional to the translation/rotation variables. Panel
flutter (b) can be studied using simple aerodynamic models and plate equations for the solid. The
flapping dynamics of a rigid wing is well reproduced with vortex methods, while the flag flutter
instability has been characterized with point vortices interacting with a vibrating string model.
Aeroelastic analyses (e,g) are today commonly carried out using an Euler flow and beam elements or
a finite-element elasticity structural model. The laminar vortex-induced vibrations (f) of a circular
cylinder are reproduced using a spring-mounted rigid object interacting with a Navier-Stokes flow.
Aeroelastic computations of a wind turbine (h) can be carried out by combining beam-elements
for the blades and a turbulent flow. Finally, the large elastic deformations provoked by the blood
flow through arteries is simulated by coupling the Navier-Stokes equations to a non-linear elasticity
model. Note that these examples show how phenomenon are currently modelled rather than how
complicated the real configuration is: the scale of an airplane make it mandatory to resort to a
simplified flow model, while the Navier-Stokes equations can today be used for modelling a small
portion of a deformable artery.

When it comes to the third axis of modelization, recent developments dealing with structures
undergoing possible transitions towards large-amplitude oscillations in a viscous flow have empha-
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Figure 3 — Fluid-structure interactions models. The few examples shown include (a) the academic
spring-mounted wing flutter problem (Bisplinghoff et al., 1955), (b) panel flutter for an elastic plate
(Dowell, 1970), (c) vortex-lattice simulation of a rigid flapping wing (Stanford & Beran, 2010), (d)
vortex-shedding model of a flapping flag (Michelin et al., 2008), (e) design of a joined-wing aircraft
(Hur et al., 2004), (f) vortex-induced vibrations of a spring-mounted cylinder in a Navier-Stokes
flow (Placzek et al., 2009), (g) aeroelastic simulation of an aircraft in Euler flow (Kenway et al.,
2014), (h) aeroelastic wind-turbine simulation in turbulent flow (Bazilevs et al., 2013), (i) blood
flow simulation (Crosetto et al., 2011).

sized the need for a more accurate treatment of the complex coupled dynamics between solids
and fluids. Many examples are found in industrial and biology processes. In a recent review,
Farhat (2017) insists for instance on the need for taking into account elastic wing deformations for
efficient aeroelastic computations. Serensen (2011) identifies the development of strongly coupled
aeroelastic models for wind turbine modelling as a major future research area. In sail or parachute
simulations, the lightness of the canopy compared to the air masses is another computational chal-
lenge (Takizawa & Tezduyar, 2012). The simulation of the cardiovascular system has led to the
development of new computational techniques so as to cope with the large deformations of arteries
or aortic valves subject to blood flow (Peskin, 2002). In ocean engineering, vortex-induced vibra-
tions of tubes, pipes and other marine risers is a major concern that comes with large-amplitude
vibrations and a complex wake flow (Williamson & Govardhan, 2004). In nature, the elastic recon-
figuration of plants in the wind (de Langre, 2008) is another example where significant deformation
effects occur, as well as in the flapping dynamics of insects, fishes or birds (Wu, 2011).

In this thesis, we thereore follow a general modelling approach, which investigates the temporal
evolution of small fluid-structure perturbations developing around steady solutions of fully coupled
fluid-structure equations, i.e. no approximation is made regarding to the kinematic and dynamic
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couplings between the solid and the fluid. Unlike the flutter analysis previously described, the
linearisation of the governing equation is thus performed prior to any model reduction. The equa-
tions governing the dynamics of infinitesimal flow perturbations developing around steady flows
are determined by linearisation of the Navier-Stokes equations written in a fixed spatial domain.
In the context of fluid-structure interaction, an additional difficulty arises in the linearisation pro-
cess because of the Lagrangian motion of the fluid-solid interface, that we shall describe in the
following.

Linearised, strongly coupled fluid-structure problems

In the early nineties, a substantial effort had been set on solving linearised flow equations coupled
to an elastic solid model using the so-called transpiration approach, very popular in aeronautics.
Derived from the work of Lighthill (1958) for simulating the changes in airfoil thickness, the
infinitesimal motion of the fluid-solid interface is taken into account in the linearised equation via
a simple modification of the velocity boundary condition applied at the equilibrium position of the
fluid-solid interface. This transpiration velocity condition allows one to easily adapt a flow solver to
treat the fluid-structure problem and to effectively perform unsteady aeroelastic simulations. The
transpiration approach was first applied to inviscid flows (Raj & Harris, 1993; Mortchelewicz, 1997;
Fisher & Arena, 1996), for instance in the work by Fisher & Arena (1996), who predicted flutter
characteristics of an AGARD wing by coupling a modal solid dynamics solver to a compressible
Euler solver. More recently, this transpiration approach was also extended to viscous turbulent
flows, like in the work by Bekka et al. (2015) who performed aeroelastic computations of the
nozzle of a rocket launcher engine using a Reynolds-Averaged Navier-Stokes solver coupled to a
beam-element solid solver.

Although the transpiration approach (as derived in the early nineties) sounds quite attractive
from a computational point of view, it entirely neglects an important physical effect, namely the
coincidence of fluid and solid normal stresses at the interface. Indeed, a generic perturbation in the
position of the fluid-solid interface does not only modify the velocity continuity condition but also
the normal stress condition. A few exact derivations of linearised fluid-structure problems have
therefore been achieved. There are basically two approaches for deriving the perturbative equa-
tion of a physical problem governed by a non-linear equation defined in a moving domain (Allaire
& Schoenauer, 2007). The perturbations are defined either in a fixed reference configuration —
Lagrangian-based perturbations — or in the instantaneous, deformed configuration — Eulerian-
based perturbations — (Sokolowski & Zolesio, 1992). These two approaches result eventually to
two different descriptions of the same physical problem. Considering a stationary Stokes flow in-
teracting with a string model, Van der Zee et al. (2011) applied the two linearization approaches
in order to derive the adjoint steady fluid-structure equations. In the formulation obtained for the
Lagrangian-based perturbations, the coupling conditions at the fluid-solid interface are straightfor-
ward, but non-local couplings also exist in the fluid domain and result in significant modifications
of the original equations. In the formulation obtained for the Eulerian-based perturbations, the
linearised conservation equations are “simpler”; while the coupling conditions, localized at the in-
terface, are more complicated due to the presence of higher-order derivative terms. In the context
of time-dependant fluid-structure problems, an FEulerian-based linearisation was proposed by Fer-
nandez & Le Tallec (2003a,b), based on the Arbitrary Lagrangian Eulerian (ALE) formulation of
the fluid-structure problem (Hughes et al., 1981). They found that in addition to the classical
transpiration velocity, the linearised stress coupling results in an added-stiffness term that depends
on higher-order derivatives of the stationary fluid velocity and pressure, as well as on a deformation
operator involving the derivatives of the interface displacement. However, the numerical examples
proposed in the paper did not highlight the role of the added stiffness terms and the requirements
needed for the proper and accurate capture of the second-order spatial derivatives. For these rea-
sons, we rather follow the Lagrangian-based approach in this thesis, that results in a lower-order
differential problem.

The first objective of this thesis is thus to contribute to the definition of a consistent de-
scription of linear fluid-structure instabilities, in a framework that allows an efficient



numerical resolution, and extend the tools developed for fluid flows to the fluid-structure case.
This linear approach is validated by comparisons with non-linear results obtained with more
classical solvers.

Application cases

The methods developed are used to analyse physically two configurations representative of the
two mechanisms of instability described previously. A first study is thus devoted to the physical
analysis of a typical fluid-solid oscillator configuration: namely, we study how a flexi-
ble splitter plate attached behind a circular cylinder surrounded by a laminar flow influences the
vortex-shedding mechanisms. This problem is a model for the passive control of wake instabili-
ties (Kwon & Choi, 1996; Assi et al., 2009) or, conversely, for energy-harvesting devices trying to
exploit the energy carried by the instabilities (Abdelkefi, 2016; Carini et al., 2017). It is also of
interest for the understanding of some locomotion mechanisms found in nature (Lacis et al., 2014):
self-developing symmetry-breaking instabilities indeed result in states with non-zero lift that could
be exploited for locomotion. Because of the dominant viscous effects and a solid-to-fluid density
ratio close to unity, the fully coupled approach introduced above is mandatory if one wants to
capture accurately the dynamics of this system.

In a second step, we conduct a physical analysis of a typical fluid-solid noise-amplifier
configuration. We study the delay of the laminar/turbulent transition by Tollmien-Schlichting
waves in a two-dimensional boundary layer by means of a viscoelastic, finite-length compliant coat-
ing, a quest that has been the subject of research since the 1960s and the surprising experimental
observations of Kramer (1960) on drag-reducing capabilities of flexible surfaces. Delaying the
transition is definitely of practical interest, in that it reduces the overall drag. In addition to the
low-frequency dynamics associated with Tollmien-Schlichting waves (Carpenter & Garrad, 1985),
the interaction between fluid and solid results in possibly globally unstable travelling-wave flutter
instabilities at higher frequency (Carpenter & Garrad, 1986). A combination of the eigenvalue and
resolvent analysis is then adapted to describe this complex dynamics.

For each of these application cases, a more detailed introduction will be made at the begining
of the dedicated chapters.

Passive control of linear fluid-structure instabilities

Once instabilities are characterized, they gain at being controlled. Generally speaking, a simple
idea to suppress a non-linear phenomenon, which occurs via the saturation of a linear instability,
is to act at the source of this linear instability. Such idea has been systematically formalized
for hydrodynamics instabilities, by introducing for instance the concept of structural sensitivity
of flow instabilities (Giannetti & Luchini, 2006) and, later on, the concept of sensitivity to base
flow modifications (Marquet et al., 2008; Brandt et al., 2011). This work highlighted the role of
specific regions of the flow in the development of instabilities, and gave hints on how these areas
should be perturbed — by some rather abstract and general, unspecified practical mechanism —
so as to drive the instability in a prescribed way. The key ingredient for these analyses is the
adjoint equation (Errico, 1997), whose solution allows to compute the sensitivity maps. If the ad-
joint Navier-Stokes equations are now commonly used for theoretical analyses (Luchini & Bottaro,
2014a) and in engineering applications (Jameson & Ou, 2011), the same is not true concerning the
fluid-structure equations. Based on this observation, local adjoint fluid-structure equations
are determined, and used to build adjoint-based control strategies.

From these theoretical developments, inspiration was taken so as to design control strategies
where the structure itself, that deforms under the action of the flow, is used as the passive control
parameter. On the engineering point of view, there is indeed evidence that the easiest way to
modify a fluid flow without having to spend energy during the process is to modify the mechanical
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properties of the object that interacts with the flow. These ideas are executed through two com-
plementary approaches, applied to the control of the two main mechanisms of linear instabilities
introduced previously.

Shape optimization for controlling self-developing instabilities

Whith their high operating costs, severe environments and high sensitivity to small geometry
changes, aeronautic applications provide obvious applications to shape optimization. As early as in
the context of the two-dimensional potential flow theory, an effort was put on solving the inverse
problem of finding a wing profile that corresponds to a specified pressure distribution (Lighthill,
1945). Some decades after, ideas from the control theory (Lions, 1971) were applied for minimizing
the drag of a profile in a Stokes flow by Pironneau (1973) using an adjoint-based approach, and
extended a few years later to the viscous, laminar case by Glowinski & Pironneau (1976). The
adjoint approach for the shape optimization of a wing in a flow modelled by the compressible Euler
equations was first addressed by Jameson (1988). It has since then also been extended to the design
of a complete aircraft (Reuther et al., 1996). The viscous case has also been considered (Jameson
et al., 1998), as well as the turbulent case (Anderson & Bonhaus, 1999; Nemec et al., 2004). In the
broader context of hydrodynamic flow optimization, these methods have now reached maturity:
modules for performing adjoint-based geometric shape optimization and sensitivity analyses are
now available in engineering CFD softwares, and are promoted as viable alternatives to parametric
optimization (ANSYS, 2016).

All of the above approaches however relay on the assumption of a steady regime and a rigid
structure. When the flow features are simple (typically for cruise regimes), aeroelastic effects
can actually be added in a relatively simple way by considering a quasi-static approach (Dowell
et al., 2004). In that case, the shape optimization problem reduces to a structural optimization
problem with external loads that model the influence of the flow (Haftka, 1977). When the flow
features are more complex, this approach is unfortunately no longer accurate. More recently,
strongly coupled approaches have therefore been also adressed, but limited to cases where only a
few design parameters are used to represent the shape to be optimized. For instance Hur et al.
(2004) computed design sensitivities of a joined-wing aircraft represented by a beam model, by
taking into account the feedback of airloads to the structure, while Lund et al. (2003) computed
the minimal drag shapes of a flexible object parametrized by NURBS curves in a steady viscous
flow using a fully coupled approach. The same approach was followed more recently by Aghajari
& Schifer (2015). For all these cases, the gradient is computed using finite-differences.

When the number of shape parameters increases, the adjoint-based approach becomes more
efficient. The key point is then to obtain the adjoint fluid-solid problem at the continuous level, for
it allows to obtain an explicit formula for the shape gradient (Allaire & Schoenauer, 2007). This is
a particularly tedious task in the fluid-elastic context, which pushed for considering approximate
approaches where the geometrical couplings are neglected (Failer et al., 2016; Feppon et al., 2018).
To our knowledge, the first attempt for deriving then solving a fully coupled fluid-structure adjoint
problem in an Eulerian-based approach was done by Manzoni & Ponti (2016), who derived a
continuous adjoint fluid-structure problem for an unsteady Stokes flow interacting with a one-
dimensional Koiter solid model. Their derivation resulted in an unsteady Stokes problem backward
in time and expressed in the deformed configuration, coupled with the solid model through a rather
complicated forcing term. This term was found to depend on the adjoint flow field and on the
geometric properties of the interface (for instance, the expression involves the tangential gradient of
the normals). The authors used then the adjoint equations to solve a shape optimization problem
inspired by haemodynamics concerns. In the present work, we rely on the Lagrangian-based
formalism for deriving a shape gradient formula in the fully coupled case.

Turning now on the unsteady effects in coupled flow-structure optimization, they have for
instance been considered by Nadarajah & Jameson (2007), who used an adjoint-based method
coupled with an Euler solver to optimize the shape of a rigid airfoil undergoing a prescribed oscil-
lation, in order to minimize its time-average coefficient of drag. Drag reductions as high as 46 %
have been obtained while maintaining the time-averaged lift coefficient. In the context of micro-air
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vehicle design, Stewart et al. (2016) used a vortex-lattice aerodynamic model coupled with a plate
finite-element model to compute optimal forced flapping wing design. To our knowledge, only few
attempts for taking into account a self-developping unsteadiness in the flow about a structure to be
optimized were done. In the context of pure hydrodynamics, one can mention the work by Heuve-
line & Straufl (2009) were the geometry is parametrized by a few points, and that by Nakazawa &
Azegami (2016) who used an adjoint-based approach without an a-priori parametrization of the
shape. For both case, efforts are put on the stabilization of an unstable mode developing on the
steady viscous Navier-Stokes solution, in the case of a rigid geometry.

Shape optimization is considered here as a way for controlling self-developing fluid-
elastic instabilities on a steady equilibrium. We show, to our knowledge for the first time in
the context of unsteady, strongly coupled fluid-structure instabilities, that an appropriate modifi-
cation of the geometry can achieve a control of these instabilities. These optimal geometries are
computed using a gradient-based approach where an analytic formula is derived for the sensitivity
with respect to a modification of the geometry.

Structural optimization for controlling noise-driven instabilities

Another way of controlling fluid-solid instabilities is to act, rather than on the shape, at the level
of the material properties themselves (local stiffness, density, etc.).

This approach is particularly adapted for the application case of the transition delay by the
use of compliant coatings. Following the early attempts by Kramer (1960), many experimental
approaches have indeed tried to reduce the drag with compliant surfaces with different material
properties, both in the context of turbulent (Choi et al., 1997; Bandyopadhyay et al., 2005) and
laminar (Gaster, 1988; Gad-El-Hak et al., 1984) boundary-layer flows. Theses studies highlighted
the need for highly compliant coatings, often made practically as a combination of polymeric
materials. As early as in the work by Benjamin (1960), suggestions have been made so as to design
appropriate coatings for delaying the boundary-layer transition. Based on numerical computations,
Carpenter (1993) estimated the potential benefits, in terms of transitional Reynolds number, that
could be retrieved from the use of soft walls. His best-performing compliant panel gave an increase
of the transitional Reynolds number by a factor 4.6. Considering two panels mounted in series, the
gain reached a factor 6. Based on this observation, he suggested that using a multi-panel wall, each
tailored for a specific range of Reynolds numbers, would probably produce the largest transition
delay. Carpenter & Morris (1990) investigated the effect of material anisotropy, by adding a term
that breaks the isotropy of the plate response with respect to a flow reversal. This approach was
intended for mimicking a fibre-composite anisotropic compliant wall. They observed an almost
ten-fold rise in transitional Reynolds number. There have also been a few approaches considering
a 2d model (but homogeneous in the streamwise direction) for the coating, for instance by Duncan
(1988), who showed that a stiff upper layer delays the appearance of the instabilities, or by Dixon
et al. (1994), who observed an increase of the transition Reynolds number by a factor 2.5 for a
single-layer coating and by a factor 5 for a two-layer coating.

The optimization approaches performed in the aforementioned papers all relied on an assump-
tion of homogeneity in at least one direction: homogeneity in the transverse direction for 1d
coatings models, or homogeneity in the streamwise direction for models using the Navier elastic-
ity equation. For both cases, layering (in streamwise or transverse direction) showed an increase
in the transition Reynolds number. From these observations, one can expect that a fully non-
homogeneous optimized coating would show even greater transition-delaying properties.

The framework developed during the thesis allows to compute and describe the structural
gradients that indicate how to modify the solid properties so as to lower the pertur-
bation amplification gains of a noise-induced fluid-solid instability, and then to carry out
an adjoint-based gradient optimization. This approach is applied to the boundary-layer flow, and
will hopefully open new perspectives in the already long story of transition-delaying materials.
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Organisation of the manuscript

The rest of the dissertation is divided in three parts, each consisting of two chapters. A first part
is devoted to the general methodology while the next parts are devoted to applications.

1. The first part is devoted to a general overview of the numerical methods developed for non-
linear and linear fluid-structure simulations.

e The Chapter 1 first introduces the general fluid-structure framework that will be used
throughout the subsequent chapters. The Arbitrary Lagrangian Eulerian formulation
is introduced, formulation that allows to manage the coupling between the solid and
the fluid in a consistent fashion. Then, a fully coupled formulation of the non-linear
fluid-structure problem is derived. In a second part, we present and validate the numer-
ical methods developed to compute non-linear steady solutions in the aforementioned
problem. A fully implicit approach using a Newton method to treat the non-linearities
is used, and implemented practically using finite-elements within the programming lan-
guage FREEFEM++. Apart from the numerical implementation, this introductory chap-
ter does not come with original, new results.

o The stability analysis of elastic structures strongly coupled to incompressible viscous
flows is investigated in the Chapter 2, based on a Lagrangian-based exact linearisation
of the governing equations introduced previously. The leading eigenvalues/eigenmodes
are computed for three configurations representative of classical fluid-structure interac-
tion instabilities, and further analysed. In a second step, the Lagrangian-based approach
is compared to the Eulerian-based approach on two representative benchmark cases.

2. The second part is dedicated to the physical analysis and shape optimization of a model prob-
lem exhibiting self-developing fluid-structure instabilities: an elastic splitter plate clamped
behind a rigid cylinder in a laminar flow.

e The linear and non-linear dynamics of the aforementioned system is analysed in Chap-
ter 3, by performing linear, modal stability analyses and unsteady non-linear simu-
lations. Varying the elasticity of the plate, different regimes of fluid-elastic coupled
dynamics are observed in the non-linear simulations. These results are first described,
and then analysed in the light of the linear stability analysis.

e We address in the Chapter 4 the problem of the passive control of these instabilities
using shape optimization. An adjoint-based method for obtaining an explicit formula
for the shape gradient of a cost-function based on the coupled fluid-structure eigenvalue
is first presented. These results are applied on two types of modes found in the cylinder
splitter-plate case previously studied. Deforming the cylinder’s surface according to
what is prescribed by the shape optimization algorithm, we show to what extent it is
possible to control the modes by this means.

3. The last part is dedicated to the physical analysis and structural optimization of a typical
noise-amplifier flow: a boundary-layer developing over a flexible coating.

e In the Chapter 5, we analyse the zero adverse pressure gradient, laminar boundary-
layer flow over a flat plate in which a viscoelastic, finite-length compliant coating is
embedded. Using a resolvent analysis, we investigate how the flexibility of the coating
helps in reducing the growth of low-frequency Tollmien-Schlichting waves, but also trig-
gers higher-frequency, solid-based instabilities. These latter waves are globally unstable
for purely elastic coatings and are stabilized by viscoelastic damping, but may still result
in large energy amplifications, which are analysed.

e An adjoint-based approach for structural optimization is presented and applied in the
shorter and last Chapter 6 so as to design a compliant material that damps the
Tollmien-Schlichting waves, and in the same time mitigates the development of travelling-
flutter waves.
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The final Conclusion summarizes the work and the obtained results, then presents perspectives
on further developments. Some technical results, formulas and sketches for proofs are reported in
the Appendices, as well as a short introduction to the eigenvalue and resolvent analyses.
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16 1. Nonlinear methods for fluid-structure problems

1.1 Equations for a viscous fluid interacting with an elastic
structure

In this section, we introduce the models for the fluid and the structure, which we shall use through-
out the rest of the manuscript. In continuum mechanics, flowing fluids and elastic solids are one
side very similar: whatever the media, they can be described by momentum, mass and energy
conservation equations (Chadwick, 1999), supplemented by continuity conditions at interfaces (in
absence of fracture, the media remains indeed continuous, and thus quantities such as velocity or
stress must be continuous). On the other hand, we are constantly experiencing the differences
between fluids and solids. On the point of view of the modelling, this difference lies in the con-
stitutive relations: while stress in solids depends on the gradients of the displacement between
adjacent material points, in fluids the shear stress is provoked by the gradients of wvelocity. This
discrepancy implies fundamental differences in terms of kinematics. Solid material points present
very often reasonably small relative displacements during their movement, that make it easy to
follow them independently with a so-called Lagrangian approach. Fluids however usually present
large displacements and swirling motions that make it easier to abandon the Lagrangian approach
in favour of a fixed-point observer, the so-called Eulerian description. Note that these are how-
ever completely arbitrary choices that must be inspired by the case under study: for instance, the
elastic-plastic behaviour of solids in forming processes is sometimes better described through an
Eulerian point of view (Dawson, 1978), while some gasdynamics problems are more easily treated
with a Lagrangian description of the fluid (Zel'Dovich & Raizer, 2012). When finally a system
involves a solid region and a fluid region, which is the case here, there is no evidence of which point
of view is the most appropriate.

In the next sections, after having briefly introduced non-dimensional numbers that are con-
venient for describing coupled fluid and solid systems, present the governing equations for elastic
solids and viscous fluids, and then the Arbitrary Lagrangian Eulerian (ALE) method adopted for
tackling the fluid-structure interaction problem will be presented more into details. A reader al-
ready familiar with these concepts, and not interested by the details of the derivation, might jump
directly to page 28 where all the governing equations are recalled.

1.1.1 Non-dimensional parameters describing a fluid-solid system

In this thesis, we investigate the motion of an elastic solid immersed in an incompressible Newtonian
fluid. Unless otherwise stated, the solid is supposed to be homogeneous with a uniform density' pZ
in absence of external forces, and its elastic properties are governed by the Poisson coefficient v and
the Young modulus E; under the assumption of isotropy. The Newtonian fluid is characterized by
its (constant) density pf and its kinematic viscosity vf = nf/p}, where nf is the dynamic viscosity.
We also consider a reference length L* and a reference velocity U*, that will be specified later
depending on the configuration studied. From these parameters, four non-dimensional numbers
can be defined. The flow features will be measured by the Reynolds number

LU
Re =

(1.1.1)

*

f

that evaluates the ratio between convective forces and viscous dissipation. A physically relevant
Reynolds number is obtained by taking U* and D* representative of characteristic scales for the
fluid flow. The fluid-solid interaction is evaluated first through the density ratio

M, =2 (1.1.2)

*

Pt

that measures the strength of the inertia coupling between the solid and the fluid. When Mg <« 1,
all goes as if a “heavy” solid was moving in a “light” fluid, in such a way that the fluid inertia

IWe adopt the following writing convention: the dimensional quantities are noted with an * superscript, while
the non-dimensional quantities are noted without.
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Figure 1.1 — Definitions of notations and spatial domains occupied by the fluid (white) and
the solid (orange) in the instantaneous configuration (left), the stress-free reference configu-
ration (middle) and the steady deformed configuration (right). Unlike in the instantaneous
configuration, the stress-free and steady deformed configurations are independent of time.

is almost negligible and cannot modify significantly the solid momentum. When Mg ~ 1, for
instance in the case of a structure immersed in water, for blood flow in arteries but also for light
structures in air like parachutes (Bazilevs et al., 2013), strong couplings are expected. Apart from
the mass ratio, the geometry of the interface in common between the fluid and the solid plays
also an important role in the coupling: the coupling is all the stronger as a large mass of fluid is
displaced by the movement of the solid. For that reason, depending on the applications, a mass
ratio that also integrates geometry constants might more representative of the coupling than the
density ratio by itself. Finally, the isotropic solid is characterized by two coefficients. Various
couples might be considered, for instance one can use the Poisson coefficient vs together with the
Cauchy number or its inverse the non-dimensional Young modulus, i.e.
E*
Es = p}‘US'*Q' (1.1.3)

The strain-stress relations might also be more conveniently written with the non-dimensional Lamé

coefficients
& s Vs & s

It+v)d—2v) ™7 20+u)
Depending on the applications, we will consider one or another set of parameters, possibly supple-
mented with geometric non-dimensional parameters.

A = (1.1.4)

1.1.2 Equations for an elastic solid with large deformations

At time ¢, the solid occupies the geometric domain Qs,t, represented on the left side in Fig. 1.1.
The motion of the elastic solid is classically defined in a Lagrangian framework: the position of
any material point &; is identified with respect to its position in a reference configuration. A
natural choice for this reference configuration is the spatial domain occupied by the structure
when no external stresses (gravity, fluid load,...) are applied on it, referred to as the stress-free
reference configuration O and represented in Fig. 1.1 in the middle. Therefore, unlike the actual
configuration Qs7t, the stress-free reference configuration has usually no experimental evidence and
serves only as a convenient mathematical object. In many cases however, for instance if external
loads are applied incrementally, the configuration at ¢ = 0 can be assimilated as a stress-free
configuration. The case of a reference configuration in which there are non-zero pre-stresses will be
considered in §2.1.2 (steady deformed configuration, represented in Fig.1.1 in the right side). The
solid displacement field é is defined as the difference between the positions in the instantaneous
configuration and in the stress-free reference configuration, i.e.

@, t)=& —& for &€, (1.1.5)

Quantities related with this configuration will be noted with a hat (%) symbol, whereas quantities
defined in the actual configuration will be noted with a tilde (7) symbol.
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For sake of simplicity, we limit ourselves to hyperelastic solid models, for which the strain-stress
relation derives from a strain energy density function (Ogden, 1997). The following tensors are
introduced:

P(€) =F()S(), (1.1.6)
6 - 15 { 2 B @ RO | i
B — L (FETFE 1) - L (V€' 0E+ 0E+ 9E"). (118)
F(é)=1+VE (1.1.9)

The first Piola-Kirchhoff stress tensor P relates the force acting in the current configuration
QS ¢ to the surface element in the reference configuration Q)s. This tensor writes as a function
of the second Piola-Kirchhoff stress tensor S, that is written here (without dimensions) for a
Saint-Venant Kirchoff (STVK) model. This is the simplest hyperelastic material, for which only
geometric non-linearities are considered. The Green-Lagrange strain tensor E is a measure of
strain, while the deformation gradient F characterizes the local deformation of the material. In
all these notations, V= 0/0% is the differentiation operator with respect to the coordinates in
the reference configuration and “T” is the transpose operator. In the stress-free configuration, the
solid dynamics is described by the momentum conservation equation that writes as follows (Ogden,
1997) without dimensions:

M7z —V - PE) =0 in Q. (1.1.10)

0%
3}
Remark. When the strains are small, i.e. || VE€|| < 1, the quadratic terms in the strain tensor can

be neglected and the equations written reduce to much simpler expressions. The Green-Lagrange
stress tensor reduces to

A A 1 /o2 & T
B =~ ; (V£+ Vé ) (1.1.11)
and the first Piola-Kirchhoff stress tensor reduces to the linearised elasticity stress tensor
o E v, A A 1/ ar o aT
d A1+ o ( )i 1.1.12
0@ = o { @ dr g (vE s 0T ) (1112

In that case, no distinction is made between the reference and deformed configurations.

Turning now on the mass conservation equation, a distinction has to be done between com-
pressible and incompressible solids. Unless otherwise stated, we make the assumption of a uniform
density pZ in absence of forces in the solid. When loads are applied, the density is modified in
compressible solids through the relation

ps(t) = J(€)p<(0)
where J = det F is the deformation gradient determinant, i.e. a measure of volume changes in the
solid. Incompressible materials keep the same density over time, which results into a constraint on

J , that can be written as R
J(&)=1. (1.1.13)

A typical nearly incompressible material is for instance rubber. Compressible materials will be
considered in the present chapter and in chapters 2, 3 and 4. An incompressible neo-Hookean
model will be adopted in chapters 5 and 6.

Remark. The Saint-Venant Kirchoff modelling is also consistent with thin plate models such as
the Foppl-von Kéarméan or Euler-Bernoulli (in the linear case) models, that are commonly adopted
for modelling thin elastic structures, such as airfoils (Hur et al., 2004), flags (Michelin et al., 2008),
elastic filaments (Lee et al., 2014), pillars (Leclercq & de Langre, 2018), etc., that are part of
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some usual aeroelastic models. These models can actually be derived from the Saint-Venant
Kirchhoff elasticity by using appropriate asymptotic developments, taking the plate thickness or
aspect ratio as a small parameter (Ciarlet, 1980; Audoly & Pomeau, 2010).

1.1.3 Navier-Stokes equations in ALE coordinates

In the context of fluid-structure interactions, a consistent modelling must ensure that both velocity
and stresses are continuous across the interface. A way for achieving this consists in using an
Arbitrary Lagrangian Eulerian (ALE) formulation for the Navier-Stokes equations.

Navier—Stokes equations in a moving domain

Unlike the structure, the motion of the incompressible, viscous fluid is naturally defined in an
Eulerian framework. The Eulerian velocity @(&:,t), defined as the velocity of the fluid at the
spatial position &; in the instantaneous fluid configuration Qﬂt (represented in Fig. 1.1 on the left
side), satisfies the Navier—Stokes momentum and mass conservation equations

%’t‘ +(Va)a—V - &(a,p) =0, V-a=0 in Q. (1.1.14)

Here p is the pressure field scaled with pfU *2 and @ the velocity field scaled by the reference
velocity U*. Unlike for the Lagrangian formulation of the structure, the Eulerian formulation
implies the presence of a non-linear advection term (6'&) @. The Cauchy stress tensor writes as a
function of the pressure and the velocity gradients,

1 ~ ~
&(@.p) = —pl+ o (Va+Va ), (1.1.15)
where the Reynolds number R, is defined in (1.1.1). The differentiation operator V = 9/0%; refers
here to the derivatives with respect to the spatial position &; (i.e. the position of the Eulerian
observer of the flow) in the moving fluid domain €.

As it is, we see that equation (1.1.14) is not straightforward to handle in moving domains: there
is no easy way for determining practically the modification of (@, p) resulting from a modification
of Qf’t. For pure fluid problems, &; can be kept fixed, since the domain does not move. When
the domain moves, if &; can be still kept fixed in regions that are never swept by the moving
boundaries, something has to be done when it is not the case — otherwise the observer will be like
“jostled” by the domain borders. Numerous techniques have therefore been proposed to handle
equations defined on moving domains. We will concentrate on the so-called Arbitrary Lagrangian
Eulerian (ALE) approach for reasons that will appear more clearly in the following. Let us first
briefly review other types of strategies.

In the immersed boundary method (IBM) proposed by Peskin (1977), the Eulerian coordinate
system is kept in the fluid, the Lagrangian system in the solid, and the movement of interfaces
is represented in Lagrangian coordinates by a Dirac delta function that can be seen as a source
term in the fluid equations. Consequently, a fixed computational grid is used for the fluid and
the support of the deformable solid is represented on another grid. This class of methods is re-
ferred to as non-conforming, because the solid and the fluid computational grids do not conform
(Fig.1.2a). A closely related approach is the fictitious domain (FD) approach (Glowinski et al.,
1994a, 2001), where the boundary condition for the fluid at the deformable interfaces is enforced
through Lagrange multipliers. The level-set method (Chang et al., 1996) also consists in combining
an Eulerian representation in the fluid and a Lagrangian description of the solid movement, cou-
pled through an interface-capturing method (level-set, see in Fig. 1.2¢). Another approach consists
in adopting a fully Eulerian representation (Richter & Wick, 2010): this strategy is also related to
the previous approaches, but in that case the solid dynamics is treated with Eulerian coordinates
like the fluid. One should also mention other types of approaches, for instance the space-time ap-
proach (Tezduyar et al., 1992), the isogeometric analysis (Bazilevs et al., 2008). Lattice-Boltzmann
methods have also been applied to fluid-structure interaction problems (Ladd, 1994).
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(a) Non conforming (b) Conforming (c) Level-set

Figure 1.2 — Domain deformation techniques. The orange disk is moved (combined translation/ro-
tation) inside a square domain whose edges are kept fixed.

Non-conforming approaches are found to be computationally efficient, but may lack of robust-
ness in the description of wall-based quantities. This has pushed for considering mesh-conforming
approaches, where a consistent description at the interfaces is provided. With the Arbitrary La-
grangian FEulerian formulation, whose early finite-element applications are presented for example
in the paper by Hughes et al. (1981), the advantages of the Lagrangian representation for solids
and of the Eulerian representation for fluids are combined in an elegant generalization (Donea
et al., 2004). The fluid domain nyt is deformed in order to conform with the solid domain Qs7t
at the fluid-structure boundary (see Fig.1.2b). This provides a great precision of the interface
description, at the price of having to use a supplementary ingredient to deform practically the
fluid domain, as we will see later.

ALFE formulation of the Navier—Stokes equations

Let us then focus on the ALE formulation of the Navier—Stokes equations. Given the interface solid
displacement £, an extension operator is introduced, that expresses the position of the actual
fluid domain ¢, with respect to a reference fluid domain ¢ (represented in Fig. 1.1 in the middle):

./Ztt : Qf X R+ — Qf,t X R+
@,t) — (&,1)

(1.1.16)

The coordinates in the actual configuration Qﬂt U Qsﬂf are then deduced from the coordinates in
the solid stress-free reference configuration {25 and the fluid reference configuration ¢ as follows,

& = {At@:t) 2t (1.1.17)
Z+E&,t) &€

From this definition, a so-called extension displacement field is defined in the reference fluid domain
Qf as

(&, t) =& —&=A(&,1)—& for & ey (1.1.18)
Unlike the solid displacement, the extension displacement is not governed by a physical equation.
Instead, an arbitrary extension operator is introduced so as to propagate the solid displacement at
the fluid-structure boundary into the fluid domain. In general the extension operator — that will be
written 26 — is assumed to follow an elliptic equation that propagates smoothly the deformations
— such as the Laplace equation or a linear elasticity equation (Stein et al., 2003). Enhanced models
that confer an increased regularity to the extension field, such as the biharmonic equation, are
also used (Helenbrook, 2003), but will not be considered here because they come with an increased
numerical cost. The extension displacement field is thus assumed to be governed by

—V-3.(€) = in €y,
(#,t) — €(#,t)=0 onl, (1.1.19)
(&) = on ¢\ T,
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where I is the fluid-solid interface recasted in the reference configuration. We do not precise yet
any special expression for 3. since this tensor is arbitrary, but for simplicity we however assume
that it defines a linear, first-order differential operator. A discussion on the regularity conditions
required for this mapping at the continuous and discrete levels is done in the paper by Formaggia
& Nobile (1999). Basically a one-to-one relation has to be preserved between the nodes in the ref-
erence configuration and the nodes in the actual configuration. A more detailed discussion about
practical choices for the extension operator is done in §1.2.4.

Let us then derive a first ALE formulation of the Navier—Stokes equations. Using the chain
rule, the time-derivative in (1.1.14) can be expanded as follows,

ou|  oa

where w is the Lagrangian velocity of the fluid domain expressed in the actual domain Qf’t, i.e.
DA,

= o A7 1. (1.1.21)

’(I]:

&

The composition by fl{ ! maps the fluid domain velocity, naturally expressed in the reference
configuration, to its expression in the actual configuration. Replacing (1.1.20) in (1.1.14) yields to
the ALE formulation of the Navier—Stokes equations

ot

s +(Va)(a—w) -V -&(a,p) =0, V-@a=0 in Q. (1.1.22)

In the momentum equation, a convective-type term related to the domain movement has appeared.
In a fixed Eulerian setting, we have @ = 0 and the domain is fixed. In a Lagragian descrition,
@ = @ and the domain is moving with the velocity @. For that reason, the ALE description lies
somewhere “arbitrarily” in between: at the interface the description is purely Lagrangian, far away
it is Eulerian, while in between both the Eulerian and Lagrangian representation are used, with
a smooth transition between them. For the derivation of the conservative form of this equation,
we refer to the Ph.D. manuscript of Nobile (2001), section 1.1. In this formulation the domain
movement is still partly embedded in the support domain Qf,t of the equation.

Let us now derive a second ALE formulation that depends only on quantities evaluated in the
reference fluid domain €2;. We introduce for that purpose the fluid velocity @ in the reference
configuration through the identity

(&, t) = a(&,1) or @ =aoA, (1.1.23)

and the same for the pressure. The fluid velocity at the reference position & is equal to the Eulerian
fluid velocity at the instantaneous position & = A(&,t). Following Le Tallec & Mouro (2001),
changing the variables in (1.1.22) using the variable change (1.1.17), we obtain the non-conservative
ALE formulation of the incompressible Navier—Stokes equations

J(E,) 88—1;‘ + (ﬁa d( Ae)) (6 — ) —V-3B(a,p,€)=0 in O (1.1.24)
' (Cb(éc)a) =0. in O (1.1.25)

Details on the formulas used to express the gradient and divergence operators in the stress-free
reference configuration are given in Appendix C.1. We refer the reader to the paper by Fernandez
& Le Tallec (2003a) for the expression of the conservative form of the equation. In the reference
configuration, the fluid domain velocity is simply given by

_0€,
Y

oA,
at |

By

11}:

(1.1.26)

&
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A more visual point of view of this variable change is represented in Fig.1.3. On the left, a
snapshot of the flow about an elastic plate (Turek & Hron, 2006) is represented, and shows the
plate bent under the action of the flow. The bending is dynamical and this geometry would actually
evolve with time. The flow recasted in the stress-free reference configuration is represented on the
right. The change of variable corresponds visually to the orange arrows, that map the reference
and actual configurations in a dynamical way. In this configuration, as time goes on, the geometry
stays fixed but the arrows are constantly changing so as to represent the movement of the domains.
In equations (1.1.24) and (1.1.25), the variable change (1.1.23) has introduced new geometric
operators, a deformation operator ® and J the Jacobian of the deformation gradient which are
respectively defined as

A

(&) =JEIFE),  J(E) = det(F(E.) (1.1.27)

with ﬁ(fe) =1+ @ée The determinant J is a scalar field measuring the local volume deforma-
tion between the actual and reference configuration, and should remain positive to ensure that
(1.1.16) is one-to-one. The deformation operator @(ée) expresses how an infinitesimal surface in
the instantaneous configuration is transformed in the reference configuration — for instance the
normal vectors are transformed following the Nanson’s formula 72, = ®(t)T# (see Aris (1989) and
the Appendix C.1). Note that in the two-dimensional case, & is an affine operator in a Cartesian
frame, while there is a quadratic non-linearity in the 3d case. We refer again the reader to the
Appendix C.1 for more technical details, in particular the developed expressions. When the fluid
domain does not move, these deformation operators are F= I, J=1and & =I. The fluid stress
tensor 3 in the reference configuration writes as

S(a,p. &) = 6(a,p,€.) #(€)" (1.1.28)

where & is the Cauchy stress tensor expressed back in the reference configuration. It therefore
depends on the geometric operators and writes as 6 (4, p,&,) = —pI + 2/R.D(4,&,), where D is
the viscous dissipation tensor that writes as

D(a,£,) = ;J(lg) (V@) &) + 26 va)"). (1.1.20)

Clearly, the deformation of the fluid domain induces extra non-linearities in the governing equa-
tions. If the non-linearity arising from the velocity advection is still quadratic, a rational non-
linearity arises in the geometric terms due to the factor 1/ J in the stress tensor. Of course, in the
rigid case, is expression reduces to the classical expression used in hydrodynamics, and the ALE for-
mulation (1.1.24)—(1.1.25) then reduces to the Eulerian formulation (1.1.14) of the incompressible
Navier—Stokes equations.

Remark — continuity equation. Using the Piola identity (C.1.2) and a few tensor indices manipu-
lations, the continuity equation (1.1.25) can be written ¥ - (®(£,) @) = ®(£,)T : Va = 0. This
second writing comes with a lower differentiation order for the displacement unknown. For that
reason, it will be used in the variational forms given in §1.1.5.

1.1.4 Interface & boundary conditions

The fluid and solid dynamics are coupled at the fluid-structure interface, where the stresses and
velocities on both sides have to match. In the reference configuration, the velocity continuity
condition writes as

(&, t) — 8t( 1) =0 for &el. (1.1.30)
We see here how using the ALE formulation defines without any ambiguity the position of the

common interface in a unified coordinate system, and thus makes it straightforward to write the
interface conditions. Note that in the solid the (Lagrangian) velocity is everywhere defined as
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(a) Time-dependant configuration € (b) Stress-free reference configuration €2

Figure 1.3 — Actual and reference configurations. Snapshot extracted from a non-linear simulation,
showing (a) the fluid and the structure domains in their actual configuration, i.e. the one visible
in a laboratory experiment (the interface is materialized with the solid orange line, while the
streamwise velocity is depicted in blue color), and (b) the same physical state recasted in a reference
configuration where the solid is fixed, the fluid domain motion £, . and the solid displacement £ being
represented by the orange arrows.

Us = Gé /0t, and also matches the fluid geometrical domain velocity @ = 8éc /Ot on the interface.
The continuity of the normal stresses writes as

A~

S(a,p,€)n=FE&SEn on T. (1.1.31)

The interface continuity conditions are supplemented by conditions on the other boundaries
that enclose the fluid-structure domain. Unless otherwise stated, we assume for simplicity that the
solid boundary is divided between I' and a fixed boundary T'D where a zero displacement Dirichlet
boundary condition is applied (1 e. the solid is clamped on FD). The fluid domain is bounded
by the fluid-structure interface F a fixed boundary Ff , where Dirichlet boundary conditions are
given for the fluid on the form @ = us (where uy is an inflow velocity or the no-slip boundary
condition us = 0), and a fixed boundary I'} where a stress-free condition $(@,p,0)h = 0 is
applied. A discussion on the impact of different outflow conditions for shear flow is available in
the paper by Heywood et al. (1996). Finally, the extension displacement is set to zero in 9 \ ',

Remark. There is actually no need for defining the extension field in a region that coincides with
the fluid region: for practical applications a sub-region Q. c O containing I is defined, and we
rather impose ée = 0 on 0, \ I’ and set the extension displacement to zero elsewhere, which
allows to get rid of the extension problem far away from the solid and spares computational
resources. For simplicity, the equations will be however written in the case where Qo = Q.

1.1.5 Monolithic weak formulation

Instead of considering the local equations, it will be useful to consider the associated weak formu-
lations — also referred to as the virtual work principle in the solid mechanics terminology. This
point of view has several advantages. First, it is closely related to the numerical treatment of the
equations and their associated boundary conditions by the finite element method, that we will use
for solving numerically the equations. It also allows a reasoning in terms of well-defined abstract
operators, which considerably simplifies the writing of the equations and also includes the interface
conditions (stress, displacement, velocity) in a natural way.

Functional setting

We follow here a standard approach for the representation of the ALE variables (Wick, 2013a;
Deparis et al., 2016), by introducing the spaces

:{fe’}-[( )f:OonF?}, and Z]sz{feﬂl(fzs),fzoonF?},
1 :{fe?—[l(ﬂf),fzoon@flf\f‘},
P = L2(Qy),
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defined respectively for the fluid velocity, the solid displacement, the extension displacement and
the fluid pressure fields whatever ¢ in some interval [0, T]. £2(£2) is the space of Lebesgue square-
integrable functions over some space €2, while #!(£2) is the space of functions in £2(£2) for which
the derivatives are also in £2(), see Ciarlet (2013). The Dirichlet boundary conditions other than
those at the interface are embedded in these spaces. Practically, these conditions will be imposed
by penalization at the algebraic level.

The specificity of the fluid-structure setting (and more generally for any multiphysics problem)
lies in the presence of several problems linked by coupling conditions. Several approaches are
available for adding these conditions whithin a consistent functional setting. A common one
consists in adding supplementary variables to the problem, seen as Lagrange multipliers introduced
so as to enforce the interface constraints. Fach new variable is known a priori and represents the
variable dual to the imposed constraint (Babuska, 1973; Barbosa & Hughes, 1991). In the context
of the Navier—Stokes equations for instance, Bazilevs & Hughes (2005) used a Lagrange multiplier
method to enforce the well-known no-slip Dirichlet boundary condition, through the addition of a
supplementary variable representing the interface stress. This was found to result in an improved
overall quality of the solution. In particular, the interface loads are obtained directly from the
Lagrange multipliers variables, which avoids having to differentiate the velocity to get the stresses.
This approach has also been successfully applied for imposing boundary conditions at moving
interfaces in fixed computational grids, for instance in the fictitious domain method evoked before
(Glowinski et al., 1994b; Court et al., 2010). The same kind of strategy will be used here to enforce
velocity and displacement continuity conditions. In the context of fluid-structure interaction in the
ALE setting, the representation of the problem by an unique set of equations allows however for a
completely implicit treatment of the stress interface condition in the coupled weak formulation, as
proposed by Le Tallec & Mouro (2001). More precisely, a boundary Lagrange multiplier Xe Z/Alf

with U = H~/?(T") is introduced, such that
A=F()SE n =S(a.p)n, (1.1.32)

The variable A represents the stress on the fluid and the solid side (since from (1.1.31) the two have
to match). This allows for the stress continuity condition to be automatically satisfied in a weak
sense, provided that the test-functions for the fluid and the solid momentum equations coincide at
the interface. We use this Lagrange multiplier to enforce the velocity interface condition. By the
same way, a Lagrange multiplier is introduced so as to satisfy the displacement interface condition
of the extension problem (1.1.19),

Xe = 3.(€)n. (1.1.33)

This new variable represents the extension pseudostress, i.e. the artificial load that is applied at
the interface as a result of the presence of the extension operator. Since it does not have any
physical meaning, this quantity is not equilibrated by any solid stress. This Lagrange multiplier
Xe € ﬁf will be used to enforce the displacement continuity condition.

In the next sections, we begin by writing the coupled weak formulation. Then, we present a
block formulation decomposed in three fields (fluid, solid and extension). The notations with ’s
symbols used for instance by Wick (2013a) are adopted for noting the test-functions, while we
take the notations introduced by Ferndndez & Moubachir (2005) for the expression of the different
abstract operators.

Single-field coupled weak formulation

After integration by parts of solid momentum equation (1.1.10) multiplied by 1,5:‘ € U, the sup-
plementary interface variable A defined in (1.1.32) appears in the only remaining interface integral
on I', namely

)2
MS/ %-'zﬁ;‘dQJr/ P(g):eq/;gdn—/xu;gdr:o Vbt € U,
o, Of? o, P
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where we recall that P = F'S. In order to obtain a solid problem that is first-order in time, a
supplementary solid velocity variable g is further introduced, such as

= =0 (1.1.34)

Remark. Although convenient for our purpose of deriving linear stability problems on the form
of generalized, linear eigenvalue problems, this augmented solid formulation is not mandatory. In
the context of strongly coupled non-linear simulations, while the augmented approach has been
adopted for instance by Richter & Wick (2010), other authors like for instance Deparis et al.
(2016) kept a formulation with the solid displacement variable alone.

Now introducing the test-functions 1/3“ e Us, integrating by parts the fluid momentum equation
(1.1.24) multiplied by %*, then using (1.1.28) to express the fluid stress tensor, we arrive after
integration by parts to

_/ ﬁ@(e)T:wudfz+/s.¢udf:o v € U,
Q T

Like for the solid equation, using (1.1.31) and (1.1.32), the term X appears in the remaining inter-
face integral (with an opposite sign because the normals are reversed). Similarly, weak formulations
for the continuity equation are obtained by integrating (1.1.25) multiplied by 12}” € P over Q. A
weak formulation of the extension problem is obtained by multiplying (1.1.19) by 1,[;,5 € L?e, which
make the supplementary variable 1132‘ € LA{I;, defined in (1.1.33), appear in the remaining interface
integral. The velocity and displacement boundary conditions still remain, which are treated in a
weak form: the interface velocity and displacement equations (1.1.30) and (1.1.5) are multiplied
by 1?‘ € Z/Alf and 1@,‘ € Z/A{f respectively, then integrated over I. Putting all together, we obtain

A o€ . oty -+ R
(. Fu@aa) = | {éwuma’; ~¢:}dﬂ
a0 o s s 06|y o
= _ ii e\ v 1.1.35
+/Qf{J< )0 (Ga)bE,) at} 4 a0 (11.3)
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defining the operator Frsi acting on time-derivatives, and where § = [é, '&S,EAC,S\C,'&, P, 5\] is the
fully coupled fluid-structure state variable. The second-member A%; is defined by

(. Aa@) = [ {a.- - p@)s e fa

_|_

BE)T: (pVhr 47 9a) fa (1.1.36)
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Then, by construction, noting § = [f, ﬁs,fe,;\e,ﬁ, P, /A\] the coupled state variable and ’(2; =
[, p, pE P ™, )P, p*] the coupled test-function, solving the fluid-structure problem amounts
to finding § € Us x Us x Ue x Up X (Ur + too) X P X Uy, such that

~ & 04 N « ~ ~ ~ ~ ~ N A
<¢, %si(é)a—? - Jsti((j)> =0 V¢ EUs x Us X U x Up. x U X P X Up.. (1.1.37)

Remark. The notations (-,-) appearing in (1.1.35), (1.1.36) and (1.1.37) is a shorthand notation
for the scalar products defined over the different functional spaces involved. For conciseness of
the notation, in the following we keep the same writing for all the scalar products involved.

Three-fields decomposition

Eventually, the single-field problem (1.1.37) can be turned into a three-field problem, following an
idea applied by Lesoinne & Farhat (1993) to an ALE formulation of the Euler equations. In this
decomposition, the problem is written for a solid variable g, a fluid variable §; and an extension
variable §,, in such a way that

(Eu ﬁs) S Z:{s X Z/A{sy

(€o, Ae) € Ue x Uy,

g; = (ﬁ,ﬁ,ﬁ) € Z/Aff-i-uoo x P Xaf,

4s =
4. =

which clarifies the respective roles and the couplings between the solid, extension and fluid prob-
lems. Deriving such formulation practically simply amounts to split (1.1.35) and (1.1.36) into as
many pieces as needed. All things done, this gives the following non-linear problem, written in an
operator notation:

s 0 0\ 5 (4 S (4.) + 1L 4

0 0 0 a qe = 7’2{6 qc + Ies qs

O _%e(q\fa Qe) ‘%(Qe) Qf IfS qs + '/Vf(qfv qe)
Frei(4) N1 (4)

In the above notation, we have used (1.1.34) to write the interface velocity condition as s = 4,
the velocity coupling then appears only in the right-hand side. This block-equation involves several
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operators acting on the different variables. The structure of the ALE fluid-solid problem is now
more clear: the solid problem (first line, augmented stiffness operator 7 ) is forced by the fluid
problem by means of a load transfer operator ffz . The extension problem (second line) is a pure
static problem that takes the solid interface displacement as an input, by means of the interface
operator fes, and propagates it onto the whole domain through the extension operator JZZ, Finally,
the geometric transformation of the fluid equations results in a problem where each variable is
coupled with the extension problem, except for the velocity coupling with the solid that occurs
through Zg. The detail of the different operators involved is given in Appendix B.

Remark —a note on “truly monolithic” formulations. Since both velocity and displacement are
required to be continuous across the interface, it is tempting to define single displacement and
velocity fields over the whole domain Qr U Q, resulting in what could be called “truly monolithic”
formulations (Turek & Hron, 2006; Dunne et al., 2010; Richter & Wick, 2015). For instance,
considering one single velocity field @ € {f € H'(Q), f = 0 on 90\ I'N} + uoo such that

ou [V (FESE®) in 0,

7 (95058 - (v00@) (o ) w00

and one single displacement field € € {f € H'(Q), f = 0 on 90} such that

875_ u in QS
ot 1aV -2 in O

and taking accordingly global (i.e. defined over the whole fluid-solid domains) test-functions 1,5”
and 1/35 for building the weak formulation, the stress continuity equation is again automatically
satisfied and there is furthermore no need anymore for introducing interface Lagrange multipliers.
Namely, we have then

06 1y oo £ 00 s o
/QSMsat-i,b dQ—i—/QfJ(Qat-dJ dQ =
[ @8 vir - [ (Swnd: v (vadd) (o) G )an
. ' a \ PR ot

that defines a fluid-solid momentum equation, a displacement equation

o8 P dO = a-vﬁfdﬂ—a/

= $.(€) : VD + a / $.@)n - Pt dr,
a Ot O o "

r

while the continuity equation remains unchanged. This other three-fields formulation — velocity,
displacement, pressure — was not considered for two main reasons. First, in the displacement
equation, there is an additional interface term (the last one) coming from the fact that on the
contrary to what happens between the fluid and the solid, the extension “stress” is not balanced
at the fluid-structure interface. It is then observed that this makes the problem being dependent
from this feedback extension pseudo-stress. Wick (2013a) compensates this drawback by adding
the tuning parameter « in front of the load coupling term and setting it to a sufficiently small
value so as to make the spurious stress feedback negligible. If this approach is found to be
relevant for the purpose of an implicit non-linear solver, we did not want to introduce a tuning
parameter in our linearised problems. Secondly, the structure of this “truly monolithic” problem
is also different from the above three-fields formulation, as it is rather decomposed in terms of
velocity, displacement and pressure fields than in terms of solid, fluid and extension problems.
Numerically, this structure is often handled with multigrid methods (Richter & Wick, 2015),
while our chosen approach allows for using more easy-to-implement methods, as will be detailed
in section 1.2.
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1.1.6 Summary

Regrouping together the equations detailed in §1.1.2, §1.1.3 and §1.1.4 we arrive to a self-consistent
formulation of the local non-linear fluid-structure problem written in reference configuration:

Problem 1.1.1

Non-linear ALE fluid-structure equations in the stress-free ref-

erence configuration. The ALE formulation of the fluid-structure equations written in the
stress-free reference configuration in the fluid domain Qf and solid domain Qs, coupled through

the interface conditions on I, write as follows:

M

5 ot2

u—%:o and ée—é:O on f‘,
0

-V (F@8@H) =0 i 0,
V- -Z.(£)=0 in Q

) - 6 : (’aﬂﬁv ée) =0 in Qf7

$
(®€)a)=0 in G

=

on

These equation govern the evolution of the fluid velocity and pressure fields 4 and p, the solid
displacement ﬁeldé and the extension displacement field ée. The solid stress tensor S(é) is defined
in (1.1.7). The fluid stress tensor 3(a,p,€,) is defined in (1.1.28). Finally, the deformation
operator @(ée) for the fluid domain and the determinant j(ée) of the deformation gradient
tensor are defined in (1.1.27). The first equation is the solid momentum equation, the second
equation defines the extension problem, the third and fourth equations are the Navier—Stokes
equations in the reference configuration, and the last equations define the interface conditions
(velocity, displacement and stress continuity). The associated weak formulation is written for
g, = (é,ﬁs), g, = (ée,j\a) and gy = (4, p, 5\), in operators notations and writing the interface

velocity condition 4 = 1, as

7, 0 0

0 0

0 _‘gfe(qf? qe) ‘Zr(q\e)
Fri(@)

5 (4 7@,)+1} 4
5 qe = A_ﬂe qu "i:Ies ﬁs
ay Zfs qs + ‘/%c(q\f’ qe)
Hpi(@)

where the definition of the different operators involved is detailed in Appendixz B. The supple-
mentary variables A (interface stress) and A, (interface pseudostress) are introduced in (1.1.32)
and (1.1.33) respectively, while G5 = 0:€ is the solid velocity.

This general problem has to be completed with boundary conditions. The “default” boundary
conditions that we will use here are detailed in §1.1.4.

The problem (1.1.1) defines a very general fluid-structure interaction problem. Depending
on the physical situation considered, stationary, time-dependant, laminar or turbulent, small-
displacement or large-displacement solutions might be found by solving it. It would therefore be
an understatement to say that this is a problem numerically difficult to solve. The Navier—Stokes
equations alone represent a computational challenge (Slotnick et al., 2014), and the coupling with
the structure adds even more complexity. Details on the numerical algorithms used here for solving

(1.1.1) are given in the next section.
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1.2 TImplicit scheme for solving the non-linear ALE equa-
tions

In this section, we introduce the numerical scheme used for determining non-linear fluid-structure
states — both stationary and time-dependent — solution of (1.1.1). Namely, a fully implicit scheme
solved by a Newton method is adopted.

1.2.1 Coupling schemes for ALE problems

The more straightforward approach for solving fluid-structure problems consists in adopting a
partitionned approach (Hou et al., 2012) — also often referred to as weakly coupled or staggered
approach. In this class of methods, at each time step the fluid, extension and solid equations are
solved separately, then the output loads/displacements/velocities obtained by one single-physics
solver are transmitted as input boundary-conditions to the other one (represented schematically
in Fig. 1.4a). The velocity, displacement and stress interface conditions are never satisfied exactly
in each time step. Typically, the fluid-solid variables at time-step n + 1 are determined through
the following sequence of operations (Ferndndez, 2011):

AN
r =& |p, com-

1. Solve an extension problem w1th a prescribed interface displacement ée
pute the mesh deformation f

2 n+l
2. Solve a fluid mechanics problem on the deformed grid (according to fen ) with a prescribed
interface velocity @"*'|; = @," |1, compute the resulting fluid interface load (£7)"*1.

3. Solve a solid mechanics problem with a prescribed interface load (F'S A) = (2n)

compute the resulting solid displacement and velocity.

4. Go to the next step.

This approach would for instance amount to solve sequentially the extension problem (1.1.19), the
Navier-Stokes equations (1.1.22) and the elasticity equation (1.1.10) with transmission boundary
conditions on I'. Partitioned approaches benefit from a great modularity, because they allow for
re-using existing, optimized fluid and structural solvers. Furthermore, the cost of the coupled
computation is only the cost of solving three single-physics problems and transfer informations
at the interface. These solvers have therefore been widely used, in particular in the context of
aeroelasticity (Lesoinne & Farhat, 1998; Piperno & Farhat, 2001; Farhat et al., 2006).

The appropriate treatment of the non-linear coupling and the transmission of the informations
between the different solvers is however not an easy task (Badia et al., 2008; Breuer et al., 2012).
Furthermore, as the density ratio approaches unity and/or for specific geometries (typically blood
flow or wing/sails simulations), numerical instabilities, known as “added-mass instabilities”, de-
velop in partitioned solvers (Causin et al., 2005). Strongly coupled partitioned solvers improving
the overall convergence have therefore been established so as to overcome these stability issues
(Matthies & Steindorf, 2002; Badia et al., 2008; Kassiotis et al., 2011; Breuer et al., 2012). The
basic idea is to add sub-iterations within the partitioned loop until the interface conditions are
satisfied up to the prescribed tolerance and thus realize a “strong” coupling. Unfortunately, many
sub-iterations are often required within each time-step (Heil et al., 2008). Note that semi-implicit
schemes have also been proposed, in which the added mass effect is treated implicitly while the
other contributions are treated explicitly (Fernandez et al., 2007; Fernandez, 2011). These solvers
however come with strong restrictions regarding the size of the time steps.

Starting in the early 2000’s, monolithic (or fully coupled) solvers for ALE fluid-structure inter-
action problems have been developed to overcome these difficulties. In this approach, the fluid, the
solid and the interface conditions are treated as one single mathematical framework (Fig.1.4b),
and the entire system is solved by a unified implicit algorithm (Hou et al., 2012), in which case
the strong coupling is naturally enforced. Fully implicit couplings (Hiibner et al., 2004; Heil, 2004;
Hron & Turek, 2006), provide indeed the most interesting convergence and robustness properties
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Figure (1.4) Two popu- FLuID Fruip

lar fluid-structure coupling
schemes. (a) Partitioned interface transfer
(staggered) and (b) mono-
lithic formulation.

SOLID SOLID
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— in particular, the added mass instability is completely avoided, and large time steps do not
necessarily compromise stability. However, fully implicit algorithms also come with an increased
computational effort, because an highly non-linear, large-dimension multiphysics problem has to
be solved at each time-step. Provided that good solvers are designed, monolithic approaches how-
ever seem to be promising: Heil et al. (2008) compared segregated to monolithic approaches on
several test-cases. When the density ratio is low, it is found that the monolithic approach clearly
outperforms segregated algorithms, whereas at higher ratios the performances were found to be
equivalent. The recent developments in the field are primarily focused on the design of efficient
algorithms (Gee et al., 2011; Richter, 2015; Deparis et al., 2016) for solving each linear iteration
inside the non-linear loop.

In the following, we adopt therefore the fully implicit, monolithic approach, where the problem
that has to be solved writes on the form of the augmented first-order problem (1.1.1). In the
next paragraphs, we detail first how it is discretized in time and space. The non-linear Newton
loop used to handle the non-linearities is presented in §1.2.3. Details specific to the ALE mesh
deformation are presented in §1.2.4. Finally, details on the numerical treatment of the resulting
large-scale algebraic linear systems are given in section 1.3. With respect to this latter concern,
note that the same issues arise with the linear problems presented in the chapter 2.

1.2.2 Time discretization

The temporal discretization is achieved by using an implicit one-step #-method, allowing to choose
between an implicit Euler method and a (eventually shifted) Crank-Nicholson scheme. This time
discretization method is appealing because it is adapted both for computing stationary and time-
dependant solutions, depending on the choice of §. Considering a generic equation, the one-step
#-method amounts to solving for the time-step n + 1

n+1 n
E T ofpa]" 0[] =0
A stationary solver can be obtained very easily from this time discretization, by simply choosing
the Euler scheme (§ = 1) and setting At — +o0o — typically, At = 10'2. The Euler method
is unconditionally stable but is only of order one in time, whereas the Crank-Nicholson scheme
(6 = 1/2) offers a second-order time accuracy at the price of only conditional stability. In particular,
Richter & Wick (2015); Wick (2013b) showed that the Crank-Nicholson scheme may come with
numerical instabilities in the context of fluid-structure computations. Using a shifted (6 = 1/2+At)
Crank-Nicholson scheme then offers a overall gain in terms of stability, at the price of loosing the
second-order accuracy. We apply the 8-method for the time discretization of the stress terms in the
solid augmented equations — first line in the three-fields formulation (1.1.1) — that gives (keeping
the load transfer term fully implicit)

n+1 qn+1 N
+f(q)] =0 =

~ ntl X~
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The static extension equation is kept fully implicit. From the second equation we obtain:

Y an+l | A4 antl
- qu +Iesq;l =0.
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Finally, in the fluid equations, the pressure and interface terms are kept fully implicit, while the
f-method is used for the stress and advection terms, as well as for the time-derivative term 7.
From the momentum, continuity and interface velocity equations, we have then

A n+l AN

an+1 AT
(67€" ™ ra-07E€") L 07@ e @ e e e

At At At
soantl i1y am s oantligp 20 ~ am+1 ., A el
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o™t — . a Tt = o.

The combination of these three sub-problems yields to a non-linear problem that has to be solved
at each time step,

fs((jgﬂ, Q?H) = bg (@) + penalization b.c’s on 9 \ I,
(g, ¢ =0 + penalization b.c’s Q¢ \ T,
(@it ¢t grtt) = br(g”, F) + penalization b.c’s 9 \ T.

1.2.3 (Quasi)-Newton iterations & space discretization

A standard and simple strategy for solving the above non-linear problem f(cj"“) =bis to use a
fixed-point algorithm, but unfortunately this approach is often expensive, even though acceleration
techniques might improve its efficiency (Deparis et al., 2003). These limitations have pushed for
using Newton-like methods for solving each time-step. In the best-case scenario (exact Jacobian
evaluated at each iteration), this method achieves indeed a quadratic convergence — if any — to
the solution. The basic Newton method consists in computing a sequence ﬁ”+1’1, e Q"H’k, ... such
that "1 = g" "1 + 5§ where 84 is solution of the linear problem

or
9q

} 6@ — B _ ,’»,;(qn-‘rl,k).

qn+1,k

Provided that the initial guess (j”“’o is not too far away from the final solution, this sequence
converges and is stopped when a relevant norm of the residuals ||b — #(¢" )| is small enough.

Since the Jacobian matrix is expensive to compute numerically, it is interesting to use instead a
quasi-Newton method, where the same Jacobian matrix is used in several iterations. In all cases,
the cornerstone of the Newton method is the computation of the Jacobian operator 97/94.

A common approach consists in using finite-differences to evaluate the Jacobian operator (Heil,
2004; Matthies & Steindorf, 2002). However, the finite difference step can hardly be chosen a priori,
which might lead to non-consistent Jacobians and degrade the overall performances. Another
strategy consists in computing analytically the linearised operator, and possibly neglect some of
the cross-Jacobian terms (Ghattas & Li, 1995; Gerbeau et al., 2003), for instance the so-called
shape derivatives that evaluate the sensitivity of the fluid equations with respect to the fluid
domain deformation. These terms are indeed not straightforward to compute analytically. This
method reduces the cost of building the Jacobian matrix of the problem, but using an approximate
Jacobian results in lower convergence rates (Heil, 2004). For that reason, despite of their increased
complexity, Newton methods with an exact Jacobian are attractive (Fernandez & Moubachir, 2005;
Dettmer & Perié¢, 2008).
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The tangent problem for the Newton iteration k of the time-step n + 1 writes as

Ofg Ofs “

0 5A ATL # an+1,k an+1,k
04, 04, 4ds bs(4y) — Ps(d; »dy )
Ofg OFfg R Fu(antlkE gLk
aqs aéc O 6qe = (q:l 7q: ) (12]‘)
8’?‘1«“ 8?1«“ 81’1? A~

6A AL ATV A an+1,k an+1l,k an+1,k

4, a4, 04y % br (4., dr) — Fr(d; 1 de »dy )

where it is understood that the block-Jacobian operator in the left-hand side is evaluated about
the variables g"TF gntik, Q?H ** in an exact fashion. More details on the linearisation will be

given in the chapter 2, and can also be found in the book by Richter (2017).

The velocity and displacement fields are projected onto the space of P; finite elements, while
the pressure is projected onto the space of P; finite elements so as to satisfy at the discrete level
the Ladyzenskaya-Babuska-Brezzi condition arising from the Stokes problem (Girault & Raviart,
1985). P; elements are used to represent the Lagrange multipliers.

Note that the extension problem is set in a sub-domain Q. C Qf, because the solid movement
generally occurs in a limited region. There is therefore no need for solving the extension problem
in regions that are unlikely to be affected by its movement. Outside from the extension region, the
fluid equations reduce in particular to the Navier-Stokes equations.

The Jacobian matrix and the residual vector are assembled in parallel using mpi. The global,
conforming fluid-structure mesh is first split by the mesh partitioner ScoTcH (Pellegrini, 2008)
called within the FREEFEM environment. Then, the matrix and the residual vector are assembled
locally on each processor. After the assembly part, the size of the different matrices is reduced so
that the solid, extension and fluid matrices have the size deduced from the discretization of the
sub-domains Q, Q. and Oy. Finally, the algebraic problem that has to be solved at each step of
the non-linear loop writes

Ass 0 Asf T bs
A, A, O T | = |be (1.2.2)
A, A Ag| | bt

where only the matrices emphasized with the red color (solid stiffness matrix, shape derives matrix
and fluid matrix) have to be reassembled at each time step (the other matrices are constant).
Practically, the Jacobian matrix is assembled at the first iteration (full Newton iteration), and is
then re-used for the subsequent iterations if the residuals decrease (quasi-Newton iteration). A
reassembly is performed only if the residuals are found to stagnate or increase.

1.2.4 Extension problem for non-linear computations

The practical choice of the extension problem is driven by the requirement for the ALE mapping
to be one-to-one, i.e. that J (£) > 0. Practically, this corresponds to the requirement that the ALE
deformation field applied on the reference mesh should not generate reversed triangles. Following
Stein et al. (2003), the extension problem (1.1.19) is defined here as a weighted Laplace problem,
where the space-dependent weighting coefficient £.(&) defines a local fluid mesh “stiffness”:

Be(é,) = E(#)VE,. (1.2.3)

Several choices are possible for £.. Noting h a measure of the local mesh s (for instance the largest
edge length of the current triangle in the mesh, the radius of the in or excircle), and p > 0 a
tuning parameter, a straightforward approach consists in using & (&) = 1/h(&)P. Since h usually
gets smaller when one gets closer to the fluid-solid boundary I, this has for effect to stiffen the
transformation of the elements close to the fluid-solid boundary. This effect is represented in the
Fig. 1.5, for integer values of p variing between 0 (pure Laplace equation) to 2. A solid-body
displacement composed of a translation along the vertical axis plus a rotation around the center of
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(a)p=0 b p=1 (c)p=2

Figure 1.5 — Extension field. Influence of the pseudo-stiffening parameter p on the extension dis-
placement field features. An top, plot of the Jacobian of the transformation in the reference domain.
At the bottom, plot of the deformed configuration for a solid-body combined translation/rotation
of the cylinder while keeping fixed the position of the edeges of the square.

the cylinder is imposed at the surface of the cylinder. The exterior boundaries are kept fixed. The
reference configuration is represented on top, while the deformed configuration is at the bottom.
The Jacobian of the transformation is represented on top with an orange colormap, where light
orange means large J (i.e. cells with an increasing area) while the darker regions correspond to
values closer to zero. For the case p = 0, we have min.J = 0.00811 in the vicinity of the lower
cylinder interface. The corresponding deformed configuration, visible in Fig.1.5a at the bottom
present very stretched triangles: the maximal skewness reaches 0.98. For the case p = 1 represented
in Fig. 1.5b, the cells are artificially made stiffer regarding to the transformation: as a result, the
minimal Jacobian value is increased up to 0.31 and the skewness in the actual domain reduced
to 0.81. The deformation is actually reported to larger cells farther away from the interface, that
can deform more before getting too stretched. However, a too large value of p can also become
detrimental, as visible in Fig. 1.5c. In that case, the cells close to the fixed boundaries get elongated
and the minimum of the Jacobian falls down to 0.03. The skewness is however still better and
decreases down to 0.7, as it can be seen on the bottom of the figure. Obviously, a trade-off has to
be found, that depends on the magnitude of the deformations.

Another possibility that we have adopted consists in computing the signed distance d to I and
set Eo(2) = 1/(a+d(&))P with o > 0. This method has the advantage to be mesh-size independent,
and can for instance be used if the cells density does not vary much between the interface and the
farfield region.

Note that other types of extension operators are found in the literature, see for instance the
work by Wick (2011), where harmonic, linear-elastic and biharmonic operators are compared. It
is found that the biharmonic operator provides the smoothest results, but since it also involves an
higher computational cost, it has not been considered here.
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1.3 Handling the large-scale resulting linear systems

1.3.1 Direct vs. iterative methods

Nearly every problem based on partial differential equations usually ends, after time and space
discretization, by a linear algebra problem where linear systems of size N > 1 have to be solved
once or several times. In the case of a finite-element discretization, the problem is sparse (i.e. only
a few entries per line are non-zero).

The most general and computationally feasible procedure for solving the linear system (1.2.2) in
a finite number of operations (also referred to as a direct solver) is known at least since the ninteenth
century and the Gauss elimination method. Modern computational packages such as MUMPS
(Amestoy et al., 2013), PARDISO (Schenk & Gértner, 2004) or SUPERLU (Li, 2005) provide robust
routines for solving sparse linear systems of type Az = b. The basic idea exploited by these solvers
consists in variations about the Gauss elimination method, that consists in particular to compute
the LU decomposition of the matrix, i.e. find a lower-triangular matrix L and an upper-triangular
matrix U, such that A = LU. Once these matrices are computed and stored, the resolution
of the original system amounts to solving two triangular systems Ly = b and then Ux = y.
These are very simple problems that are easily solved by forward and backward substitution.
Computing explicitly A ™! is practically never done because A™! is generally not a sparse matrix.
The most expensive part (in terms of computational time and, even more dramatically, in memory
requirements) is by far the LU decomposition, which scales barely better than O(N?) operations
and is therefore not well suited for large-dimension linear systems. Considering the easily-accessible
computational power today, this limits the reasonable use of direct solvers to problems not very
much larger than N ~ 10° when the sparsity (ratio between the number of non-zero entries in the
matrix and N) is of order 50 — typically, for 2d problems.

Another class of methods consist in computing a sequence of vectors that, under certain hy-
potheses, are found to converge towards the solution of the linear system, i.e. compute

" = F(A, z*) b*

for kK =1,2,... and a certain function F in which only cheap matrix-vector operations on A and
b are done. These iterative methods are much less demanding in terms of memory (and are thus
mandatory for solving large-scale problems), and also faster than direct methods when N is greater
than some value. The drawback is that they are usually problem-dependant, converge slowly or
even might fail to converge in some cases. For that reason, a vast literature is devoted to the
derivation of robust and efficient solvers. We refer the reader to the book by Saad (2003) and the
review by Benzi (2002) for an extended overview of the field. Basically, the convergence properties
of iterative methods depend on the condition number of A: the larger the condition number, the
slower the convergence (Benzi, 2002). Even the most advanced Krylov-based iterative schemes,
such as for instance GMRES (Saad & Schultz, 1986), thus usually display a very slow convergence
without preconditioning. A (left) preconditioner is a matrix P, such that the spectral properties
(hence the condition number) of P! A are enhanced. Depending on the side of the multiplication
by P, left, right or symmetric preconditioning can be obtained. The iterative method applied to
the system P~'Az = P~'b has then chances to converge much faster. The difficult part consists
in finding a matrix P ~ A but that is nevertheless easy to invert, since the operation @ — P~ 'x
will have to be called a number of times during the iterative process.

In the next paragraph, the block-Gauss-Seidel/SIMPLE iterative algorithm that was used to
handle the inversion of the coupled fluid-structure problem is presented.

1.3.2 Preconditioning the fully coupled fluid-structure problem

Since it groups a solid problem, the extension problem and a fluid problem, the matrix in (1.2.2)
growth very quickly as the mesh is refined. Typically for a 2d mesh with about 65000 points and
a P,/ Py discretization, Ay has a size of order 45000, A, a size of order 145000 and Ag a size
of order 275000, i.e. N = 465000. Even if the parallelization allows to distribute the required
memory between many computational nodes, it is thus critical to reduce the overall size of the
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matrices handled by direct solvers. The present adopted strategy allows for having to inverse only
Ag, Ags and Ag.. It is based on using a first loop of a preconditioned parallel GMRES iterative
method to decouple the three fluid, solid and extension problems (with a so-called block Gauss-
Seidel preconditioner). Inside this loop, a second loop of either direct or iterative methods is used
for solving each single-physics problem (i.e. Ag, Ay and Age).

The outer iterative loop is achieved by using a GMRES algorithm with a left block Gauss-Seidel
preconditioner (BGS) for Py, that writes as

A, O
Pfsi = Aes Aee 0 s (1.3.1)
Ay A Ag

which is the matrix Ag; without the upper-right corner block (representing the action of the fluid
load on the solid). The triangular structure of the matrix results in an expression for Pf;l that only
involves the inverses of the diagonal blocs. More precisely, the application xg; = [xg, o, 2] T
Pf_si1 Ty writes:

w:ew _ A;Slx(sjld

new __ A —1 old new
TN = A, (a:e — A T )

w?ew _ Af;l (:B?ld _ Afs m;lew _ Afe mgew)

Each application of the BGS preconditioner thus requires to invert Ay, Aqe and Ag. Using the
block Gauss-Seidel/ GMRES approach is quickly competitive as N increases. The convergence of
the preconditioned GMRES loop is typically achieved down to 10~% in less than ten iterations for
the cases we considered. Let us now concentrate of the resolution of the three sub-problems that
appear in each call to a BGS iteration.

As pointed before, the solid problem is a relatively small-scale problem compared to the fluid
problem and was thus primarily handled with the direct LU solver MUMPS. The extension prob-
lem is larger, but as long as there is no remeshing operation, the extension matrix A.. remains
constant. For that reason, the direct LU solver MUMPS was also used to handle this problem —
recall that once the LU decomposition of a matrix A is computed and stored, the map « — A '
is very quick to compute, as many times as needed.

On the contrary to the solid and extension problems, the fluid problem has a much greater size,
and presents in addition a fairly poor sparsity (in 2d, about 25-30, worse in 3d). We therefore gain
in using an iterative method for inverting Ag. The special saddle-point nature of the linearised fluid
problem calls for specific methods. More precisely, the linearised fluid operator has the structure

A BT 1}
Meindl e A

Ag=| B 100 (1.3.2)
Iri0 0

where A is a convection-diffusion operator, B and B™ are respectively the divergence and gradient
operators (modified by the change of reference configuration), while I is the interface transfer
matrix. The saddle-point structure consists in this arrangement with a zero block in the lower-
right corner of the matrix, typical of a constrained problem (here by the fluid incompressibility and
the interface velocity continuity condition). A vast literature is devoted to the numerical solution
of saddle-point problems, that has been summarized for instance in the review by Benzi et al.
(2005).

As far as the design of a preconditioner for Ag is concerned, stationary problems have to be
distinguished from time-dependant cases. Indeed, the large factors 1/A¢ that appear in the diagonal
of A confer a special structure to the matrix that can be profitably operated. In time-dependent
algorithms, following Deparis et al. (2014), the SIMPLE preconditioner (Patankar & Spalding,
1972; Patankar, 1981) was implemented, associated to a GMRES loop. UsirTlg the preconditioner
SIMPLE for Ag, only an approximation of its Schur complement —(EA_lﬁ ) has to be inverted,
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Figure 1.6 — Reference configuration for the vortex-induced elastic-deformation instability.. Sketch
of the geometry proposed by Turek & Hron (2006) with the associated non-dimensional lengths.
Point A is located in the elastic plate at the position (za,ya) = (3.95,0) in the reference con-
figuration. The extension box is depicted with the oblique lines and has dimensions = € [—1,7],
y € [-1.5,1.5].

where B' = BT I}]. Namely, this approximation consists in replacing the convection-diffusion
operator A by its diagonal. One can also further avoid from having the interface terms related to
I}: and Ir appearing in the Schur complement, by means of the so-called static condensation, we
refer the reader to Deparis et al. (2016) where this method is detailed.

Due to the rather crude approximation of the matrix A, SIMPLE is competitive only when
A is diagonally dominant, i.e. for sufficiently small time-steps At (Benzi et al., 2005). For steady
cases (At — 400) or in eigenvalue problems solved using a shift-and-invert spectral transformation
(1/At is basically replaced by a complex number that depends on the problem eigenvalue plus the
chosen shift value — these problems will be considered in the chapter 2 —, other approaches are
found to cope more efficiently with the saddle-point problem, such as the Stokes preconditioning
(Tuckerman & Barkley, 2000), the pressure-convection-diffusion preconditioner (Kay et al., 2002)
or Augmented Lagrangian preconditioners (Benzi & Olshanskii, 2006; Olshanskii & Benzi, 2008;
Heister & Rapin, 2013; Moulin et al., 2019).

1.4 Turek’s benchmark cases

In this section, the non-liner solver is validated on the well-known 2D benchmark problems pro-
posed by Turek & Hron (2006), that consists in variations on the flow-induced vibrations of an
elastic bar attached behind a circular cylinder in a channel flow. The configuration of the physi-
cal problem is shown in Fig. 1.6, where all lengths were taken relatively to the cylinder diameter.
The origin of the axes is taken at the cylinder centre, which is slightly moved downwards so as
to break the symmetry of the problem. The plate (with straight corners) is attached behind the
cylinder and made with a Saint-Venant Kirchhoff material of non-dimensional Young modulus &
and Poisson coefficient v, while a viscous flow of Reynolds number R, (based on the cylinder’s
diameter and the mean inflow velocity) is considered in the channel. A parabolic inflow velocity
profile is imposed at the inlet, which writes without dimensions as u(y) = 0.357 (2 + y) (2.1 — y).
No-slip boundary conditions are imposed on the top and bottom walls as well as on the bluff-body
surface. A zero normal stress boundary condition is taken at the outflow.

In the paper by Turek & Hron (2006), different benchmarks are proposed. The physical pa-
rameters for the different cases are reported in Tab.1.1. The case CSM1 consists in the steady
deviation of the plate alone in a gravity field G, while the case CSM2 considers the unsteady case.
In our case, this problem is solved by simply retaining the terms related to the solid in the matrices
obtained after time and space discretization. The fluid sub-problem CFD1 consists in the steady
flow about the rigid geometry at a low Reynolds number R, = 20, while in the case CFD2 the
higher Reynolds number R, = 200 comes with an unsteady vortex shedding behind the obstacle.
These cases can be solved practically by using the fluid-structure solver and setting the stiffness
to a very high value, or by considering the fluid solver only. In our case, like for the solid bench-
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solid alone fluid alone fluid-structure
CSM1 CSM3 CFD1 CFD3 FSI1 FSI3
Re - - 20 200 20 200
M 1 1 - - 1 1
Vs 0.4 0.4 - - 0.4 0.4
Es 1400 1400 (c0) (c0) 35000 1400
G 0.2 0.2 0 0 0 0
type forced steady unsteady steady unsteady steady unsteady

Table 1.1 — Non-dimensional parameters for the benchmark of Turek & Hron (2006). The
Reynolds number R, is built on the cylinder’s diameter and the mean inflow velocity U*,
Mg = p%/pf is the density ratio, vy is the structure Poisson coefficient, E; is the non-
dimensional Young modulus obtained by dividing by pf U*? the coefficient with dimensions,
and G is the non-dimensional gravity number obtained by multiplying the dimensioned
characteristic external force magnitude by D*/U*2.

mark we simply retain the fluid-related matrices. Finally, the fluid-structure benchmark FSI1 is
a stationary case where the plate bends through its interaction with the flow but remains steady,
while the case FSI3 is an unsteady case.

The values of interest are the displacement (whose components x and y are written &, and §,
respectively) at the point A of coordinates (4,0) measured from the cylinder centre, the aerody-
namic drag and lift coefficients Cp and Cy, of the full bluff-body (including the rigid part), and
the vortex shedding frequencies f; and f;. Both the mean displacement and the displacement
amplitude are measured using the convention from Turek & Hron (2006):

()= %(max( -) 4 min( - )) (mean)
0= % (max( -) — min( - )) (amplitude)

A set of various meshes are used to test the algorithms, labelled MO to M4 from the coarsest to
the finest. Their characteristics are reported in Tab. 2.1 page 55.

1.4.1 Solid mechanics cases

Some results for the unsteady case CSM3 are reported in Fig. 1.7. The energy-preserving properties
of the Crank-Nicholson scheme are clearly visible in (a) where the total kinetic energy in the solid is
represented as a function of time for mesh M1 and a time step At = 0.05. The implicit Euler scheme
is associated with a strong damping of energy (although there is no physical source of damping)
whereas the Crank-Nicholson scheme is able to keep it almost constant. When the time-step is
decreased, the Euler scheme becomes less dissipative but never outperforms the Crank-Nicholson
scheme both in terms of energy conservation and — to a lesser extent — precision. However, when
the time-step is increased, the conditional stability of the Crank-Nicholson scheme results in a
blow up for time steps above At ~ 0.2, as reported in (b). The Euler scheme is unconditionally
stable but the precision suffers much of an increase of the time-step because it is only first-order
accurate. The Euler scheme is however appropriate for computing the stationary case CSM1, which
is solved by setting a large time-step in the Euler scheme. With At = 10 the solution stabilizes to
a steady regime after ¢ ~ 50. For the mesh M1, the x and y displacements are found to —0.070
and 0.648 respectively, in good agreement (deviation less than 2 %) with the values —0.072 and
0.661 reported by Turek & Hron (2006).

1.4.2 Fluid mechanics cases

Taking the plate as a rigid object, subtests focusing on the fluid dynamics part of the problem can be
performed. Practically, we only consider in the code the submatrices and subvectors corresponding
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At (€,) £ €,
N 0.2 blow-up
0.1 —0.626 + 0.646
0.05  —0.624 £ 0.644
A Al |- 0.01  —0.631+0.640
R 0.005  —0.632 =+ 0.639
Crank-Nicholson | {} {[ |}/ |}/ ) Turek —0.636 + 0.652

0 10 20 30 40 50

(b) Time step conver-

(a) Kinetic energy evolution gence

Figure 1.7 — CSM3 benchmark. (a) Comparison of the total solid kinetic energy EPF, for a time-step
At = 0.05 and 6 = 1 (implicit Euler scheme) and ¢ = 0.5 (Crank-Nicholson scheme), on mesh
M1. (b) Evolution of the transverse mean displacement and displacement amplitude for different
time-step sizes. Results from Turek & Hron (2006) are reported in the last line.

At (Cp) + 6Cp (1) £ 6Cy, At (Cp) + 6Cp (CL) £ 6Cy,

0.4 2.181 —0.5470 £ 0.002 0.4 2.174 +0.0259 —0.0316 £ 2.122
0.2 2181 —0.5470 £0.002 0.2 2.175+0.0277 —0.0571 + 2.180
0.1 2181 —0.5390 £0.007 0.1  2.176+0.0281 —0.0654 £ 2.194

0.05 2,178 £0.0181 —0.3428 =£1.571  0.05 2.175+£0.0282 —0.0678 £ 2.197
0.01 2.175£0.0255 —0.0944 £2.097  0.01 2.176 £0.0282 —0.0683 £ 2.197
0.0065  2.175+0.0267 —0.0794+2.149 0.0065 2.176 £0.0282 —0.0683 + 2.197

Turek 2.197 £0.0281 —0.0595£2.189  Turek 2.197£0.0281 —0.0595+ 2.189

(a) Implicit Euler (b) Crank-Nicholson

Table 1.2 — CFD benchmark, aerodynamic coefficients. Values of the mean and amplitude aero-
dynamic coefficients for the two time schemes. Mesh M1. Results from Turek & Hron (2006) are
reported in the last line.

to the fluid part of the problem. For the stationary case CFD1, the implicit Euler scheme is used
with a time-step 1, that allows to reach the steady-state solution. With mesh M2, the drag
coefficient is found to 7.133 (Turek: 7.145) and the lift coefficient to 0.558 (Turek: 0.559). The
time-step convergence in the case CFD3, for the mesh M1, is reported on table 1.2 for the implicit
Euler (a) and Crank-Nicholson scheme (b). The period of the flow is T ~ 4.5 so the coarsest
discretization corresponds to about 10 times steps per period. In (a) the solution is stationary for
time-steps greater than At = 0.05. As already observed previously, the first-order Euler scheme
comes logically with a stronger dependency of the integrated quantities with respect to the time
step, while the second-order properties of the Crank-Nicholson scheme provides converged results
from At = 0.05. For the sake of comparison, the reference values given by Turek & Hron (2006)
for the benchmark case CFD3 are also reported. The overall agreement is good, except perhaps
for the mean lift. This is perhaps due to the weak imposition of the no-slip boundary conditions,
that allows to get the interface loads as a supplementary unknown. Tests with the same time
discretization, the same mesh but velocity boundary conditions enforced by penalization gave, for
At = 0.1, a lift coefficient of 0.056 + 2.197, and no significant evolution for smaller time steps.

1.4.3 Fluid-structure coupled cases

We finally validate the coupled fluid-structure solver on the case FSI3. After a short transient
regime, self-sustained, periodic oscillations are observed in the plate from ¢ ~ 70, as reported in
Fig. 1.9. Snapshots of the flow at different non-dimensional times, in the actual configuration £2;,
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Figure 1.8 — Turek’s case FSI3. Plot of the fluid streamwise velocity in the fluid and of the zz
component of the solid stress tensor.
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Figure 1.9 — Lift and drag time-series for the fluid-structure benchmark case FSI3.

are depicted in Fig. 1.8, showing large deformations and the vortex wake further downstream to
the plate.

The time-step convergence is displayed in Tab. 1.3, where the Crank-Nicholson scheme is com-
pared with the shifted Crank-Nicholson scheme. We see how shifting the scheme allows to gain
in numerical stability at large time-steps. Only small deviations are observed with the Crank-
Nicholson scheme for time-steps smaller than 0.01. Quantities such as the streamwise displacement
or the lift coefficient are found to evolve in the same manner (not represented here).

Finally, the influence of the mesh resolution is reported in Tab.1.4. We choose to perform
this study using the shifted Crank-Nicholson scheme which is found to be the most stable, at the
converged time-step size At = 0.01. The evolution of different measured quantities is displayed
for different mesh resolutions, and show converged results from mesh M2. These results can be
compared with those obtained by various groups using different strongly coupled methods, as

At (Y(A)) £0y(A) (Cp)+dCp At (Y(A)) £d)(A) (Cp)+dCp

0.2 blow-up blow-up 0.2 0.016 £+ 0.257 2.227 £+ 0.094
0.1 blow-up blow-up 0.1 0.015 £ 0.327 2.264 +£0.130
0.05  blow-up blow-up 0.05  0.014+£0.344 2.272 +0.138

0.01  0.014 £0.342 2.2744+0.134 0.01  0.014+£0.349 2.274 +£0.140
0.005 0.014 £0.350 2.274+0.139 0.005 0.014 +0.350 2.274 £0.140

(a) Crank-Nicholson (b) Shifted Crank-Nicholson

Table 1.3 — FSI3 benchmark, time-step convergence. Values of the mean and amplitude solid y
displacement and aerodynamic drag coefficients, for different time-steps, the mesh M1, and (a) the
Crank-Nicholson and (b) the shifthed Crank-Nicholson schemes.
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Mesh  (£(A),) = 6€(A).  (£(A),) £3€(A), (Cp)+dCh  (Cu) +dCL
MO blow-up blow-up blow-up blow-up
M1 —0.029 £ 0.027 0.014 + 0.350 2.2744+0.140 0.014 £0.813
M2 —0.029 £ 0.027 0.014 £ 0.344 2.294 +0.141 0.011 £ 0.807
M3 —0.028 4+ 0.027 0.014 +0.342 2.301 +0.141  0.010 £ 0.806
Schéfer —0.029 £ 0.027 0.015+0.349 2.293 £0.136  0.010 £0.767
Turek —0.027 £ 0.025 0.015 £ 0.344 2.286 +0.113 0.011 £0.749
Rannacher —0.028 +0.027 0.012 + 0.346 2.262+0.131 0.012£0.764
Wall —0.020 £+ 0.019 0.014 £ 0.290 2.170 £ 0.088 0.013 +0.881

Table 1.4 — FSI3 benchmark, mesh convergence. Values of the mean and amplitude solid z and
y displacements (two first columns) and aerodynamic coefficients (two last columns), for different

meshes and a time-step At = 0.01.

For the sake of comparison, results from different groups

gathered in the review paper by Turek et al. (2011) are added.

summarized in the review paper by Turek et al. (2011). All these results were obtained with
the same time-step At = 0.01, using an implicit partitioned approach (Schifer), a monolithic
approach (Turek, Rannacher) and a strongly coupled, iterative staggered scheme (Wall). The
obtained results compare well with the data obtained by these groups.



EIGENVALUE ANALYSIS OF
FLUID-STRUCTURE STEADY-STATES

The stability analysis of elastic structures strongly coupled to incompressible viscous flows is
investigated in this chapter, based on a Lagrangian-based exact linearisation of the governing
equations introduced previously. The leading eigenvalues/eigenmodes are computed for three
configurations representative of classical fluid-structure interaction instabilities. Results are
in very good agreement with instability thresholds reported in the literature and obtained with
time-marching simulations. The present, new method, is also compared with an Eulerian-
based linearised fluid-structure problem found in the literature.
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2.1 Fluid-structure linear perturbation equations

We proceed in this chapter as summarized in the Fig. 2.1. First, we define in §2.1.1 the base state
(i.e. stationary solutions to (1.1.1)) whose linear stability will be investigated. Then, the linearised
equations are derived in §2.1.2. This results in a first set of perturbation equations for the fluid-
structure problem. Using a variable change from the stress-free reference configuration to a steady
deformed configuration, it is possible to rewrite this perturbation problem in a simpler form, re-
ferred to as the Lagrangian-based linear perturbation equations. We will also recall in §2.1.4 the
Eulerian-based perturbation equations and show how they are related to the Lagrangian-based lin-
ear perturbation equations. The modal analysis associated to the linearised problem is introduced
in §2.2.1. Then, in section 2.3 three fluid-structure configurations are studied more specifically:
an elastic plate clamped on a rigid cylinder immersed in a viscous channel flow (Turek & Hron,
2006), a flag placed in a viscous channel flow (Cisonni et al., 2017) and a plate positionned perpen-
dicular to an incoming flow (Marquet & Larsson, 2015). The first configuration is representative
of a vortex-induced-vibration instability, while the second accounts for a flutter-induced-vibration
instability. The last case shows, in a three-dimensional setting, how static reconfiguration of a
flexible obstacle affects the instabilities in the wake (see also Leclercq & de Langre (2018)). Ob-
tained stability results are validated on these cases, and the specific features that come with our
formulation are further assessed. Finally, in section 2.4, the previously validated Lagrangian-based
approach is compared to the Eulerian-based approach.

2.1.1 Steady-state solutions

Steady-state solutions of the fluid-structure interaction problem are solutions for which the fluid
loads exactly balance the elastic restoring force so that the fluid-structure interface position does
not change with time. The steady fluid-structure equilibrium Q = (QS, QC, Qf) is found by seeking
for time-independent solutions to the problem (1.1.1), resulting in the non-linear problem

A~

— Si(Q) = 0. (2.1.1)

More explicitly, the steady base fluid velocity U (&), pressure field P(&), solid Z(#) and extension

—

B (&) displacements satisfy

v (A(é)S(é)):o in Q,

—V - -3.(B) =0 in
(VU@(Ee))U—V S0, P,E)=0 in O o12)

-¥ (@(ée) ‘):0 in O

U=0 and ée—é:O on f,

S(U,P,2)n—-FE)SE)A=0 on I.

Remark. LookingAfor stationary solutions to the augmented solid problem results in the local
equations —V - (F(E)S(E)) = 0 and U5 = 0 in ). This latter equation for the solid base
velocity Uy has been explicitly replaced in the above system.

Although this problem is much simpler than (1.1.1) in the sense that there is no longer any time-
dependance, there are still difficulties. First, the resulting problem is highly non-linear and thus
requires to use an appropriate iterative method such as the Newton method, as done for instance
by Ghattas & Li (1995). Secondly, the presence of possibly large deformations in the solid can
lead to degenerated extension fields in some cases. Specific methods such as the so-called updated
Lagrangian formulation are adapted for handling such cases (Etienne & Pelletier, 2005).
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Figure 2.1 — Overall view. Classification of the different formulations of non-linear and linear
formulations of the fluid-structure problem used throughout this manuscript. Symbols with a hat
indicate variables or operators expressed in the stress-free reference configuration, while symbols
with a tilda indicate quantities defined in the actual configuration. Non accentuated symbols are
related to the steady deformed configuration.
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2.1.2 Lagrangian-based perturbation equations

We present here the derivation of the linearised equations. For the reader not interested in the
technical details, the resulting problems are summarized under the form of the problems (2.1.1)
page 46 (expression in the reference configuration) and (2.1.2) page 49 (expression in the steady
deformed configuration).

In the stress-free reference configuration

Once a steady solution Q is determined, it is possible to investigate the linearised dynamics about
the steady base solution, that describe the evolution of small-amplitude perturbations. To that
aim, for ¢ < 1, we state the following splitting of the variables §(%,t) = Q(%) + ¢4’ (&, ), that is,

fi(f,t) = 5@) +ep (f,t» @13
€.(2,1) = Bo(®) + c EL(,1),
&(#,1) = B(&) + e €'(2,1).

The decomposition between Q and the perturbation ¢’ is then introduced in the non-linear equa-
tions of the problem (1.1.1), and after having subtracted the stationary equation MSI(Q) =0, we
obtain at first order a perturbatlon problem that only depends on the linearised operators about
the stationary base flow Q For §' € Us x Us x Uy x L[ x Us x P x Uf,

NN, 7 4 A A N N N ~ ~ ~ N ~
<¢7%51(Q)6(,1t - fs/1(Q)(j/> =0 V',b EZ/{S X us X Z/{e X uf X Z/{f x P x Ufn

After a few tedious derivations whose detail is reported in Appendix C.1, the corresponding lin-
earised fluid-solid operator (designated with a prime symbol) reads as follows:

(W, ik

©>
\-/
\/

|

{(%ﬁ)«i(ée)a' + (Vo) ®(E)U + } - pdQ

S|

_|_

_|_

——
=
[0
=
~
=2
<Q
<
IS
+
0’"@>
<Q
=33
N
+
——
(o}
o2

-

>
<
e
+
54
>
—
o,
s Y

—N

el + / & . >t (2.1.4)
I

In the above identity, colors have been added so as to identify the hydrodynamics part (blue),
the elastic part (red) and the ALE geometry terms (orange). When solving the above variational
formulation, the perturbation Lagrange multiplier associated to the extension problem is X =
f]e(ég)ﬁ, while the one associated to the velocity interface condition gives the linearised interface
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stresses, namely

!

PN A A

N=PE&E&n= 8@ 7 8+ (U, P EE| n,

where the expression of the different linearised tensors is given hereafter.

(2.1.5)

For the Saint-Venant

Kirchoff solid model chosen, all solid non-linearities are polynomial and the linearisation does
not present any special difficulty. The linearised first Piola-Kirchhoff solid stress tensor, second
Piola-Kirchhoff stress tensor and Green-Lagrange stress tensor writes respectively as

!

P'(E,&) =FE)S(E. &)+ VESE),

S'(¢8) = At ( ',é) I+ 2uE (€ 8)

A 2 A 1 A A A A A A A A, T
£ 8) = = (VE VE LV VE L L T8 )

(2.1.8)

Turning now to the fluid equations, in addition to the quadratic convective terms, more complex
geometric non-linearities are present in the Navier-Stokes equations. Considering the steady fluid
domain deformation ﬁe, the linearised fluid domain deformation Jacobian, fluid domain deforma-
tion operator, viscous diffusion gradient and viscous stress tensor write as follows (we refer again

the reader to the Appendix C.1 for further details):

N 1 N A A A A & A A A
B &) = — BENT . VE) BE) - ®E)VED(E)],
¥(Ei€) = 525 | (BE)T: VE) $(E) - B(E)VERE
A T &L —1/2 | opré i v éd ST (B S S E )T
D' (U,&.;€) = VTERE VU@(:e)VEei’(:e)—&—(VU@(:Q)V e@(:e)) ,

(2.1.9)

(2.1.10)

(2.1.11)

Local perturbation equations are eventually obtained using integration by parts in (2.1.4) and
expressing the solid velocity as ul = 0€’ /0t, or by linearising directly the non-linear, local equations

given in (1.1.1). The following problem is obtained:

Problem 2.1.1 — linearised fluid-structure equations in the stress-free reference
configuration. The evolution of small-amplitude perturbations of fluid velocity @', fluid pressure
P, solid displacement_ {’ in the stress-free reference configuration where the stationary flow is
given by the velocity U and pressure P and the stationary displacement by 2, writes as follows:

825, A Al A A
~-V.-P (&&=
My =V P (& €)
-V-3.(€)=0
AN A PSS SURE: '/ W SO
J(Ee) 5 + (VU@(HG)) <u = ) + (Vu <1>(_e)) U
+(VO#(E8) 0 - V- [S@.5,80) + 80, P, Ead)] =0
V- [#E) @+ #(EsE)T] =0
o€
s YS 0
ot
£.-€=0
$(@,9,8.) + £'(0,P,8:8)| A - P& &)n =0,

m

m

mn

m

on

on

on
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where the perturbation extension displacement é; serves for propagating the solid deformation
onto the fluid domain. In this system, the first equation is the solid momentum equation,
the extension equation is written in the second line, the third and fourth equations represent
the linearised fluid momentum and continuity equations respectively. The last three equations
represent the interface velocity, displacement and stress continuity conditions. Using the velocity
equation (1.1.34) to write the interface velocity as 4’ — wl, the block notation reads:

04,

7, 0 0 7'(Q,) 0 it q,
ot

84’ . . .
0 0 0 e |= — .
= i 7, 0 g
0 ~91(0,0.) 7@, || 2 i 716..0) |\ 4
- fe(vaQe) f(Qe) Bt fs & ﬁ(Qme) qy

() oS

A @= =1

g Q

where the colors are related to (2 1.4), A (Qe, Qf) = a/ljc/aqu Q is the linearised Navier-Stokes
equations and JVe(Qe,Qf) = 0.47/84, s, 0, is a shape derlvatlve term that represents the effect
of a perturbation of the fluid domain on the fluid equations.

The above formulation gives in particular the linearised operators used in the Jacobian matrix
that appears in (1.2.1).

In the steady deformed configuration

In the previous section, we have formulated a linearised fluid-structure interaction problem in the
stress-free reference configuration (problem (2.1.1) written page 46). This formulation is used for
designing efficient steady and unsteady fluid-structure solvers, as evoked in the previous chapter.
However, it results in heavy expressions in which each fluid operator depends on the steady exten-
sion field. In this section, we derive a much simpler expression of the linearised problem. The basic
idea is to use the stationary displacement field to define a new formulation in a steady deformed
configuration where the stationary base displacement is zero by construction. This alternative
point of view is illustrated in Fig.2.2.

Mathematically, this amounts to perform a change of variable so as to rewrite the whole problem
as a function of = &+ =(&) instead of £, in domains Q and Q such that Q¢ = (Id +2,) () and
Qs = (Id+E)(€). These mappings coincide at the fluid-solid interface but are not continuously
differentiable there, as can be seen in Fig.2.2. The perturbation problem in the steady deformed
configuration is obtained by changing the variables as

' =u o (Id+E.)
P =70 (Id+E)
£l =&l o (1d+E.)
£ =¢ o(1d+E)
vghere theA transformationAonly ap[A)lies to the space variable. Furthermore, we introduce U =
Uo(Id+Z,)"! and P = Po (Id+E,) ! the steady fluid velocity and pressure fields, transported

in the steady deformed configuration. By construction, the steady displacements are zero in the
steady deformed configuration, i.e. the Lagrangian-based decomposition for the variables writes as

u(z,t) =U(x) + e u'(z, 1),

(2.1.12)

p(x,t) = P(x) +ep'(x,t),
E(m,t) =0+ cgl(z,t), (2.1.13)
5(:1:’ ): +€£I(:l?,t)_
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Figure 2.2 — Two equivalent descriptions. (a) Representation of a steady flow that bends an elastic
plate. The steady deformed solid is represented by the solid line while the stress-free (not deformed)
solid is represented with the dashed line. (b) Description in the stress-free reference configuration

Q. (c) Description in the steady deformed configuration © = (Id +€)(€2).

This way of introducing the perturbations in the steady deformed configuration simplifies the
equations, but does not change the general structure of the problem. Changing the variables in
(1.1.35) and in (2.1.4), with

o (Id+E)~! P o (Id+E8)!
Lo (Id+E)~! P o (Id4+E)!
(1d+ée) ! PEo (Id+E,) 1

q = (Id+ée)*1 and =P od+E.) |,
o (Id +ée)—1 P¥o (Id+8,) !
(Id+_.c) 1 &po(1d+ée)—1
o (Id+&,)~ o (Id+8.)~!

we obtain expressions of the transformed operators (on the left side, the scalar products are taken
in the stress-free reference domain while they are taken in the steady deformed domain in the right
side):

<¢Ujfsi(Q)@/>=<1/J7«7fsi(Q)q/> and <1/J (@) d > <1P (@) />~

We refer again the reader to the Appendix C.1 for more detail about the practical computations,
that result in the following expressions,

(v, (@) 0ud') {ag /24)8““ wb}
o) 2%
/Qf{ ), }-zpudQ (2.1.14)
o’
- [ G,
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defining the operator Z; acting on time-derivatives, and
<,¢) f51(Q) /> = / {’U,; "7[}6 - P/(Eg,) : ng} dQ

Yo (&) : Vape }

\

{ +(Vu)U }-qpu(m

Qg

Ri/ { + }:Vt,budQ
e JQ¢
—|—/ {pV Pu +YP V- u' + }dQ
Qg
oo
T
—/{Ag'¢§+£g~¢é}dr
I
+/A’-¢gdr+/£’-wédr, (2.1.15)
r T

for A44(Q), where the same conventions as before hold: red for the solid operator, blue for the
Navier-Stokes operator, and orange for the shape derivatives. The corresponding three-fields repre-
sentation has of course the same structure as before. There is no longer any explicit dependency to
the steady extension displacement field E., for this information is now embedded in the deformed
domain itself. The solid however depends on the non-zero stains that are present in the steady
deformed configuration. Namely, the linearised first and second Piola-Kirchhoff solid stress tensor,

and Green-Lagrange strain tensor in the steady deformed configuration, write respectively as

P/(5¢') = J(la){vg F(2)S(E) + F(E)S'(€:5)}FE)", (2.1.16)
S'(B; &) = A\ tr (E'(¢58)) I+ 2, E'(¢7;5), (2.1.17)
E’(s;g') - %F(E) (ve +ve™) ). (2.1.18)

In these expressions, we have written J(Z) = J(&) o (Id+&)~! the transported Jacobian, and
F(E) = F(E) o (Id+E&) ! the transported deformation gradient, from the stress-free reference con-
figuration to the steady deformed configuration. In the fluid, the different operators involved are

®'(£) = V- £[1- V&, (2.1.19)
D' (U;€l) = —5 (VU Ve + (ve)" (vO)"), (21.20)
(U, Pi€) = o(U, P)®'(€)" + - D'(U3€)) (2:1.21)

(<]

In the above expression, o(U, P) = —PI1+ 2/R.,D(U) with D(U) = 1/2(VU + VU"). Again,
details on the derivation are reported in Appendix. The corresponding local equations write as
follows:

Problem 2.1.2 — linearised fluid-structure problem in the steady deformed con-
figuration with a Lagrangian decomposition of the perturbations. The evolution of
small-amplitude perturbations of fluid velocity u’, fluid pressure p’, solid displacement &', about
a steady deformed solid configuration (Qs obtained from the stress-free reference configuration
Qs by the steady base displacement field é) where the stationary flow is given by the velocity U
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and P, writes as follows:

M, 02¢ Vi oy .
T® oz v P EE)=0 L,
-V Ee(fle) =0 m Qf,
au/ ’ 66(’8 ’ ’ /
W+(VU) (u 8t> +(Vu')U-V - oW, p)+ -
(VU) ®'(¢&) U -V -X'(U,P;€) =0 in Q,
Vo -V (@) U) = b O
o¢’
/. >
u e 0 on T,
5;_5' = on Fa
o ,p)+ %' (U,PE)] n—P(E;€&)m=0 on T.

where the perturbation extension displacement €, is used to propagate the solid deformation onto
the fluid domain. In this system, the first equation is the solid momentum equation, the extension
equation is written in the second line, the third and fourth equations represent the linearised fluid
momentum and continuity equations respectively. The last three equations represent the interface
velocity, displacement and stress continuity conditions.

In the above system, the first line in the momentum equation gathers the terms linearised with
respect to the fluid (and fluid domain) velocity and pressure (and thus obtained by keeping & = 0).
They are very similar to the linearised equation obtained in a purely hydrodynamic case, except
for the second term that includes the advection by the extension domain velocity perturbation.
The second line gathers additional terms that represent how the stationary equilibrium (U, P) is
affected by the domain displacement perturbation (these terms are part of the shape derivative
N0 (Qy)). The first term is related to the modification of the velocity gradients due to the domain
motion, while the second expresses how the displacement of the domain modifies the stress. An
extra term related to the geometry modification is also present in the mass conservation equation.

2.1.3 Link with flutter derivatives & aeroelasticity

Let us consider another writing of the three-fields perturbation problem (2.1.1). When the solid
velocity variable is eliminated (i.e. we do not consider an augmented solid problem) by writing
explicitly 4y = 8té, a second-order problem is obtained. It is convenient here to introduce the
modal decomposition

A

’

I
Iy

[N

(2,1)
qo(2,1)

°(&) exp(Mt) + c.c.,
qo (&) exp(At) + c.c.,

[

with A € C. We then obtain a complex, quadratic eigenvalue problem that writes as follows (note
that we have integrated the density ratio My in the operator .):

A

M0 0 \[€° 0 0 0 ée A0 Iy \[é&
NMloool|[lal+Arl o o o |[a]|=| Ze —« 0 |[a]| (2122
0 0 0 /\df Tt —The T dr 0 oy ) \dg

As seen in the second row and already evoked before, the extension problem is subordinated to the
solid problem in a static way. The extension variable ¢/, can therefore be expressed as a function

of the solid displacement by
A —1 A

(j; = vQ{e Ie£ él-
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Now expanding the blocks in the above three-fields, non-augmented formulation, and replacing the
extension variable, results in

(/\2//25 + Ji?’) £ =114,
. . A . . R (2.1.23)
(M=) @ = (Ml Lee) €+ (Tic+ Tie e Tee) (V).

We have obtained here two coupled problems: a pure solid equation (left-hand side in the first
line) forced by the fluid variable through the load transfer term f% s, and a pure fluid equation
(left-hand side of the second line) forced by the solid displacement and displacement velocity in a

more complex way, that involves the shape derivatives 9}8 and J;fé Further eliminating the fluid
equation, we can write (2.1.23) as a problem that depends on the solid variable only:

(AQJ/ZS + %’) = dgé . (2.1.24)
———

effect of the fluid

solid oscillator

We recover here a solid free solid vibration problem when the right-hand-side is zero. This right-
hand side is a “solid-to-fluid-to-solid” operator that writes as follows:

Ags(\) = Tge (/\ i — J@)_l (/\ (ffg + %e%_lfeg) + ( };4%_125)) . (2.1.25)

(1) (2)

The linear (or quadratic) eigenvalue problem obtained from the linearised, fully coupled fluid-
structure problem (2.1.2), can thus be rewritten as a non-polynomial eigenvalue problem, where
the only source of non-linearity is the coupling between the solid and the fluid. g represents
how a linear solid deformation influences back the solid modal problem after having “travelled” in
the fluid.

In classical aeroelasticity, as evoked in the introduction, a forced solid problem of type (2.1.24)
is often considered, but the special form of the right-hand side (2.1.25) is usually not known. De-
pending on the physical case considered, several different forms are commonly used to model the
solid-to-fluid-to-solid feedback: for instance, flutter derivatives terms proportional to the solid dis-
placement (constant s, quasi-static approach) and/or solid velocity (,Qi;fs()\) o A, pseudo-static
approach), see de Langre (2002). More evolved models also involve rational terms (Karpel, 1982),
for instance Zg(\) o > @i /(A — 0;) where the coefficients ¢; and operators o7 are estimated
from experiments or time-marching simulations.

All of these aeroelasticity models can actually be recovered on the form of approximations of
(2.1.25). Far from the resonances with the fluid eigenvalues, as is typically the case for flutter or
divergence instabilities (since the fluid by itself has only stable eigenvalues), the action of the fluid
resolvent operator (1) is likely to be almost independent from A (Kato, 1995). In such case, the
dynamic fluid-solid feedback coupling reduces to the static action of the fluid (Ji/;f’ )~L, times (2),
resulting in an added stiffness term (A) " (A, e Zoe) (proportional to the solid displacment)
and an added damping term (Jl;ff’)_l(ffg + ﬁe,fz?{e’lfeg) (proportional to the solid velocity )\fo).
Dynamic effects related to the fluid dynamics are recovered when the term (1) is expanded in
a Laurent series truncated at first order: an added mass term appears in the expansion of JZ{;fs
(term proportional to the solid acceleration )\zéo). When the dynamical fluid effects become
important (as is for instance the case for vortex-induced vibrations), the fluid resolvent cannot be
approximated by a convergent series in A\. On the other hand — at least after space discretization of
the different operators — it is also possible to decompose the fluid resolvent (Kato, 1995; Trefethen
& Embree, 2005) on the form of

A AN\ 1 1
/ j— .
(A7t ) *%:A—Ai%”
where the complex numbers \; are the eigenvalues of the fluid operators (9}“/1?3’) With this

respect, rational models presented by Karpel (1982) appear as a way to integrate the dominant
poles of the fluid resolvent operator in the fluid-solid dynamics.
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2.1.4 Link with Eulerian-based perturbation equations

The previous decomposition of the flow fields is natural when considering the ALE formulation
of the fluid-structure problem. Following Ferndndez & Le Tallec (2003a), the equality (1.1.23) of
the ALE and Eulerian velocities, i.e. u(x,t) = @(&;,t), also suggests to decompose the velocity
from the Eulerian point of view, and thus to take into account of the position modification in the
definition of the perturbation, by setting

W&, t) = (U + @) (x4 c & (x,t),1),

. (2.1.26)

P&y, t) = (P+ep)(x+e&l(x,t),t),
where (U, P) and (@, ) are the steady-state and perturbation of the Eulerian velocity and pres-
sure fields. The instantaneous spatial position is also decomposed in the above expression as
Ty = x +e &, with & the perturbation of the extension displacement. After developing the above
expression in € and comparing with the Lagrangian decomposition (2.1.13), one obtains at order
zero the equality of the steady-state base solutions

U)=U(z), P(z)=P(x) (2.1.27)

and at first-order in € the following relation between the Lagrangian and Eulerian perturbations,
u'(z,t) = @' (2,t) + (VU) &, 1),

p(@,t) =p'(x,t) + (VP) - £ (a,1).

These relations can be used to derive another set of equations describing the evolution of fluid-
structure perturbations.

Replacing the decomposition (2.1.28) in the problem (2.1.2), it can be shown that the linear sta-
bility equations given in Ferndndez & Le Tallec (2003a) are recovered. The derivation is essentially
technical and is reported in Appendix C.2. The following fluid equations are obtained:

(2.1.28)

~/
aa"z +(VU)@' + (V@)U -V -o(@,p) =0, Q (2.1.29)

—V-@ =0. Qs (2.1.30)

These are exactly the linearised Navier-Stokes equations obtained for a purely hydrodynamics
flow problem (Sipp et al., 2010). In particular, the extension field has disappeared from the
equations. However, the boundary conditions at the fluid/solid interface T" are different from
the hydrodynamics case. The linearization of the equality of fluid and solid velocities yields the
so-called transpiration condition
’
@ = 8@% —(VU) ¢ on r (2.1.31)
which states that the Eulerian velocity perturbation is equal to the Lagrangian velocity perturba-
tion of the interface corrected by the velocity induced by the displacement of the interface on the
steady-state solution. While this expression of the linearised velocity continuity at the fluid-solid
interface is relatively simple, the linearization of the normal-stress continuity condition yields to a
much more complex expression, namely

[o(@,p)+Va(U,P)¢ +o(U,P)® )" n=P(;E)n. (2.1.32)

The left-hand side operator is the linearised fluid stress that writes as the sum of a classical Cauchy
stress for the Eulerian perturbation and two added-stress terms (Ferndndez & Le Tallec, 2003a;
de Langre, 2002) proportional to the interface displacement and its derivatives. The first added-
stress term is a second-order tensor whose components write in index notation (using Einstein’s
rule for repeated indices) as

Ilo(U, P)li;

o€ (2.1.33)

Vo (U, P) £I]ij =
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It represents the transport of the interface stress by the interface displacement. Note in particular
that second-order derivatives of the steady flow are involved in this expression — and remain
second-order in the weak formulation. The second added-stress term o (U, P)®’(¢")T is a form-
stiffness term which accounts for the modification of the normal-stress induced by a geometrical
modification of the interface. While non-local couplings (by means of the extension operator) are
present in the Lagrangian-based equations, we observe here local (i.e. concentrated at the fluid-
solid interface), higher-order couplings. These two different structures are related to the way we
have defined the disturbances.

As already mentioned in the introduction, the fact that there are two equivalent formulations
(Eulerian-based and Lagrangian-based) of the stability problem comes more fundamentally from
the fact that the derivative of an equation with respect to its domain of definition can be defined
in two ways. For more details, the reader is referred to the book by Allaire & Schoenauer (2007),
section 6.3, where these two equivalent notions of differentiation are introduced and discussed.

2.2 Numerical formulation for an eigenvalue analysis

2.2.1 Modal decomposition of the perturbations

To investigate the long-term behaviour of the linearised problem (2.1.2), as mentioned in the
introduction, the eigenvalue analysis is appropriate. The perturbation variable is then decomposed
in modes

q'(z,t) = q°(x) exp(\t) + c.c. (2.2.1)

where A = A" + i\’ is a complex eigenvalue and q°(x) is the spatial structure of the coupled
fluid-structure eigenmode. The discrete generalized eigenvalue problem obtained from the finite-
elements discretization of the modal problem obtained by introducing (2.2.1) in (2.1.2) writes

B, 0 0][aq A 0 AR [a
Mo 0 0]l =|As A 0| |q]. (2.2.2)
0 Bfe Bf q? Afs Afe Af q?

where the different matrices are the discrete counterparts of the operators present in the three-fields
formulation of the problem. The left-hand side matrix is not symmetric due to the off-diagonal term
Bg., obtained from the temporal derivative of the extension displacement. A symmetric formulation
can nevertheless be obtained at the price of introducing an additional extension velocity variable
u® = A&, In the first line (solid equation), the off-diagonal term A results from the continuity
of the fluid and solid velocities at the interface and expresses the coupling with the fluid. In
the second line (extension equation), the off-diagonal term A results from the continuity of the
extension and solid displacements at the fluid-solid interface. In the last line (fluid equation),
the off-diagonal term Ag also results from the continuity of the fluid and solid velocities at the
interface, while Ay represents the shape derivatives of the fluid equation. Finally, it should be
noted that the eigenmodes are normalized so that q;’HBSq;’ = 1, where the superscript H denotes
the transconjugate operation.

2.2.2 Implementation of the eigenvalue solver

The matrices presented above are constructed with the finite-element sofware FREEFEM++ (Hecht,
2012). An Implicitely Restarted Arnoldi Method (Arnoldi, 1951; Saad, 2011) is used, associated
with a shift-and-invert spectral transformation that enables to get a set of eigenvalues in the vicin-
ity of a given complex shift. For small problems, a sequential solver that uses a direct LU solver
and the library ARPACK (Lehoucq et al., 1997) has been developed. For larger-scale problems, a
parallel version using domain decomposition methods has also been developed. In order to handle
the multiples inversions of the shifted matrices required by the eigenvalue solver within the IRAM
method we use the iterative BGS algorithm presented in §1.3.2, where only each diagonal sub-block
(fluid, solid and extension) is inverted by the direct LU solver MUMPS (Amestoy et al., 2013).
This considerably lowers the total amount of memory needed to handle the problem. Another
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approach, based on a modal projection of the solid-extension problem, is presented in the next
section.

2.2.3 Reduced eigenvalue problem

To reduce the size of the eigenvalue problem, it is tempting in (2.2.2) to eliminate the extension
displacement, that depends only on the solid displacement according to

qg = _Ae_lAes q: (2.2.3)

By introducing this expression into the above eigenvalue problem, one obtains the reduced eigen-
value problem

Br —-BrpA ' Al [a?]  [Ar Ax— AwA'AL] @7
A 0 B, ][qg = Ag A, | (2.2.4)

in which the extension variable has disappeared, at the price of the inverted operator A, ! appearing
in the upper right corners of the block matrices that form the reduced problem. Consequently,
the matrices in the above reduced eigenvalue problem cannot be assembled and their inversion
cannot be performed with a sparse LU factorization, since A_ !is in general a full matrix. To
circumvent this difficulty, one possibility is to resort to a projection of the solid equations onto the
free-vibration modal basis.

The free-vibration modes, denoted qb;k for k = 1,2,..., are the vibration modes of the solid
structure in absence of dynamic coupling with the fluid — the static coupling resulting from the
steady deformed equilibrium is however embedded in the matrices B and Ag. They are obtained
as eigenvectors of the eigenvalue problem

iws,x Bs d)g,k = As d);k (2.2.5)

that corresponds to the solid sub-problem extracted from (2.2.2), and where the coupling Aé
with the fluid is cancelled out. In this problem (and in the supposed case where there are no
unstable static buckling modes), the associated eigenvalues iws ;, are purely imaginary, where ws j
is the vibration circular frequency of the mode k. By normalizing the free-vibrations modes as
¢§7 kT B qbs x = 1, they form an orthonormal basis that is used to decompose the solid component
of the eigenvectors gg onto a finite number N, of free-vibration modes, as

N
q = Z sk @S ) = s . (2.2.6)
k=1

The columns of the rectangular matrix ®5 = [¢g 1, dg o, - , g .| are the free-vibration modes
and a; = (as,1,Qs,2, ,oz&Ns)T denotes the vector of modal amplitudes. Introducing this de-
composition into (2.2.4) and projecting orthogonally onto the free-vibration basis, one obtains the

reduced eigenvalue problem
Bi Bg| la7| _ [Ar AL |af
)\{0 B[ .| = (A7, AT |au| (2.2.7)

where the reduced matrices B, = ‘I>ST Bi®, and A} = <I>ST A ®, are diagonal matrices of size
Ns x Ng, that form the solid eigenvalue problem in the free-vibration modal basis. The off-
diagonal reduced matrices are rectangular matrices defined as Bi, = —Bg Al 1AeS<I>S, Af, =
Ap®, — Ay AglA(ES(I)S and Al = (AfStPS)T These matrices are small dense matrices and can
be assembled explicitly, since the extension displacement modes can be computed from the solid
modes @, using (2.2.3).
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Figure 2.3 — Steady-state solution for the vortex-induced-deformation test case (shown in
the steady configuration). The streamwise component of the velocity U of the steady flow
is depicted in blue, while the shear component [ﬁ‘(é)]w of the strain tensor is depicted in
orange in the elastic plate. The dashed lines delimit the recirculating flow regions (a zoom
on the tip end of the plate is represented in the insert on the right, where the orange color

has also been modified to emphasize the peaks at the corners, compared to the full picture).

2.3 Numerical testing of the Lagrangian-based approach

In this section, we first present numerical results obtained for two significant two-dimensional test-
cases corresponding to the flow induced vibrations of an elastic bar, and of the flutter instability
of a flag in a channel flow. In the first case, the fluid-structure instability is essentially driven by
the fluid wake instability, whereas in the second configuration the fluid-solid interaction is essential
for the development of the instability. A three-dimensional configuration is also considered, that
consists in the vortex shedding instability in the wake of a plate deflected by the stationary flow.

2.3.1 Test case with a vortex-induced-deformation instability

The first test case considered here is similar to the fluid-configuration proposed and used by Turek
& Hron (2006) for benchmarking steady and unsteady nonlinear fluid-structure interaction solvers.
As shown in the Fig. 1.6, an elastic plate is clamped at the rear of a rigid circular cylinder of
diameter D*, which is placed in a channel flow. As in their benchmark study, the center of the
cylinder is not located on the symmetry axis of the channel, but is slightly shifted downwards,
thus creating an asymmetry in the fluid-solid solution. Details of the geometry are indicated in
the Fig. 1.6, where all lengths have been made non-dimensional using the cylinder’s diameter as
reference length (L* = D*). Furthermore, the mean velocity U* of the parabolic velocity profile
imposed at the inlet is chosen as the reference velocity (i.e. U* = U*). The four non-dimensional
parameters governing this problem are defined with these reference quantities and are chosen as

E,=1400, v; =04, Mg=1, R. =120 (2.3.1)

These values correspond to the test-case denoted FSI3 in Turek & Hron (2006) except for the
Reynolds number R, = U*D/ 1/; = 120, which is here smaller so as to design a test-case with
only one unstable eigenvalue, as detailed later. At the inlet of the channel, the parabolic velocity
profile (u,v) = (0.357(2 + y) (2.1 — y),0) is imposed. No-slip boundary conditions are imposed
on the top and bottom walls, as well as on the surface of the rigid cylinder (denoted I'y;) and at
the fluid-elastic interface I'. At the outlet of the channel, a zero normal-stress boundary condition
is imposed. When solving the unsteady non-linear fluid-structure equations for the above values
of the non-dimensional parameter, one obtains a periodic solution characterized by the unsteady
shedding of vortices in the flow and an unsteady deformation of the elastic plate. Such a config-
uration can be referred to as a vortez-induced deformation configuration (de Langre, 2002), since
the vortex-shedding that develop in the wake of the rigid cylinder induces the deformation of the
elastic plate.

The steady-state fluid-structure solution is computed by solving the non-linear steady equations
written in the stress-free reference configuration. The fluid velocity (blue) and the shear component
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mesh N, Ay Cp §,(A)  eigenvalue time-march
My 3264  0.113 2440 0.0163 —0.023+41.674i (0.0159,1.690
M, 8788 0.051 2.516 0.0158 0.0226 + 1.6891  (0.0228,1.688
Mo 15716 0.030 2.528 0.0152 0.0237+ 1.688i  (0.0238,1.688
M 32732 0.018 2.531 0.0155 0.0238+ 1.688i  (0.0238,1.687

My 59689 0.012 2.533 0.0154 0.0238 +1.688i —

—_ T

Table 2.1 — Vortex-induced deformation test-case. The total number of elements and the
minimal size of the elements are indicated in the second and third columns respectively.
The drag coefficient is given in the fourth columns. The fivth column reports the transverse
solid displacement at point A located in x4 = 3.95, y4 = 0 in the reference configuration.
The sixth column reports the value of the leading eigenvalue, while the last column reports
the growth-rate and angular frequency extracted from time-marching non-linear simulations
in the linear phase.

[F(£)],, of the solid strain tensor (orange) are shown in Fig.2.3. Although barely visible due to
the small deformation of the solid, the visualization is done in the steady deformed configuration,
obtained after having deformed the domain using the stationary displacement field. The steady
flow separates on the rigid cylinder and reattaches on the elastic plate, as indicated by the black
dashed curves which represent the isocontours of zero streamwise velocity. The two recirculation
regions formed on the upper and lower sides of the elastic plate are not symmetric with respect to
the symmetry axis of the channel, due to the slight asymmetry of the cylinder’s position in this
channel. The recirculation velocity is slightly larger in the upper region than in the lower region,
thus creating a resultant pressure force that moves the elastic plate upward. The y-displacement of
the point A (located at y = 0 in the reference configuration) is around 0.015, as reported in Tab. 2.1.
The flow recirculation also generates viscous shear forces oriented upstream and resulting in a slight
compression of the elastic plate. The z-displacement is however two orders of magnitude lower
than the y-displacement and is therefore not reported here. Finally, the drag and lift coefficients
of the rigid cylinder plus the elastic plate are computed as

A A

Cp :2/ S(U,P,E ) - exdl’ and Cp :2/ $(U,P,E)n - ey dl,
FUFCyl

fUFCyl
where I' denotes the fluid-elastic plate boundary and I'cy; the rigid cylinder surface. They are equal
to Cp = 2.533 and Cp, = 8.38 x 1073, the weak positive lift being induced by the slight asymmetry
of the configuration. The influence of the mesh resolution on the computed steady-state solution
is reported in Tab. 2.1, which shows the drag coefficient and the y-displacement of the elastic plate
at point A. The drag coefficient as well as the plate displacement reach converged values for the
mesh labelled Ms5.

The linear stability analysis of the steady-state solution is investigated by solving the eigenvalue
problem (2.2.2). The resulting spectrum is displayed in Fig.2.4a. One unstable pair of complex
eigenvalues (A" > 0,\! # 0) is obtained. The real and imaginary parts of the corresponding
eigenvector are displayed in Fig.2.4b. The transverse solid displacement field inside the elastic
plate is depicted in orange, while the arrows represent the centreline displacement vectors. The
mode presents a spatial structure in the solid with one vibration node at the clamped end of the
plate. When the phase of the mode is varied between 0 and 27, a second vibration minima moves
back and forth along the centreline of the plate.

The influence of the spatial resolution on the unstable eigenvalues is reported in the sixth
column in Tab.2.1. A converged eigenvalue is reached as the mesh resolution is increased. The
unstable eigenvalues are compared with estimations of the growth rate and frequency (reported in
the last column of the table) obtained by time-marching the non-linear ALE formulation in the
reference configuration. To estimate the growth rate and frequency of the linear perturbation using
the non-linear solver, the initial solution is chosen as the superposition of the steady-state and of
the Lagrangian perturbation mode, scaled with a small amplitude a = 0.005 here. The amplitude
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Figure 2.4 — Stability analysis for the vortex-induced elastic-deformation configuration. (a)
Eigenvalue spectra. The vertical dashed line delimits the stable half-plane (left) from the
unstable half-plane (right). Numerical values of the unstable eigenvalues are reported in
Tab. 2.1 for different mesh resolutions. (b) Snapshots of the unstable mode eigenvector for
the real (top) and imaginary (bottom) parts, depicted with the streamwise component of
the fluid velocity (blue,dashed negative contours), and the transverse solid displacement
(orange). The centreline displacement in the solid is represented by the orange arrows.
Results obtained with the mesh My.

of the perturbation is expected to grow exponentially as long as the non-linear terms are negligible.
Fig. 2.5 depicts the absolute value of the lift coefficient of the fluctuation as a function of time,
equal to the lift coefficient of the unsteady solution corrected by the steady lift coefficient Cpg;ay -
For ¢ < 200, the fluctuating lift coefficient grows exponentially (straight envelope in the log-scale)
and the estimated growth rate is in good agreement with the growth-rate A" of the eigenvalue
analysis, given by the slope of the red line in the figure. The Fourier spectra of the signal in the
linear phase shows one largely predominant peak. The resulting frequencies are reported in the
last column of Tab. 2.1, showing a good agreement.

As a conclusion for this test-case, we observe that a proper eigenvalue convergence is achieved
when the mesh is refined. Furthermore, a good agreement is found between the linear stability
analysis and features extracted from a time-marching simulation. The next test case is devoted to
a configuration where the fluid-solid coupling is essential for the development of the instability.
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Figure 2.5 — Results obtained with temporal simulation where the initial condition is the
superposition of the steady solution and the unstable eigenmode found in Fig.2.4a with
an amplitude a = 0.005. Representation of the absolute value of the lift coefficient for the
cylinder and the plate as a function of time, and superimposed growth rate A" given by the
eigenvalue analysis.
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Figure 2.6 — Reference configuration for the flutter instability. Sketch of the geometry inves-
tigated by Cisonni et al. (2017). The dashed rectangular box is the extension domain Q¢,
and the reference point P is located at the position (1.95,0).

2.3.2 Test case with a flutter instability

The test case considered in this paragraph is shown in Fig. 2.6 and is similar to the configuration
investigated by Cisonni et al. (2017). A thin elastic plate, denoted “flag” hereinafter, is clamped
at the rear of a rigid plate of same thickness, and placed at the center of a channel flow. All
lengths have been made non-dimensional using the height of the chanel H* as the reference length
(L* = H*). Identical parabolic velocity profiles are imposed at the two inlets of the channel, and
their mean velocity is chosen as the reference velocity (i.e. U* = U*). Following the original paper,
we impose u(y) = 12y(1 — 2y) at the upper inlet and u(y) = —12y(1 4 2y) at the lower inlet. The
four non-dimensional parameters governing this problem are defined with these reference quantities
and their values are

£y = 13766 , vy = 0.4, My =25, Ro = 100 (2.3.2)

These values of the non-dimensional elastic Young modulus &, Poisson coefficient vy, density ratio
p and Reynolds number R, correspond to the reduced velocity U = 13.53 and the inertia ratio
M = 4 used as a set of non-dimensional parameters in the study. The non-dimensional lengths are
indicated in Fig. 2.6, in particular the aspect ratio of the flag is hy = 1/100 (corresponding to the
case labelled (vii) on the Figure 7a in Cisonni et al. (2017)). The relations between the different
parametrizations is given by Mg = 1/(Mhyz) and & = 12(1 — v2)/(h3 MU?). No-slip boundary
conditions are imposed on the top and bottom walls, as well as on the surface of the rigid and elas-
tic plates. At the outlet of the channel, a zero normal-stress boundary condition is imposed. When
solving the unsteady non-linear fluid-structure equations for these values of the non-dimensional
parameters, the flag oscillates around its mean deformed position and unsteady flow oscillations
develop downstream. The onset of the oscillations is attributed to a flutter instability which is
triggered by the energy transfer from the fluid to the solid (de Langre, 2002).

The steady-state solution is computed with the methodology already described in the previous
paragraph with an additional ingredient: the symmetry of the present configuration with respect
to channel’s axis is used to determine the steady-state solution, by imposing a zero transverse
displacement condition along the centreline of the solid. The steady-state solution is depicted in

A A
—

Fig. 2.7 with the streamwise fluid velocity (blue) and the axial component [F(Z)],, of the solid
strain tensor (orange). The main difference with the vortex-induced deformation configuration
investigated before is that the steady flow does not separate from the solid surface, except at the
trailing edge of the flag where a tiny recirculation region appear (its length is less than the thickness
of the flag). The viscous fluid forces produce a slight stretching of the flag. This can be observed
in Fig. 2.7 where the axial stress is maximal at the clamped end of the flag, then decreases as we
move closer to the tip. The drag coefficient exerted on the flag Cg, and the solid axial displace-
ment (Ep - ex) of point P(1.95,0), are reported in Tab. 2.2 for various mesh resolutions. Both the
drag coefficient and the solid displacement, which is of order of magnitude of 10~3, do not display
significant evolution for meshes finer than M.

The linear stability of this steady-state solution is now investigated. A converged eigenvalue
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Figure 2.7 — Steady-state solution in the flutter instability configuration. Streamwise fluid velocity

is depicted in blue while the component [F(£)].. of the solid strain tensor is shown in orange.

mesh N, Amax - Amin o of =p-ex eigenvalue

M, 3675 0.1649 0.0164 1.016 1.663 x 10~ 0.0210 + 3.5301
M, 8899 0.1335 0.0109 1.017 1.668 x 10~3 0.0294 + 3.534 1
Mo 16105 0.0942 0.0081 1.015 1.670 x 1073 0.0280 + 3.5421i
M; 35272  0.0720 0.0038 1.016 1.671 x 10=3 0.0297 + 3.5451
My 67602 0.0517 0.0025 1.016 1.672x 103 0.0305 4+ 3.5461

Table 2.2 — Flutter-induced elastic-deformation test-case. The total number of elements
N; and the minimal/maximal size of the elements are indicated in the second and third/-
fourth columns. The fifth and sixth columns display the drag coefficient of the flag and the
streamwise displacement at point P. The leading eigenvalue is reported in the last column.

spectra is depicted in Fig. 2.8a. A pair of complex unstable eigenvalues is found close to the imagi-
nary axis. The spatial structure of the corresponding eigenvector is shown in Fig. 2.8b. It displays
four vibration minimas in the solid, which are emphasized in Fig. 2.8c where the y component of
the transverse displacement perturbation &’(y,0) = Re(£°(y,0) expi¢) is represented for different
phases ¢ variing between 0 and 27w. The resulting superposition shows the vibration enveloppe.
A first vibration node is obviously located at the clamped end xy = 0. Then, a second vibration
node is clearly noticeable at a position x;. The third and fourth vibration minimas in x5 and
x3 (see the positions in Tab.2.8d) cannot be assimilable to vibration nodes, since the position of
zero transverse displacement varies with the phase (see in supplementary material an animation
showing the mode). In Tab.2.8d the position of the vibration minimas of the leading eigenmode
are reported, together with measurements made on the modal shapes extracted from non-linear
simulations in Cisonni et al. (2017), also represented by orange dots in Fig.2.8¢c. A very good
agreement is found concerning the position x;. Since the other vibration minima are less marked
(and thus less identifiable as vibration nodes), the evaluation of their position is less relevant. An
estimate is nevertheless given in Tab. 2.8d. The influence of the spatial resolution on the leading
eigenvalue is reported in Tab. 2.2. Compared to the vortex-induced-deformation test-case, the spa-
tial resolution needs to be finer for converging the growth rate and the frequency.

We compare now the instability thresholds predicted with the eigenvalue analysis to those re-
ported by Cisonni et al. (2017) and obtained with time-marching simulations. In this study, the
authors vary different parameters such as the plate aspect ratio, the mass ratio M or the reduced
velocity U. Then, neutral curves are determined by running non-linear time-marching simulations
in which a small-amplitude perturbation is applied at the flag at the beginning of the compu-
tation. The growth (resp. decay) of the oscillations is measured so as to estimate an unstable
(resp. stable) growth-rate of the perturbations. The vibration frequencies are estimated using a
Fast Fourier Transform of the oscillation signal at the tip end of the flag. In what follows, the
Reynolds number, Poisson coefficient and inertia ration are fixed to the values used previously,
(i.,e. Re = 100, vs = 0.4 and M = 4), while the reduced velocity U is varied. The results are
reported in Fig.2.9. On the left side, the growth-rate of the leading eigenvalue is displayed as
a function of the reduced velocity U, while the angular frequency is reported on the right side.
The case (U, M) = (13.53,4), or equivalently (s, M) = (13766,25) is the reference flutter case
presented in Fig. 2.6, and is materialized by the dashed vertical line. The linear stability analysis
predicts an instability threshold (A" = 0) for U™ = 13.35 4+ 0.05, which is very close to the one
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Figure 2.8 — Flutter-induced vibrations case. (a) Eigenvalue spectrum. (b) Real and imag-
inary parts of the leading eigenmode depicted with the streamwise fluid velocity (blue,
dashed negative contours) and the transverse solid velocity (orange). (c) Solid transverse
displacement extracted along the centreline (y = 0) of the solid, for 25 phases variing be-
tween 0 and 27r. Orange dots represent the vibrations minimas found in Cisonni et al. (2017)
also reported in (d). Results are shown for the finest mesh.
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Figure 2.9 — Flutter-induced vibrations, evolution of the leading eigenvalue for a mass ratio
M = 4, Reynolds number R, = 100 and Poisson coefficient vs = 0.4 when the reduced
velocity U is varied, with mesh M3. The values obtained by Cisonni et al. are reported
with squares symbols: the instability onset is found to U = 13.53 (left), with a vibration
frequency estimated around 3.5 4+ 0.1 (right).
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Table 2.3 — Characteristics of the extension d, Ny, Nqe eigenvalue

domain and influence on the leading eigen- 0.500 > 15 17475 0.0297 + 3.5451i
modes. d. is the thickness of the exten- 0.380 > 15 15721 0.0297 + 3.5451
sion domain €2, while Ny, and Nq_ are the 0.199 12 13829 0.0301 + 3.5441

numbers of layers of triangles and the total 0.041 6 8421 0.0320 + 3.5411i
number of triangles in the extension region, 0.018 3 5444 0.0341 + 3.536 i
respectively. The leading eigenvalue is re- 0.010 2 3531 0.0364 + 3.5301
ported in the last column. 0.005 1 1793 0.0419 + 3.5151

obtained by Cisonni et al. (2017) at U = 13.53. The frequency at the threshold is estimated by
the authors to (A%)°* = 3.5 & 0.1 (their values are reported in a logarithmic scale on a figure).
Once again, the frequency prediction obtained with the linear approach is in good agreement. It is
interesting to notice that the computational time for the characterization of one case is estimated
to about 1.2 hours on an Intel Xeon X5660 2.8 Ghz processor (CPUmark score 7622 according to
www . cpubenchmark.net, where it is claimed that the score roughly scales linearly with the amount
of data that the processor can handle in a given period of time). In our sequential computations,
performed with one core of an Intel Xeon E5-1620 v3 3.5 Ghz processor (CPUmark score 9758),
it takes about 2 minutes to compute a stationary flow and then about 4 minutes to compute 20
eigenvalues on the mesh Ms with the Lagrangian approach (without the modal projection evoked
in §2.3.4). This clearly shows the advantage of running linear analyses for thresholds identifications.

As a conclusion, our linear eigenvalue analysis, tested in a strongly coupled case where the
instability arises primarily from the fluid-structure coupling, is able to reproduce at much lower
costs the instability thresholds obtained with non-linear time-marching simulations. It remains
now to investigate, if any, the influence of the extension equation, and use modal projection to
further reduce the overall computational cost.

2.3.3 Influence of the extension operator and domain

The ALE formulation introduces a non-physical variable, the extension displacement, to propagate
the solid displacement field at the fluid-solid boundary into the fluid domain with the extension
operator. In the present linear stability analysis, the perturbation of the extension displacement
&2 is by definition infinitesimal and is thus never used to explictely move the fluid domain, unlike
in non-linear simulations. Nevertheless, we investigate here the influence of the extension domain
size on the results of the linear stability analysis.

Due to the infinitesimal size of the extension displacement, we expect that the extension domain
can be reduced to a few layers of elements around the elastic solid, as depicted in the sketch of
Fig.2.6. The extension region, depicted with dashed lines, extends over a layer of thickness d,
around the solid. For a given mesh, we define the signed distance function d(x) of any point
x € Q from the fluid-solid boundary I'. The extension mesh €, is then defined as the set of
elements whose centroids satisfy the relation §(x) < do. Thus d, controls the thickness of the
extension domain and the number Ny, of layers of elements, without changing the distribution of
the elements in the fluid mesh. This way of proceeding allows one to study only the influence of
the size of the extension domain, without changing the overall mesh resolution.

The characteristics of the extension regions and their influence on the leading eigenmode are
reported in Tab. 2.3. The extension region does not influence the leading eigenvalue provided its
size is sufficiently large, d, > 0.2 in the present case. Note also the greater sensitivity of the growth-
rate: while the frequency varies by about 0.03 % between the case d, = 0.199 and d, = 0.38, the
variation is by 1.3 % for the growth-rate. For the case with only one layer, the discrepancy com-
pared to the converged values is by 41 % for the growth-rate, and a remarkably small 0.84 % for the
frequency. We have also performed the same tests on the vortex-induced elastic deformation case,
and observed the same behaviour, with even smaller variations, probably due to the fact that the in-
stability mechanism is essentially linked with the wake located further downstream to the interface.
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Figure 2.10 — Influence of the extension domain on the spatial structure of the leading
eigenmode for (left) d = 0.4 and (right) d = 0.1. The limit of the extension region is marked
with the red dashed line. Contours correspond to the module of the streamwise Lagrangian
velocity (Ju® - ex|) while colors represents the Eulerian velocity |4° - ex|, defined in (2.3.3).

Let us now examine the eigenvectors, and more specifically the absolute value of the streamwise
fluid velocity. This quantity is displayed in Fig.2.10 with solid lines, for two sizes of the extension
domain, d, = 0.4 (top) and d = 0.01 (bottom). A strong difference is observed inside the extension
domain, while the isocontours look the same outside this region. This is expected since u° is the
Lagrangian velocity perturbation that depends on the extension displacement &;. To display a
quantity independent on the extension displacement, we follow Ferndndez & Le Tallec (2003a) and
define the Eulerian-based velocity perturbation as

@ =u’ — VU E° (2.3.3)

that includes the effect of the transport by the domain movement of the steady flow. Such Eulerian-
based perturbation is displayed with colors in Fig.2.10. A comparison between the two figures
shows that the spatial structure of the Eulerian velocity does not depend on the size of the exten-
sion domain.

To conclude, the size of the extension domain cannot be reduced to very few layers around the
solid domain, without modifying significantly the results of the stability analysis. The critical size
of the extension region depends on the mesh resolution at the interface but also on the problem
investigated: all things being equal, it is for instance smaller in the vortex-induced-deformation
problem than in the flutter problem, probably because the origin of the instability is more critically
the fluid-solid interaction in the latter case. As explained and detailed in §2.3.4, the extension
displacement field variable can also be eliminated from the discrete eigenvalue problem, to the
price of projecting the solid dynamics on a reduced basis composed of free-vibration modes. Results
obtained with the resulting reduced eigenvalue problem are presented in the next paragraph.

2.3.4 Results for the reduced eigenvalue-problem

Rather than solving the full eigenvalue problem (2.2.2), we consider here the resolution of the
reduced eigenvalue problem (2.2.7) obtained after projection of the solid dynamics onto free-
vibrations modes. More specifically, we investigate how the number of free-vibrations modes
influence the accuracy of the leading eigenvalue.

For our test-cases with elongated structures, the free-vibration mode with the lowest frequency
is a flexion mode with one vibration node at the clamped end, as represented on top in Fig.2.11a.
Then as the frequency increases, the number of vibration nodes in the corresponding mode increases
as well (see Fig. 2.11a modes 2 and 3). For higher frequencies, compression modes also appear. Note
that taking into account the initial stationary strains has a significant influence on the computed
frequencies: while the four first in-vacuo circular frequencies are 0.130, 0.842, 2.227 and 4.458, due
to the presence of the pre-strains that tends to elongate the solid, the vibration frequencies are
higher when the steady deformation = # 0 is taken into account for computing the uncoupled solid
vibration frequencies. Namely, the four first pre-stressed frequencies are 0.602, 1.577, 3.421 and
5.579. In all what follows, the free vibration basis is therefore computed by taking into account
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Mode 1 (ws,1)

Ns;  Eigenvalue Tiy
1 —2.760 4+ 2.7611 0.22
2 —0.856+2.0851 0.21
3
4
5

0.1860 4+ 2.8481  0.21

0.0078 +-3.972i  0.21

0.0360 +3.581i  0.22
10 0.0289 4+ 3.546i  0.23
20 0.0296 + 3.545i  0.26
Full 0.0297 4 3.545i 1

(b) coupled eigenvalues

(a) mode shapes

Figure 2.11 — Flutter-induced case, free vibration modes. (a) snapshots of the transverse
centreline displacement in the solid for different phases, for the three lowest frequency solid
modes with pre-stress (2 # 0). (b) Eigenvalues obtained with a projection on a basis with
N modes, and associated time 71,y for the LU decomposition of the corresponding reduced
matrix. The case without modal projection is reported in the last line.

these pre-stresses. Also note that the free vibration frequencies without initial strains that we have
computed are in good agreement with those obtained in Cisonni et al. (2017) (respectively 0.820,
2.287 and 4.498 for the second, third and fourth in-vacuuo circular frequencies, re-normalized
according to the reference scales used in this paper).

The results obtained with mesh Mjy are reported in Fig.2.11b. For Ny = 5, the basis for the
flutter-induced case is constituted of five modes, the first one with ws; = 0.602 and the last one
with ws5 = 8.584. As the number of modes in the free vibration basis is increased, the leading
eigenvalue of the approximate eigenvalue problem become closer to the leading eigenvalue of the
full problem (reported in the last row). One notices that the approximate results become fairly
good from Ny = 5. This is no real surprise, since the mode obtained with the full solver seems
to be a combination of the bending modes 1, 2 and 3 (see for instance the solid displacement
extracted from a cut y = 0 on Fig.2.8c). Note that fewer modes are required to reconstruct
correctly the frequency than to reconstruct the growth-rate. For Ny = 5, the deviation compared
to the eigenvalue obtained with the full problem is of about 23% for the growth-rate and less than
2% for the frequency. In all cases the interest of the modal decomposition in terms of computing
performance is clear. Even when a solid basis of 20 modes is considered, a speedup of at least
about 4x is observed for the LU factorization of the shifted system matrix (using a direct LU
solver like MUMPS). The gain in terms of memory depends on the initial extension box size.

2.3.5 Test-case with a 3d flexible plate in a cross-flow

The last test-case is a three-dimensional flexible plate facing a uniform incoming flow of velocity
Us - The stability of the three-dimensional flow around the rigid plate was previously investigated
by Marquet & Larsson (2015). Following them, we define the Reynolds number as R, = Uoh*/v
where the height of the plate h* is used to non-dimensionalize all lengths. The non-dimensional
thickness of the plate being fixed to 0.04, they varied the non-dimensional spanwise length L in
the range 1 < L < 6 and determined the critical Reynolds number for various eigenmodes. These
unstable eigenmodes break one of the reflectional symmetries with respect to the planes y = 0 and
z = 0 that are satisfied by the steady flow. Here, we focus on the longest plate L = 6 and set
the Reynolds number to R, = 60. For this value an unsteady eigenmode breaking the reflectional
symmetry with respect to the plane y = 0 is unstable. Such eigenmode leads to the shedding of
vortices whose axis is aligned with the z direction. Here, we consider that the flexible plate is
clamped along its axis Oy and investigate the effect of the flexibility on the unsteady properties of
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Figure 2.12 — Computational domain of the three-dimensional flexible plate (orange) im-
mersed in an incoming uniform flow sketched with blue arrows. The plate is of (non-
dimensional) height 1, length 6 and thickness 0.04. Only a quarter of the physical domain
is used for the computation, exploiting the reflectional symmetries of the problem. The
boundary conditions applied on the symmetry planes are specified in the text. A probe
point P is placed in the free corner of the plate at position (0,0.5,3) marked with a +
symbol.

the wake flow. As the stiffness is reduced, the plate bends in the streamwise direction as a result of
the load exerted by the incoming flow. After computing the steady flow balancing the deformation
of the plate for various stiffness, we determine its stability by computing the largest eigenmodes.

The plate is made of an elastic material characterized by a fixed Poisson coefficient v, = 0.35 and
a non-dimensional Young modulus varying in the range 5 x 10° < &, < 1 x 10'°. The fluid-to-solid
density ratio is set to Mg = 1. The computational domain, sketched in Fig. 2.12, is a quarter of the
physical domain, taking advantage of the reflectional symmetries, specified hereinafter, to reduce
the computational cost. Dirichlet conditions are applied to the velocities at the inlet (z = —10),
a stress-free boundary condition is applied at the outlet (x = 20) and slip boundary conditions
are applied on the lateral planes (z = 10 and y = 7). The boundary conditions applied along the
symmetry planes (y = 0 and z = 0) depend on the type of computations. The steady flow velocity
and solid displacement fields exhibit the following reflectional symmetries

(Sy) : (UwaUyaUzaEl'aEyaEZ)('r7_y7z) = (Ula_UyaUZaEIa_EvaZ)(x7y’Z)
(Sz) : (Ux;UyaUZaExaEyaEZ)(xay7_Z) = (Uxava_UZaEQTaEya_E'Z)(x7yvz)

where (U, V,W) are the components of the steady flow velocity and (E%,ZY,E%) are the compo-
nents of the steady solid displacement. For the steady-state computations, the following boundary
conditions are thus applied on the symmetry planes

(0yUx, Uy, 0,U.,0,Z4,2y,0,E.) (2,0, 2) = (0,0,0,0,0,0)
(0-Us,0.U,,U., 0.4, 0.2y, 2.) (z,y,0) = (0,0,0,0,0,0).

The eigenmode of interest satisfies the symmetry (S,) but breaks the symmetry (S,). For the
eigenvalue computations, the following boundary conditions are therefore applied on the symmetry
planes,

(u;7 8yu27 ug? 5;7 83;5;, 52) ((L‘, Oa Z) = (Oa 0; 0, 07 07 O)

(0-ug, .ug, ug, 8.€2,0.7,62) (x,1,0) = (0,0,0,0,0,0)

where (§7,&;,&7) are the solid components of an eigenmode. More details about the various combi-
nation of symmetries satisfied by the eigenmodes can be found in Marquet & Larsson (2015). The
computations are performed using a mesh made of 268 562 tetraheadra that yields to 1830560
degrees of freedom for the steady-state problem and 1916836 for the eigenvalue problem. For
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Figure 2.13 — Steady fluid-structure equilibrium for the three-dimensional flexible plate facing
an incoming uniform flow. The pictures on the right-hand side display top and side views
of the steady solution obtained for £ = 5 x 10° in the symmetry planes y = 0 (top) and
z =0 (bottom). Velocity magnitude contours in the y = 0 plane are depicted with the blue
color, and the pressure at the surface of the plate is depicted with the orange color. The
back-flow region in the wake of the plate is delimited with the gray translucent surface for
which the streamwise velocity is —0.05. The left-hand side graph represents the streamwise
displacement of the point P as a function of the stiffness &;.

both the stationary computations and eigenvalue problems investigated here, the block Gauss-
Seidel preconditioner requires on the order of ten iterations to converge. Combined with direct
LU decompositions for each sub-block, this provides relatively fast and robust computations for
moderately large 3d problems. To compute large steady deformations of the plate achieved when
the stiffness & is reduced, an updated Lagrangian approach (Etienne & Pelletier, 2005) is used
together with a continuation on the Young modulus, so as to deform progressively the computa-
tional domain.

The steady-state solutions are described in Fig.2.13. Contours of the flow velocity magnitude
(blue) in the plane y = 0 and the pressure at the surface of the plate (orange) computed for
& = 5 x 10° are shown. The pressure is maximum in the center of the plate, then decreases as one
moves towards the edges thanks to the streamlining effect induced by the deformation of the plate.
For the above value of the stiffness, the displacement of the plate in the streamwise direction is of
the same order of magnitude as the height of the plate. The shape of the back-flow region in the
wake of the plate is modified by the bending of the plate, as emphasized by the translucent gray
interface that delimits the back-flow region. The larger back-flow velocities are obtained near the
tip of the plate. The streamwise displacement of the tip (point P shown in Fig.2.12) is reported
in the left-hand side picture as a function of the stiffness. Small displacements of the plate are
obtained down to & = 107. Further decreasing the stiffness yields to a linear increase of the
displacement up to 1, the (non-dimensional) height of the plate.

The largest eigenvalues are computed for a stiff (£; = 1 x 101%) and a flexible (£ = 5 x 10°)
plate. The eigenvalue spectra are reported in Fig. 2.14a with symbols [J and X, respectively. The
unstable pair of eigenvalues obtained for the stiff plate compares well with results given in Fig. 5 in
Marquet & Larsson (2015) where an angular frequency of 0.529 is reported for the unstable mode.
In the case where & = 1 x 10'°, an angular frequency of 0.518 is found (deviation of about 2 %).
Considering now the flexible plate, one clearly see that the pair of complex eigenvalues is stabilized
and its frequency is increased (0.003+0.797i). The vibrating motion given by the solid component
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Figure 2.14 — Linear stability analysis of steady solutions computed for flexible plates of
various stiffness &. (a) Eigenvalue spectra for a stiff plate (O, & = 10'°) and a flexible
plate (x, & = 5 x 10°) where the unstable eigenvalue is circled. (b) Three-dimensional
view of the instantaneous deformation of the flexible plate induced by the solid component
of the eigenmode associated to the pair of marginal complex eigenvalues (x). Snapshots
are displayed (in the clockwise direction) at times 1/4, 1/2, 3/4 and 1 of the oscillation
period T' = 27/w, w being the imaginary part of the eigenvalue. The colors indicate the
deformation magnitude. The rectangle placed in the plane z = 0 materializes the clamped
position of the plate. (c,d,e) Plots of the z, y and z components of the flow velocity (blue)
and solid displacement (orange) of the real part of the unstable eigenmode. For the fluid,
iso-contours are shown for a positive (light blue) and a negative (dark blue) values.

of the eigenmode that corresponds the marginal pair of eigenvalues is shown in Fig. 2.14b for the
flexible plate. Four snapshots in the period of oscillation are depicted. The displacement is a
combination of torsional motion about the z axis and a smaller-amplitude up-and-down flexion
along the y axis. As shown in Figs. 2.14¢—2.14e, the flow velocity components exhibit an oscillating
pattern in the streamwise direction, typical of the vortex-shedding pattern also observed for the
rigid plate (Marquet & Larsson, 2015). The spatial structure is mainly modified by the streamlining
effect induced by the bending of the plate. For instance, the transverse size of the region where
the largest y velocity perturbations occur is reduced.

This three-dimensional test-case shows that the present approach allows to compute steady fluid-
solid configurations for which the solid is strongly deformed by the fluid loads and to determine the
three-dimensional fluid and solid modal perturbations that are responsible for the destabilization
of this steady state.



66 2. Figenvalue analysis of fluid-structure steady-states

h = 0.004
Figure 2.15 — Poiseuille flow between flex- % 5! g
ible plates. Representation of the config- ,_, ,, = -
uration (not to scale) with dimensions in [ ry
[ I
m.

2.4 Comparison of Lagrangian-based and Eulerian-based ap-
proaches

Let us now compare our new Lagrangian-based approach introduced in section 2.1.2 to the Eulerian-
based approach recalled in section 2.1.4. Even if these two approaches are equivalent at the
continuous level (see Appendix C.2), they do not necessarily behave similarly at the discrete level.

2.4.1 Poiseuille flow between flexible membranes

We first consider the case of a two-dimensional Poiseuille flow in a channel 1m long and [ =
0.04 m high, between two elastic membranes of 4mm thickness, as represented in the sketch in
the Fig.2.15. This case is convenient, for it allows to compute analytically the components of
the steady equilibrium if the steady displacements are neglected. Then, the two linear stability
formulations can be compared in a case where the steady flow as well as the added stresses are
explicitly known. In particular, in that case the stress-free and steady deformed configuration
strictly coincide, because the steady displacement is identically zero.

This benchmark problem is close to that considered by Fernandez & Le Tallec (2003b), with the
following discrepancies: the authors considered the first three modes of a beam model as a reduced
solid model, while we consider an elastic 2d solid without modal basis reduction. They also consid-
ered a simple-cantilevered case, while we assume that both ends of the solid are clamped. We made
this choice in order to avoid having to consider the stress variation at a mobile outflow, which is
not possible in the Eulerian-based approach without modal projection. The geometric parameters
(with dimensions in m) are reported in Fig.2.15. In the present case, the fluid density is set to
pr = 1000 kg/m?® and the solid density to ps = pr. The fluid viscosity is vy = 5 x 107°m?/s. The
Poisson coefficient for the linear elastic solid is v4 = 0.4, and the Young modulus E; = 5 x 108 Pa.
Finally, the mean parabolic inflow flow velocity is set to Uy = 3.5m/s.

Under the assumption of a negligible steady displacement Z = 0, the stationary solution reduces
to a Poiseuille flow of velocity U (z,y) and pressure P(z,y) solution to the Navier-Stokes equations
in a channel made with rigid walls:

U vt ps
l2

x.

Furthermore, the components of the added stiffness term appearing in (2.1.32) can be computed
explicitly, since in particular the components of the stationary fluid stress tensor is known. Noting
a = 12Uy vg pg/1?, they write 0, = 0yy = oz and 04y = 0y, = a(l/2 —y) while the only non-zero
stress derivatives are constant, namely

004y Ooyy 00y  00ys

or oz and oy - oy -

This allows to write explicit expressions for the transpiration velocity condition (2.1.31) and the
added stiffness term (2.1.32), as well as for the steady flow that appears in the linearised Navier-
Stokes equations.

Once the steady flow is determined, its stability is investigated, by solving one the one hand the
Lagrangian-based problem (2.2.2), and on the other hand the Eulerian-based problem that writes
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Table 2.4 — Eigenvale analysis for the Poiseuille
flow between flexible walls. For the case of an
1200 2.34518 + 5.85571i1 2.34203 + 5.854091 analytic steady flow between rigid walls, leading
2400 1.47758 4+ 7.190491 1.47672 + 7.191517 eigenvalues obtained with the Lagrangian-based
7000 0.93877 + T.AT7931  0.93878 + 7.477851 and Eulerian-based approaches with fluid-elastic
’ . ' ' . perturbations, as a function of the number of tri-
28000 0.99725 + 7.427181i 0.99774 + 7.42694 i angles N; in the mesh.
63000 1.00867 + 7.42059i 1.00866 + 7.420581
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after space discretization with finite elements
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where the matrices T and K are obtained from the transpiration velocity condition (2.1.31) and
the added stiffness term (2.1.32) respectively. The other matrices are the same than that obtained
with the Lagrangian-based approach. Since the steady displacement is zero, the solid problem
reduces to the linear elasticity equations. A perfect agreement is found between both stability
approaches, as reported in Tab. 2.4 where the leading eigenvalues are reported as a function of the
number of triangles in the (structured) mesh used to discretize the channel and the surrounding
elastic walls. For all mesh resolutions, the deviation between both the real and imaginary parts of
the leading eigenvalue do not exceed 0.05 %

This example furthermore allows to investigate the importance of the added-stiffness terms:
we can evaluate the error that is made when they are neglected. In Fig. 2.16 the spectra obtained
with the Lagrangian-based (x) and exact Eulerian-based (+) approaches are represented, showing
the excellent agreement mentioned above. In addition, the spectra obtained by setting the added
terms to zero (i.e. set K to zero) is shown with O symbols. In this latter case, the only remaining
coupling between the fluid and the structure is the interface transpiration velocity condition ud =
u° 4+ (VU) £°. We observe in that case that although the leading eigenvalue has roughly the same
frequency as that obtained from the exact formulations, it has a slightly negative growth-rate and
thus completely misses to predict the instability.

On this simple example, it is thus illustrated that the (equivalent at the continuous level)
Lagrangian-based and Eulerian-based approaches are also equivalent at the discrete level when the
stationary solution whose stability is investigated is provided in an ezact fashion. Furthermore,
the critical role of the added-stress terms has been shown.

2.4.2 Flag in a channel flow

We now come back to the more complicated case of a flag in a channel flow, already described in
§2.3.2. Like in the previous paragraph, the Lagrangian-based and Eulerian-based approaches are
compared. In the present case it is much harder to obtain converged results with the Eulerian-
based approach. In particular, the eigenvalues are found to be extremely mesh-sensitive, especially
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My—1  My—50 My—1  My—50
label Ntrig Nvert. Ninterf.

My —1 3441 1931 404

M; —1 8643 4635 566

My —1 15147 7992 804

Ms —1 34796 17925 1614

My —1 64954 33315 2420

Ms—1 128590 65345 4032

Mg —1 269902 136213 5644

My —50 5049 2735 650

M; —50 11887 6257 912

My —50 20693 10765 1304
Ms —50 52394 26724 2610
M, —50 101632 51654 3916
Ms —50 217004 109552 6528
Mg —50 456510 229517 9140

(a) mesh data (b) view of the tip of the plate for a selection of meshes

Figure 2.17 — Mesh for a rounded flag. (a) For the set of meshes considered, number of triangles and
vertices in the total mesh, Nz, and Nyert., and number of vertices Nintersr. on the fluid-structure
interface. (b) Region of different meshes in the vicinity of the tip of the plate.

with respect to the discretization close to the tip of the plate. For that reason, a set of meshes
with a rounded tip is considered, as reported in Fig.2.17.

Steady flow € stresses computation

The computation of the steady flow is done by the very same way as in §2.3.2. Let us give details
about the computation of interface stresses, that enter as an input of the Eulerian-based stability
formulation. They are computed here in the steady deformed configuration, as a post-processing
from the velocity and pressure fields. Noting U = (U,V), the zz component of the fluid stress
tensor is for instance computed by solving numerically the variational problem

2 oU
/Qfamwde/Qf{PJr Reé’x} 1 dQ,

by projecting the test-function ¢ and the stress component o, in the basis of P; finite-elements.
The same kind of approach is used for computing the partial derivatives of the interface stress,
that again are represented as P, fields. This approach necessarily comes with degraded fields: the
higher the differentiation order, the higher the differentiation “noise”. Note that this problem can
be partially overcome by using mixed-hybrid formulations for the Navier-Stokes equations, where
in addition to the usual velocity and pressure variables, the velocity gradient itself is considered
as an unknown (Farhloul & Fortin, 2002). This way of proceeding allows in a certain sense to
save one step of differentiation, but has some drawbacks either: these formulations require special
elements (Raviart & Thomas, 1977) or numerical stabilization (Behr et al., 1993), and result in
a larger numerical problem because of the additional unknowns. Furthermore, to our knowledge
the method has never been applied to fluid-structure problems. Its adaptation might not be that
obvious: for instance, gradients are not necessarily continuous at the interface in this latter case.
For all of these reasons, we kept a more classical formulation for computing the steady flow and
the stresses where systematically computed a posteriori.

The three components of the viscous stress tensor along the flag’s surface (the upper portion
y > 0, in the steady deformed configuration) are represented in Fig.2.18. The graph on the left
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Figure 2.18 — Interface stresses. Representation of the three components of the viscous stress tensor
along the flag’s interface (y > 0 side), computed in the steady deformed configuration, as a function
of the z-position, for the mesh M3 — 50.
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Figure 2.19 — Interface shear stress derivatives. Representation of the three components of the
viscous stress tensor along the flag’s interface (y > 0 side), computed in the steady deformed
configuration, as a function of the z-position, for different mesh resolutions.

shows the evolution over the whole span of the flag, where nothing of great interest is happening.
The shear stress is almost constant for z < 2, because the flow is almost a pure Poiseuille flow (see
also Fig. 2.7 showing the steady flow) without great variations in the streamwise direction. For the
same reason, the xx and yy component involve principally the pressure that varies almost linearly
with z. Larger variations occur close to the tip of the flag, as represented in the graph in the right
side, that displays a zoom in this region. Due to the change of curvature, the stress components
are found to vary much more rapidly there. In particular, the sharp transition shortly after x = 2
is caused by the curvature discontinuity that results from the transition between a straight line
(infinite curvature) and the circle that makes the tip (finite curvature equal to the radius of the
circle). The transition does not occur exactly at the position = 2 (recall that the plate length is
2 and the origin of the axis is at the clamped end) because of the slight elongation of the elastic
plate provoked by the steady flow.

The evolution of the shear stress derivatives in the vicinity of the tip is displayed in Fig. 2.19.
Without surprise, an extra mesh refinement has to be prescribed close to the tip so as to capture
the sharp variations. When a factor 50 is applied, the variations are properly captured from mesh
M;.

Linear stability analysis

We now move on to the results of the linear stability analysis. There is no surprise as far as the
Lagrangian-based approach is concerned, as reported in Fig. 2.20. For sake of comparison, the case
with a tip refinement is reported as well as the case without.

The same is not true when considering the Eulerian-based approach, for which the mesh con-
vergence is reported in Fig. 2.21. In these graphs, the dashed line identifies the real and imaginary
parts of the converged leading eigenvalue obtained with the Lagrangian-based approach, while the
shaded area depicts the min/max y-axis limits applied in Fig.2.20. Like before, both refined and
regular meshes are considered. No convergence at all is observed with the regular mesh. This is
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Figure 2.20 — Mesh convergence for the Lagrangian-based approach.
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Figure 2.21 — Mesh convergence for the Eulerian-based approach.

not surprising, because in that case the steady stresses are not properly captured in the vicinity
of the tip. What is more surprising is that when considering the set of meshes refined 50x, there
is still a fairly bad convergence. Even for the most refined mesh, the growth-rate stays far away
from the value obtained with the Lagrangian-based approach, while the frequency oscillates quite
erratically.

In order to identify more precisely what terms cause trouble, mesh convergence for cases with
and without the added stiffness terms is reported in Fig. 2.21. Like above, the dashed line represents
the values obtained using the Lagrangian-based approach. Note also the much wider range for the
y-axis compared to the previous graphs. The case with all the added terms (+) yields to the best
agreement when it comes to both the growth-rate and the frequency (for this latter case, the curve
collapses onto the dashed line because of the scale, but a close-up view displays what is reported
in Fig.2.21). On the other hand, neglecting the added terms (O) results in a dramatic under-
estimation for both the growth-rate and the frequency. Note also that both of them does not seem
to be converged even with the finest mesh. When only the term o (U, P)®(£°)7T is considered (0O),
there is still an underestimation of the growth-rate, but an overestimation of the frequency. Note
that in that case, a converged eigenvalue seems to be eventually obtained. Finally, when only the
term Vo (U, P)&° is considered (<), the situation is reversed: the growth-rate is overestimated
while the frequency is underestimated. The convergence is also less good.

We see here first that, like before, it is necessary to consider the full added term to capture the
instability. However, on this example, the mesh convergence properties of the method are fairly
bad. Especially, the method seems to be extremely dependent from the regularity of the mesh in
the vicinity of the fluid-structure interface.

2.5 Conclusion

Let us also now summarize the three different formulations available for the fluid-structure linear
perturbations problem: in the sketch below, an orange color refers to the stress-free reference
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Figure 2.22 — Influence of the added terms on the Eulerian-based formulation. Plot of the real
(left) and imaginary (right) parts for the leading eigenvalue obtained with the Eulerian-based
approach, as a function of the number of triangles in the mesh (series M; — 50), for the velocity
transpiration case where the added-stiffness terms are removed (O symbols), the case where only
the part o (U, P)®(£°)7T is considered (), the case where only the term Vo (U, P) £° is considered
(©) and finally the case with all the terms (+).

configuration (rigid solid), a gray color refers to the steady deformed configuration (by the steady
fluid-solid equilibrium) and the red color refers to the actual, perturbed configuration. The dotted
line represents schematically a fluid flow streamline. Steady fields are materialized with double
arrows (=) and perturbation fields with a simple arrow (—).

With the Lagrangian-based approach in the stree-free reference configuration, all fields are eval-
uated in the same fixed configuration. This approach is used for computing the exact Jacobian of
our non-linear time-dependant solver. With the Lagrangian-based approach in the steady deformed
configuration, the steady flow is used to deform the solid and generate the aforementioned steady
deformed configuration. The perturbation problem is written there. This is the preferred ap-
proach for fluid-solid stability analyses: it is found to be numerically consistent, and gives accurate
predictions of instability thresholds at a very moderate cost compared to non-linear simulations.
Finally, the Eulerian-based approach also starts with a base-perturbation decomposition written
in the steady deformed configuration, buth that integrates the transport of the fluid velocity and
pressure by the perturbation of the domain. This formulation is conceptually appealing, but comes
sadly with numerical difficulties. For this reason, in the next chapters, all the computations will
be done using the Lagrangian-based approach.

Eulerian-based

Lagrangian-based
(stress-free configuration)

ﬁ

(@, t) = U(&) +ed/(2,1)
P(&,t) = P(&) + < (2,1)
£(#,1) = B(&) + &' (&,1)
£o(@,1) = Bo(®) + e €l(d,1)

Lagrangian-based
(steady deformed configuration)

u(z,t) =U(x) + cu'(x,t)
p(x,t) = P(x) +ep'(x,t)
£z, t)=0+e&(x,t)

ez, t) =0+ eé(z,t)

(steady deformed configuration)

u(z,t) =U(z) + (VU & + @) (x,t)
p(x,t) = P(x) +e(VP-& +7)(z,t)
&(x,t) =0+ (x,t)
Eo(x,t) =0 +c&l(z,t)






FLUID-STRUCTURE STABILITY
ANALYSIS OF AN ELASTIC PLATE
CLAMPED BEHIND A RIGID CYLINDER

Instabilities developing in a configuration constituted by an elastic plate clamped behind a rigid
cylinder are analysed in this chapter. The interaction between the wake flow generated by the
cylinder and the elastic plate leads to self-developing vortex-induced vibrations. Depending
on the stiffness, the plate may oscillate about a non-deviated or a deviated mean transverse
position. After having presented non-linear results computed using the methods detailed in
the chapter 1, the instabilities are analysed in terms of the eigenvalue analysis introduced in
the chapter2. We show that the deviation of the plate can be interpreted as a divergence
mode that appears at zero frequency in the eigenvalue spectrum. Further analyses show in
which extent the linear analyses explain the non-linear limit-cycles observed.
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3.1 Introduction

The well-known laminar, incompressible cylinder flow, that is representative for most of the mech-
anisms that occur in low-Reynolds number wake flows (Roshko, 1993), looses its stability above
a diameter-based Reynolds number of about 47, the new stable attracting state consisting in an
unsteady, time-periodic wake resulting from an alternate shedding of vortices from the obstacle.
This is a typical self-developing instability that is well characterized by eigenvalue analyses (Sipp
& Lebedev, 2007). We focus here on the flow about the circular cylinder with a passive flexible
appendage attached in the rear side, referred hereafter to as a splitter plate, with the aim to analyse
the mechanisms at play in the development of the flow-induced vibrations of the system.

This configuration has been used for instance to increase the stability of the wake and decrease
the drag: experiments conducted at Reynolds numbers between 5 x 10% and 5 x 10* by Roshko
(1954), Apelt & West (1974) and Cimbala & Garg (1991) showed for instance that when the
splitter plate is rigid and has a length L that is greater than 5 D, where D is the diameter of the
cylinder, then the vortex shedding completely disappears and the drag is significantly reduced.
This observation has also been reproduced numerically by Kwon & Choi (1996) at lower Reynolds
numbers between 80 and 160. In the flexible case, using numerical simulations at a Reynolds
number of 150 and plate lengths between D and 3 D, Wu et al. (2014) also observed drag-reductions
as well as a damping of the unsteady aerodynamic forces, compared to the rigid case. We will
investigate here this short-length regime, that shows complex coupling dynamics. When the plate
is flexible, an oscillatory deformation induced by the wake flow develops in the splitter plate, that
can in return significantly affect the flow, and thus further modify the vortex shedding mechanisms
on the form of vortez-induced vibrations (Williamson & Govardhan, 2004).

The coupled fluid-solid dynamics of the cylinder-splitter plate dynamics were investigated nu-
merically primarily using time-dependent non-linear simulations, assuming a freely rotatable rigid
plate (Xu et al., 1990; Kwon & Choi, 1996; Lu et al., 2016) or a flexible plate (Turek & Hron, 2006;
Gomes et al., 2011; Lee & You, 2013; Shukla et al., 2013). Depending on the parameters (typi-
cally the Reynolds number, the density ratio between the solid and the fluid, the flexibility and
the length of the plate), different regimes are observed non-linearly. At sufficiently high Reynolds
numbers and low flexibility, vibrations are observed in the plate and a vortex wake sets in down-
stream to the obstacle. If these unsteady simulations provide the limit-cycles and the associated
non-linear features such as the vibration amplitudes, they provide only a limited overview of the
underlying destabilization mechanisms at play. Furthermore, the high computational cost (which
increases all the more as the mass ratio is close to unity) prevents from obtaining a comprehensive
characterization of the regions where unsteady oscillations occur, since each point in the parame-
ter space requires a lot of numerical effort to be characterized. This pushes for using a linearised,
faster approach, that in addition gives the linear modes of instability. Namely, we consider here
the eigenvalue analysis introduced in the previous chapter, that is appropriate for that purpose.

One of the most striking effect on the vortex shedding dynamics that emerges from the cou-
pling with a flexible structure is that of frequency lock-in: in a certain range of parameters, the
Strouhal number of the flow has the tendency to get “locked” to the structural natural frequencies
(Williamson & Govardhan, 2004). This effect has been evidenced experimentally , numerically
and theoretically in many configurations such as the well-known spring-mounted cylinder (Zhang
et al., 2015; Navrose & Mittal, 2016) but also in the cylinder-splitter plate configuration (Jia &
Yin, 2009; Kim et al., 2017) that is studied here more specifically. Frequency lock-in was explained
in a very simple way by de Langre (2006) in terms of coupled-mode flutter. In his analysis, the
flow is reduced to a wake oscillator model (Facchinetti et al., 2004) that is further linearised, then
coupled to a one degree-of-freedom spring-mounted solid. By varying the reduced velocity, it is
observed that an unstable mode appears, whose frequency deviates from the Strouhal law. Instead
of the coupling between plunging and torsion that is at play in classical wing coupled mode flutter
(Dowell et al., 2004), frequency lock-in is caused here by a coupling between the solid displacement
and the fluid wake oscillation. Strikingly, in presence of flexibility, coupled-mode flutter and fre-
quency lock-in can occur in sub-critical conditions (Mittal & Singh, 2005), that-is, at a Reynolds
number that corresponds to a stationary, stable flow when the system is rigid.

A second effect that appears because of the flexibility is that of symmetry-breaking reconfigura-
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tion: for some parameters, the configuration where the mean position of the splitter plate remains
aligned with the mean flow is unstable, and the observed configuration is that of an oscillation
about a deviated mean position. For the case of a rigid splitter plate mounted on a freely rotatable
cylinder, this deviation was first observed experimentally by Cimbala et al. (1988), Cimbala &
Garg (1991) at Reynolds numbers between 5 x 10% and 2 x 10%, Cimbala & Chen (1994), and more
recently by Gu et al. (2012) in wind tunnel experiments in a range of Reynolds number from 3 x 10*
to 6 x 10%. On the other hand, Xu et al. (1990) conducted numerical simulations in a Reynolds
number range 1 — 100 and plate lengths between 0.5 and 2. They found that above a critical
Reynolds number that depends on the ratio L/D, a symmetry-breaking bifurcation appears and
the splitter plate migrates to an asymmetric equilibrium position where the total moment M (6)
as a function of the deviation angle # is zero. The equilibrium is stable when dAM/df < 0. As
reported in Fig. 3.1 for the case L/D = 1, only the position § = 0 is stable at R, = 20, whereas
at Re = 50 the position § = 0 is unstable and two stable equilibria (on either side of the wake
with equal probability of being reached) are found. A semi-empirical expression for the moment
M(6) was given by Lacis et al. (2014), who then constructed a model of the deviation in terms
of an “inverse-pendulum instability”. This model could then reproduce the deviations observed
in soap-film experiments as well as numerical simulations. Spontaneous deviations have also been
observed with flexible splitter plates, for instance by Bagheri et al. (2012) and Wu et al. (2014). On
the occasion of Rémi Allandrieu’s graduation internship (2018) at ONERA under the supervision
of Marie Couliou, such deviations have also been reproduced, the role of the flexible splitter plate
being played by a silk fiber clamped behind a rigid cylinder, and placed in a vertical soap-film
driven by gravity. A quick preview of the obtained results is displayed in Fig. 3.2 and we refer the
reader to the report by Allandrieu (2018) for more details.

The cylinder-flexible splitter plate is analysed here in the context of both non-linear simulations
and linear stability analysis. By varying the rigidity of the plate, we will highlight both vortex-
induced vibrations instabilities and symmetry-breaking bifurcations. In particular, we will show
that the symmetry-breaking reconfiguration appears as an unstable stationary mode, and thus can
be interpreted in terms of a divergence instability, that is simply provoked by the apparition of a
negative added-stiffness fluid force that balances the elastic restoring force. The plan of the study
is the following: after having introduced the configuration, time-series extracted from non-linear
simulations at different values of the plate stiffness are presented. Then, a linear stability analysis of
the stationary, symmetric fluid-structure equilibrium is performed in the range of stiffness investi-
gated previously, showing the different types of instabilities evoked before. Added-mass, frequency
lock-in and divergence phenomena are analysed into details. The stationary symmetry-breaking
instability is then used to compute a steady deformed, non-linear fluid-structure equilibrium, whose
linear stability is further investigated. The results of the linear stability analysis are compared to
the non-linear results: insights available from the linear analyses are emphasized, as well as the
intrinsically non-linear properties.

3.2 Problem setting

The geometry of the present fluid-structure configuration is taken from a study by Lee & You (2013)
and is reproduced in Fig. 3.3, where we have indicated the non-dimensional lengths. An elastic
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(a) (b) (c)

Figure 3.2 — Experimental deviations in a soap-film. Pictures taken by the author, on a soap-film
flow experiment conducted at ONERA, set-up by Rémi Allandrieu and Marie Couliou. Visualisation
by white-light interferometry: visible colours are related to the local thickness of the film, which
itself is related to the local flow velocity (Zhang et al., 2000). The mean flow is from the top to
the bottom with an average velocity of the order of 2ms™! while the diameter of the cylinder is
about 5 mm. For a ratio L/D ~ 4, (a) short-exposure time snapshot (exposure time 1/3200s) and
(b) longer-exposure (1/10s) showing the filament vibration envelope. For a ratio L/D ~ 1.5 and
the same exposure time 1/10s, (c) shows a case with a steady deviation. Pictures taken with a
105 mm /2.8 lens mounted on a NIKON D750 camera. More details available in the Master’s thesis
report by Allandrieu (2018)

Figure 3.3 — Geometry of the problem. Rep-
resented with dimensionless lengths relative to —
the cylinder’s diameter. N 2

plate is clamped on the rear side of a rigid circular cylinder of diameter D*. The non-dimensional
length of the plate is set to L*/D* = 2 and the thickness to H*/D* = 0.06

A uniform flow field of velocity UZ is applied at the inlet of the domain. We assume that the
flow of density p; and viscosity 7y is incompressible. For short splitter plates, the cylinder diameter
D* is an appropriate measure of the characteristic length scale in the flow, while the inflow velocity
is taken as the characteristic velocity. The flow is governed by the Navier-Stokes equations, while
a Saint-Venant Kirchhoff elasticity model is taken for the solid with a Poisson coefficient v5 of 0.35.
The Reynolds number and the non-dimensional stiffness parameter then read as follows:

_ i UsD* and &, s

R s = ————.
‘ A i (U%)?

The governing equation are written under the form of the fully coupled three-fields problem (1.1.1),
while the eigenvalue problem will be written for convenience without the velocity augmentation
(we refer the reader to the chapter 1 for further details).
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Figure 3.4 — Mesh. Plot of the computational mesh, showing (a) a portion of the farfield fluid region
(light gray) and the extension region (black), and (b) close-up view in the vicinity of the tip of the
splitter plate (solid mesh represented in orange color).

3.3 Non-linear simulations

3.3.1 Numerical settings

The computational domain has dimensions 2 € [—15,50] and y € [—25, 25]. The unstructured mesh
is made of 29976 triangles and 15297 vertices, among which 1376 and 1007 are located in the solid
region (see in Fig.3.4 a representation of the mesh). At the conforming fluid-solid interface, the
grid spacing in the = and y direction is set to 0.0067, while the largest spacing of 1.67 is set in
the farfield region. Refinement is applied in the wake up to £ = 26 so as to capture properly the
near-wake vortices, and the edges of the tip of the splitter plate are rounded. The extension region
is taken as a sub-region of the fluid region enclosing the splitter plate, of dimensions z € [—1.5,7]
and y € [—2,2]. An inflow velocity is prescribed at the inlet boundary z = —15, slip conditions
are taken at the top and bottom farfield boundaries y = £25, and a stress-free outflow condition is
taken for the outflow at x = 50. No-slip conditions are prescribed at the surface of the bluff-body
(cylinder and plate).

Several non-linear simulations have been performed for various rigidities £ of the plate. De-
tails on the non-linear solver used as well as its validation are given in the chapter 1. A shifted
Crank-Nicholson scheme is used for the time discretizetion, and finite-elements are used for space
discretization. For all computations, the time-step is set to At = 0.01 which was found to result in
converged time series. More details about the validation of the non-linear solver are given in section
1.2. Unless otherwise stated, the simulations are initialised by a uniform, zero flow. Between the
non-dimensional time units t = 0 and ¢ = 20 the inlet velocity is smoothly increased following the
law uin(t) = 0.5 (1 — cos(w/20t)). For ¢ > 20 the inflow velocity is set to 1.

As time goes on, two symmetric (with respect to the y = 0 axis) recirculating bubbles appear
behind the cylinder, above and below the splitter plate. These recirculating regions tend to slightly
compress the splitter plate in the direction x < 0. After some time (function of the rigidity) and
for rigidities less than £ = 119900, self-developing instabilities set in, that result in different types
of limit-cycles, characterized by periodic movements for the fluid and the splitter plate.

3.3.2 Non-linear simulation results

In the following, we vary the stiffness and keep the other physical parameters to fixed values. More
precisely,
Es €2 x10%,2 x 10°] Re = 80, M, =1, vs = 0.35.
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Figure 3.5 — Stationary flow (region n;). For the case at R. = 80 and & = 2 x 10°, plot of
the streamwise velocity (blue color), streamlines (solid lines) and limits of the recirculating region
(orange dashed line). The figure at the bottom presents a close-up view of the solid deformation,
where its direction is materialized by the arrows and the magnitude by the orange color shade.

In the following, we first detail a few representative cases (in the order of a decreasing stiffness).
The observations are then summarized in Fig.3.12 and Tab. 3.1, where a more comprehensive
classification is reported.

A stationary symmetric case (E; = 2 x 10°, region ny)

The computations at high rigidities show a steady behaviour: no unsteadiness is observed. A
steady wake develops downstream to the cylinder, while the plate is kept aligned with the wake
without oscillating. The steady flow computed at £ = 2 x 10° is shown in Fig. 3.5. The fluid flow
is represented on top, where the black solid lines indicate a few streamlines. The flow detaches
symmetrically (with respect to the z axis) from the cylinder surface and forms two symmetric
recirculating regions above and below the splitter plate. The limit of this back-flow region is
depicted by the dotted orange line, and extends downstream up to the non-dimensional position
x ~ 4.4. Since the splitter plate surface completely lies inside the backflow region, the shear stress
generated by the fluid are directed upstream. As a consequence, the solid is slightly compressed,
as shown at the bottom. The displacement field is oriented almost exclusively along the z axis,
but a slight flare in the direction of the 4y axis is observed as ones moves closer to the clamped
edge of the plate, due to the positive Poisson effect (v = 0.35). The amplitude of the compression
is rather small: for the case considered, the tip end streamwise displacement is only —5 x 1076,

An oscillating, symmetric periodic case (Es = 88678, region nsy)

Cases with a rigidity lower than 119900 show a completely different behaviour. Unsteady velocity
oscillations are observed in the wake as well as in the splitter plate. Fluctuating lift and drag
coefficients are therefore observed. A typical time-series for these type of flows (£, = 88678) is
reported in Fig. 3.6a where the transverse tip displacement of the splitter plate and the lift coeffi-
cient of the cylinder plus splitter plate are represented, showing the development of unsteadiness
from ¢t ~ 175, and then the non-linear saturation from ¢ ~ 300. Clearly, the fluid-structure solution
evolves towards a limit-cycle that oscillates at one single dominant circular frequency: as displayed
in Fig. 3.11a, the frequency spectrum computed for the lift signal has only one very dominant peak
(evaluated to wy 1. ~ 1.02). The plate displacement reaches a noticeable amplitude (more than half
the diameter of the cylinder in the tip). Looking at the lift coefficient, this time-series is similar
from what could have been monitored for a cylinder flow without any splitter plate, once the Hopf
bifurcation marking the onset (with respect to the Reynolds number) of vortex shedding is passed
(Sreenivasan et al., 1987). In particular, the lift oscillation amplitude smoothly decays to zero
when the stiffness is increased.

Let us detail the structure of the flow. Snapshots of the limit-cycle are reported in Fig. 3.6b,
where the z vorticity is represented clockwise at four instants T, T+ T/4, T+ T/2 and T 4 3T /4,
where T is the period of the flow. These instants are marked by the white circles in Fig.,3.7, where
the normalized (by the maximum value) aerodynamic coefficients for the cylinder and splitter plate
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Figure 3.6 — Non-linear simulation for £ = 88678 (region n2). (a) Time-series for the transverse
tip displacement €(P), and for the lift coefficient Cr,. (b) Plot of the z vorticity (blue-red colours,
dashed negative contours) in the fluid and of the yy stress in the solid (orange color). The black
arrow indicate the direction of the velocity vector in the solid.

as well as the tip displacement of the plate are reported over one period. It is observed that the
cylinder generates two vortices of opposite sign on the top and bottom faces, that are eventually
released in the wake (see the overall view in the bottom). As mentioned before, at higher rigidity
the flow is stable, and flexibility thus necessarily acts as a destabilizing effect here. If ones look
closer to the four pictures, it is clear that secondary, smaller vortices are generated at the tip of the
plate. A vortex with a positive sign is generated as the plate goes downwards (upper left picture)
and wice-versa (lower right picture). They do not have a sufficient strength to be released in the
wake and stay attached, but the resulting downwash (or upwhash) effect is sufficient to affect the
larger, surrounding vortices, which might cause them to detach: the detachment zone is precisely
located near the tip of the plate (this is particularly visible in the bottom picture) that acts sort
as a “vortex-cutter” that favours the vortex shedding.

As visible in Fig.3.7 — and can be deduced from the snapshots in Fig.3.6 —, the period of

Figure 3.7 — Evolution during one pe-
riod. For the case & = 88678, plot of
the normalized (mean set to zero and am-
plitude scaled between +1) lift (——) and
drag (——) coefficients (splitter plate and
cylinder), y (==) and x (=) tip displace-
ment, over one oscillation period in the
t limit-cycle.

aero. coefficients
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Figure 3.8 — Non-linear simulation for & = 2804 (region ng). (a) Time-series for the transverse
tip displacement €(P), and for the lift coefficient Cr,. (b) Plot of the z vorticity (blue-red colours,
dashed negative contours) in the fluid and of the yy stress in the solid (orange color). The black
arrow indicate the direction of the velocity vector in the solid.

oscillation in the transverse direction is twice that in the streamwise direction. The same is true
for the aerodynamic coefficients, with a small phase delay. The transverse (lift/y displacement)
components thus define odd functions over one period and only odd harmonics appear in the Fourier
spectra. Conversely, even harmonics appear in the spectra of streamwise (drag/z displacement)
quantities.

An oscillating, deviated case (E; = 2804, region ns)

When rigidity is further decreased down below about £ = 12000, a new regime appears. The mean
position of the plate tip end ceases to be zero: unsteady oscillations about a deviated mean position
for the plate are observed. The plate deviates towards the bottom in the present case. For other
settings (initial condition or repartition of the points in the mesh) a deviation towards the top can
also be obtained. For the case & = 2804, a time-series for the plate transverse tip displacement
and lift coefficient is reported in Fig. 3.8a. After the development of the wake behind the plate in
the period of time where the inflow velocity is progressively increased and a short steady regime,
the tip of the plate slowly deviates towards the bottom between ¢ ~ 100 and ¢ ~ 200. As seen in the
graph in the right side, the lift is also directed towards the bottom. Then, from ¢ ~ 600, unsteady
oscillations appear, that again saturate in a periodic limit-cycle from ¢ ~ 750. The spectra for the
lift signal, reported in Fig. 3.11b, shows one fundamental circular frequency at w, ). = 0.79 and one
harmonic peak at 2wy 1., while higher-order harmonic frequencies are not visible in the spectrum.
A peak at 2w, ). (instead of 3wy, like for the previous case) is found because the plate ceases to
oscillate about a zero mean and thus lift and drag have the same periodicity.

The amplitude of the vibrations is much smaller than in the symmetric oscillating regime —
for instance, the tip vibration amplitude is barely more than 0.05. The mean deviation has thus
a strong stabilizing effect on the wake oscillation. This latter effect can be made more visible by
looking to a field representation of the flow. In Fig.3.8b, snapshots of vorticity in the deviated
limit-cycle are reported. The mean position of the plate is always maintained in the y < 0 region,
on top of which small oscillations are superimposed. We clearly see how reduced is the amplitude
of the oscillations (only snapshots at T and T + T'/2 are represented, because the flow in the near-
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Figure 3.9 — Non-linear simulation for & = 560 (region n4). (a) Time-series for the transverse tip
displacement, £(P), and for the lift coefficient Cr.. (b) Plot of the z vorticity (blue-red colours,
dashed negative contours) in the fluid and of the yy stress in the solid (orange color). The black
arrow indicate the direction of the velocity vector in the solid.

solid region does not vary much during a period of oscillation). These oscillations comes with tiny
secondary vortices at the tip of the plate (not visible in Fig. 3.8b), that have only a limited influence
on the flow. The reversed vorticity signs close to the plate mark the presence of a recirculating
region, that does actually not evolve a lot. That is not to say that the wake remains steady: as
shown in the bottom figures, vortices are nevertheless shed, but with a smaller intensity as before,
and further away from the plate (the detachment zone is located at about = ~ 10, as against  ~ 5
in the previous case). All goes as if the seemingly more streamlined overall shape prevents from
the release of vortices in the wake.

An oscillating, symmetric, low-stiffness, periodic case (Es = 560, region ny)

The main features for a case with a smaller rigidity £ = 560 are reported in Fig.3.9. In the
contrary to the previous case, the plate again oscillates about a non deviated mean position. The
deformation of the plate follows however a different pattern from what is displayed in Fig.3.6. An
inflexion point appears in the centreline deformation of the plate, as visible in Fig. 3.9b, and the
maximal transverse deviation is increased (£0.35 compared to £0.25 for the case £ = 88678).
Despite this increase of the oscillation amplitude, the lift amplitude is reduced compared to the
case & = 88678, probably because the kinematics of the plate decreases the strength of the vortex
release.

The spectra of the lift coefficient is reported in Fig. 3.11c. The largest peak of response is located
at wn ) ~ 0.95. Because of the recovered symmetry, a sequence of type {wn1,3wn1,5wnl, ...} I8
again found — with amplitudes that are greater than in the high-stiffness case £, = 88 678 displayed
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Figure 3.10 — Non-linear simulation for & = 223 (region ns). (a) Time-series for the transverse
tip displacement €(P), and for the lift coefficient Cr,. (b) Plot of the z vorticity (blue-red colours,
dashed negative contours) in the fluid and of the yy stress in the solid (orange color). The black
arrow indicate the direction of the velocity vector in the solid, averaged over the high-frequency
period.

in (a).

A quasi-periodic case (E, = 223, region ns)

Finally, for smaller rigidities, yet another regime is found. In this case, oscillations develop about
a mean position that is again symmetric, but in that case a secondary frequency appears in the
spectrum of the flow (Fig.3.11d), resulting in a quasi-periodic limit-cycle. While the high, main
frequency has still roughly the same value as for the other cases (non-dimensional angular frequency
of wy 1. = 0.89), a lower frequency (wr(fﬂ = 0.09) enters in the spectrum and modulates the vibration
history, as shown in Fig.3.10a and in the spectra displayed in Fig. 3.11d. Snapshots of the flow in
a phase where the tip globally moves upwards are depicted in Fig. 3.10b. The vibration pattern in
the solid is very different from what was observed previously: its movement is now composed of
a combination of a pure bending with one vibration node at the clamped, and bending with two
vibration nodes. The detachment region is also again located closer to the cylinder (z ~ 5).

Summary

Depending on the stiffness, several categories are to be distinguished, established from the be-
haviour of the solid. These observations are summarised in Fig. 3.12, that shows (a) the total drag
and (b) total lift coefficients for the plate and the cylinder, (c) the transverse displacement of the
tip of the plate and (d) the fundamental vibration frequencies. The mean values are represented
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Figure 3.11 — Frequency spectra. Plot of the Fast Fourier Transform spectra of the lift coefficient
Cr,. Fundamental frequencies are marked with the solid vertical line, harmonics with the dashed

lines.
region range main features
ny Es > 119900 steady-state with a straight plate position
g 119900 > & > 12000  oscillations about a straight mean plate position
ns 12000 > &5 > 1100 oscillations about a deviated mean plate position
Ny 1100 > & > 255 oscillations about a straight mean plate position
ns 255 > & quasi-periodic oscillations

Table 3.1 — Summary of the different regimes reported from the non-linear simulations. The labels
n; for 1 <4 < 5 refer to the different regions of interest and are also reported in Fig. 3.12.

with a circle symbol, while the vertical bars account for the oscillation amplitudes about the mean
value.

Steady states are found at large values of the non-dimensional Young modulus & (right end,
region nq, typical case & = 2 x 10°): in this region, the plate slightly deforms but the flow remains
steady. Decreasing the rigidity below & = 119900 results in the apparition of oscillating states
(region ng, typical case & = 88678) with a zero mean y displacement (first gray region). In
this region, very large-amplitude lift fluctuations are observed, while the mean drag is increased
compared to the stationary case. Decreasing further the rigidity results in oscillating states with
a deviated mean transverse displacement (region ns, typical case & = 2804), starting from &, =
12000. This region comes with much smaller oscillation amplitudes. This region suddenly ceases
to exist from & = 1100. A symmetric oscillating state is recovered in this region n4 (lighter
gray shaded area in the left sides in Fig.3.12, typical case £ = 560) but with other flapping
features than previously. Very high vibrations amplitudes are reached (greater than the diameter
of the cylinder), but the lift fluctuation amplitudes are smaller than in the first unsteady symmetric
region. Drag fluctuations are however of the same order of magnitude as in the first region. Finally,
below & = 255, quasi-periodic limit-cycles are observed (region ns, typical case £ = 223).

We see here that by simply varying the rigidity coefficient of the plate, several limit-cycles can
be reached. The transient behaviour observed in Fig.3.8a and the coexistence of two vibration
frequencies in Fig. 3.10a clearly indicate that several instability modes that are likely to coexist and
compete non-linearly. It is thus appealing to compute the linear modes for the studied configura-
tion, for they give a better picture of the instability mechanisms at play. In the next section, we
therefore pursue on linear stability analyses of steady solutions of the fluid-structure equilibrium.
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Figure 3.12 — Limit-cycles features. For different values of &, plot of the (a) drag and (b) lift
coefficient of the plate and cylinder, and (d) transverse tip displacement, in the limit-cycle regime.
The mean value is indicated by a circle (O) symbol and is computed as 1/2 (max + min) while the
amplitude (max—min) is indicated by the errorbar and centred about the mean. The dominant plate
oscillation frequency (O) is reported in (d) as well as (if any) a second, non-harmonic frequency
(O). Regions n2 and ng that show an unsteady behaviour and a zero mean plate deviation are
highlighted with a gray color, while region n3 coming with deviated mean oscillations is emphasized
by a darker gray color. Region ns with quasi-periodic limit-cycles is hatched with oblique lines.

3.4 Stability analysis of the symmetric state

3.4.1 Steady solutions

Steady solutions, whose linear stability will be investigated, can be computed by seeking for time-
independent solutions in the non-linear problem 1.1.1. Since we are interested in determining the
linear stability of the symmetric (with respect to the x axis), steady deformed state, we enforce the
symmetry by applying a zero transverse displacement condition along the neutral line in the solid.
The steady fluid-structure solutions computed have a very similar aspect as what is shown in the
Fig.3.5. As & is decreased, the compression effect increase almost linearly over the whole range of
rigidities. The maximal deviation from linearity, reached at small rigidities, does not exceed 0.5 %.
The drag coefficient, computed as twice the non-dimensional integrated interface fluid stress about
the fluid-solid boundary, is found to be Cp = 1.155 and varies less than 0.1 % over the whole range
of rigidities. The net drag is actually essentially generated by the rigid cylinder, whose position
does obviously not depend on the rigidity: the evolution of the drag coefficient for the plate only
shows very small variations (less than 1.5 % over the whole range of rigidities). In average, a net
drag of magnitude about 6 x 10~2 and directed upstream is generated by the recirculation region.
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3.4.2 Coupled fluid-structure stability analysis

Let us now investigate the linear stability of the steady symmetric solutions presented above, using
the method presented in the chapter 2. For each considered value of &, after having computed
the corresponding steady equilibrium, its stability is investigated in the steady deformed domain
QU by solving the quadratic eigenvalue problem (Eq. (2.1.22) deduced from the problem (2.1.1))

M0 0 [E° 0 0 0 \/¢ —S 0 I\ /(e
Moo o ||al+rx] o o o @ |=| Ze — e 0 q | (3.4.1)
0 0 0 /\agf A 0 e N qf

where we have rescaled the solid stiffness operator J#” in order to emphasize its dependency with
respect to the solid stiffness & and mass ratio My (recall that for the Saint-Venant Kirchhoff
model, the solid stress, Eq. (1.1.7), is proportional to the Young modulus and hence to &). In this
problem, the first line
Es 1
(par fr@be-tta

is the solid modal problem (which is second-order in time), where the elasticity equation (opera-
tors 5 and #”') acting on the solid displacement £° are forced by the fluid loads (left-hand side
term). The second line is the static, geometric ALE mapping acting on g2 = [£7, A°] (extension
displacement and extension interface Lagrange multiplier), while the Navier-Stokes equations writ-
ten within the linearised ALE framework are in the last line, with ¢f = [u°,p°, A°] — velocity,
pressure, interface stress. In particular, this sub-problem is coupled the geometric ALE problem
(effect of the domain displacement) and the solid problem (velocity/stress continuity). Unstable
modes are couples of eigenvectors [£°,q¢, q7] and complex eigenvalues A\ = A" + i\’ such that
Re(A) = A" > 0.

As in the previous section, we start by analysing in detail some characteristic examples, then
a more comprehensive summary is presented.

High-frequency, high stiffness unstable modes

When the rigidity is decreased, the first unstable modes to appear are unsteady modes at a
frequency close to unity. They are found for & < 119900. For the case & = 88678 (same
stiffness as for the characteristic non-linear computation in the region n), the resulting eigen-
value spectrum is displayed in Fig. 3.13a, that shows a pair of complex-conjugate unstable modes
A = 0.0436 £ 0.9291, emphasized with the O symbol. The governing operators being real-valued,
recall that the spectrum is necessarily symmetric with respect to the real axis (Golub & van Loan,
2013). A representation of the real part of the eigenvector for the most unstable mode O is re-
ported in Fig.3.13b. Contour lines represent the real part of the streamwise Eulerian velocity
perturbation @° = u° — VU £;. Recall that this quantity does not depend upon the choice of
the extension operator, and represents the velocity perturbation in the perturbed domain (see a
discussion in §2.3.3). This representation is actually a snapshot of the perturbation at a certain
phase: when the phase is varied, one sees the vortex wake being advected downstream, while the
solid deformation alternates up and down. The dynamical deformation is made more clear for
the solid with a superposition of the plate’s position (the displacement being arbitrary scaled) at
different phases (dark lines). The perturbed position of the solid, deduced by applying the real
part of the mode to its position in the steady deformed configuration, is represented by the orange
line.

It is observed that the downwards deformation of the structure tends to induce a positive
streamwise velocity in the very close vicinity of the splitter plate, while the flow goes in the other
direction further away in the transverse direction. The streamwise deformation of the plate is
almost zero, which indicates that, at the linear level, the coupling with the solid occurs essentially
through a pressure effect rather than through shear stresses. In the fluid, the characteristic features
for an unstable vortex wake are found (Hill, 1992), i.e. alternant lobes of positive and negative
streamwise velocity that mark the early stages of development of the unsteady von Kéarméan vortex
wake.



86 3. Fluid-structure stability analysis of an elastic plate clamped behind a rigid cylinder

(@) 15 () 2 0.1
...
1.0F e, o
3 1+ -
050% & 1
. \0
A 0-0*/0:‘- 1 0 - 0
—os5| e & ]
0.5 % -,.. L |
—1.0} oo® DR
oo
—-1.5 - — | | | | |
—-0.2 —0.1 0 0.1 2 0 2 4 6 8 -0.1
A"

Figure 3.13 — High-frequency, high stiffness unstable mode, £ = 88678. (a) Eigenvalue spectrum
showing one unstable pair of complex-conjugate modes (A" > 0) emphasized by the O symbol. (b)
Spatial representation of the real part of the Eulerian velocity component of the unstable mode
(blue gradient and contours, dashed negative) and snapshots of the solid deformation.

Steady, deviated modes

Let us now consider a value of the Young modulus corresponding to a case where a mean deviation
was observed in the non-linear simulations. For the case & = 2804 (same stiffness as for the
characteristic non-linear computation in the region ns), the results are reported in Fig.3.14. The
spectrum displayed in (a) shows one unstable (A" > 0), steady (A* = 0) mode emphasized by the []
symbol. This type of mode thus describes a static instability that grows exponentially with time
without oscillating. The steady modes actually represent a symmetry-breaking bifurcation — or
divergence — instability.

The spatial structure of the associated eigenvector is displayed in (b). Unlike for the unsteady
modes, we do not have here a static vision of an unsteady process: there is no oscillation in the solid
(in particular, switching between the real or imaginary part of the mode just amounts to shifting
the sign of the considered quantity). No advected structures are observed in the wake. Only a
decreasing (predominantly streamwise) velocity field is observed in the downstream direction for
y > 0 and in the upstream direction for y < 0. Another representation of the mode is displayed in
Fig. 3.15a, in terms of pressure and velocity streamlines. Looking at the velocity streamlines in the
vicinity of the solid, one observes that the flow consists in a counter-clockwise circulation around
the object, that evolves more downstream into a quasi-parallel flow, as already noted above. The
pressure (represented in a blue-red colour gradient) is a good marker for the deformation processes
at play. Namely, one sees that the bending is associated to low-pressure areas that tend to push
down the plate. Since the pressure balance (that takes here the major part in the generation of
lift) is directed to the bottom, the net lift is also negative.

When the rigidity is decreased, the deformation pattern in the solid evolves. An unstable,
steady eigenmode at £ = 700 is represented in Fig.3.15b. In that case, the maximal deformation
occurs roughly in the middle of the plate. The change of sign of the pressure along the splitter
plate is associated to a change of sign of the curvature of the bended plate. This effect is barely
visible at high stiffness (Fig.3.15a), but appears more clearly at lower stiffness (Fig.3.15b). In
any case, the dynamics seems to be dominated by pressure effects, because the deviation follows
the pressure difference rather than the fluid velocity perturbation shear stresses, that would rather
provoke a bending in the opposite direction and act as a stabilizing effect. This is contrary to
what was for instance observed in the context of slender structures interacting with a Stokes flows
(Gadelha et al., 2010), i.e. in a much more viscous context.

The velocity perturbation developing on the steady base-flow tends to decrease the size of the
lower recirculating region (close to the solid, the signs of the steady base-flow velocity and of
the perturbation velocity are opposed) and to increase that of the upper recirculating region. In
order to better visualise how the mode influences the total flow, a superposition of the steady
flow plus the coupled fluid-structure mode is reported in Fig. 3.16 for two mode amplitudes. The
Lagrangian-based mode is considered here, for we can then deform both the solid and the fluid
domain according to the solid/extension perturbation field. We see how the asymmetry in the
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Figure 3.14 — Steady, deviated modes, £ = 2804. (a) Eigenvalue spectrum showing one unstable
steady mode (A" > 0, A" = 0). (b) Spatial representation of the real part of the Eulerian velocity
component of the unstable mode (blue gradient and contours, dashed negative) in the steady de-
formed configuration, and solid deformation scaled with an amplitude of 0.4 (orange, thick deviated
line).
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Figure 3.15 — Pressure component of the steady mode and velocity streamlines. For the case (a)
Es = 2804 and (b) & = 700, spatial representation of the real part of the Eulerian pressure
component of the mode (blue-red gradient) and superimposed velocity streamlies (for the real part
of the Eulerian velocity), and plot of the solid deformation scaled with an amplitude of 0.15 (orange
thick line).

mode tends to deform the recirculating region as well as to bend the splitter plate.

Low-stiffness, symmetric unstable modes

Let us now finally consider the linear stability analysis for the case & = 223 already studied
previously by means of a non-linear simulation (region ns). For this case, two unsteady, unstable
pair of complex-conjugate modes are found in the spectrum depicted in Fig. 3.17a. The associated
eigenvectors are represented in Fig. 3.17b.

The high-frequency mode (O) is depicted at the top. The real part of the streamwise velocity
is represented. It shows similar features than that observed in the oscillating symmetric case, i.e.
a vortex shedding velocity pattern in the wake. The solid deformation looks however different, the
tip of the plate being bend again in the direction of the centreline.

The low-frequency unstable mode (<>) is depicted at the bottom of Fig. 3.17b. The visualisation
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Figure 3.16 — Stationary flow modified by the steady mode. Plot of the sum of the steady baseflow
velocity, plus the Lagrangian-based velocity perturbation, scaled by an amplitude 0.1 (left) and 0.4
(right). Contours indicate negative velocity levels between 0 and —0.15.



88 3. Fluid-structure stability analysis of an elastic plate clamped behind a rigid cylinder

(a) 15 (b) 2.0 0.36

1.0

0 1.0 _|
0.5} 1 ——
Af 0.0 t“q}. ] eor B — i ’

—2.0
oo 1 0.0 2.0 4.0 6.0 8.0

—0.5

—-1.0

T 7Z02-01 0 0.1 2.0 3.51

1.0 =

0.0~ q - 0

—1.0 -

—2.0 | | | | | —3.51
0.0 2.0 4.0 6.0 8.0
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is again focused on the near-solid region, that present most of the interesting features of the modes.
It should nevertheless be noted that advected structure are now found in the wake. Similar features
as found for the stationary modes are observed in the near-solid region. In particular, the pressure
acts in a similar way as before, by dragging the plate towards lower-pressure zones.

If we follow the position in the complex plane of the two low-frequency unsteady modes
(Fig. 3.18), we observe that their frequency decreases as the stiffness increases, until they get
stable. Increasing further the stiffness decreases eventually the frequency of the modes down to
zero. At this point, the nature of the modes change: the branch of unsteady modes (<) merge
and results in the branch of steady modes (), that persists alone when the stiffness is increased.
At some point, unstable steady modes are then found.

Parametric study in the stiffness range

We investigate here in a more systematic way how the variations of the rigidity coefficient & affect
the coupled fluid-structure spectrum. We focus only on the unstable modes, which are physically
the most relevant, and forget all the other — stable — modes present in the spectrum of the
linearised fluid-structure problem. Different regions (referred to as linear regions Iy, ...,l7) are
observed, whose features are summarized in Tab. 3.2. The real and imaginary parts of the unstable
modes are reported in Fig.3.19. At very high rigidities, the system is found to be stable (no
modes with A" > 0, region /1). At sufficiently high stiffness, the system is actually equivalent to a
decoupled fluid problem and the coupled spectrum reduces to that of the decoupled fluid problem,
which is stable, as will be shown in Fig. 3.29b. By varying the Reynolds number, we have indeed
observed that the flow about a rigid configuration becomes linearly unstable from R, ~ 92.
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Figure 3.19 — Eigenvalue variation with &;. For the case R = 80 and M = 1, evolution of the
unstable eigenvalues noted A = A" +i\?, as a function of the plate stiffness coefficient £,. Unstable,
unsteady modes are depicted with orange circles (O), steady modes are depicted with a red square
symbol (O) and low-frequency modes with a green diamond symbol (<>). The seven regions I;
summarized in Tab. 3.2 are delimited with vertival lines.

region range unstable modes
I Es > 119900 none (stable)
lo 119900 > &, > 14157  high-frequency
I3 14157 > &5 > 4500 high-frequency and steady
ly 4500 > &, > 1620 steady
l5 1620 > &5 > 690 high-frequency and steady
lg 690 > & > 600 high-frequency
Iy 600 > & high-frequency and low-frequency

Table 3.2 — Summary of the different regimes reported from the linear stability analysis. The labels
l; for 1 <14 < 7 refer to the different regions of interest and are also reported in Fig. 3.12.

For our case with R, = 80 unstable modes appear when the stiffness is reduced. From
Es = 119900, unstable modes are found (depicted with an orange color, regions Iy and l3), with
frequencies decreasing from A’ ~ 1 at the upper threshold to A’ ~ 0.8 at the lower threshold at
Es = 4500. A representative eigenvector (€, = 88678, region ly) for these modes was presented in
Fig. 3.13.

Decreasing the stiffness, a second type of unstable modes (depicted in red color, regions I3, l4,
l5) appears between £ = 14157 and & = 690, that first coexist with the latter unstable modes
(region l3), then are alone (region ly), before finally coexisting with another type of unstable modes
at lower rigidities (region I5). These modes are steady modes, as seen in Fig. 3.19 on the right. A
representative eigenvector (€5 = 2804, region ls) for these modes was presented in Fig. 3.14.

Low-stiffness, high frequency modes are found in the regions I5, lg and ;. These modes are
the only unstable modes only in the region lg. A representative mode eigenvector is displayed in
Fig.3.17b at the top. Finally, from £ = 600, another type of modes is found, with lower oscillation
frequencies close to 0.1. These modes are represented with a green color in Fig. 3.19, and a typical
eigenvector was represented in Fig.3.17b at the bottom (for a mode with £ = 223 in the region
I7).

While only one unstable mode is found in regions I3, {4 and g, there is a coexistence of two
modes in regions I3, 5 and [7. Let us now compare these different regimes with what was observed
in the non-linear simulations.
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Figure 3.20 — Comparison with non-linear computations. Plot of the real A" (top) and imagnary
(bottom) part A\ for the unstable eigenvalues found by investigating the linear stability of the
symmetric steady state. The values of the stiffness for the non-linear computations presented in
§3.3.2 are reported with a dashed line, as well as the corresponding non-linear regimes ni,...,ns.
At the bottom, the largest-amplitude frequency peak wy 1. in a Fourier-transform of the plate’s tip
end displacement is reported with circles (O) while square symbols () report (if any) frequencies
with an high spectrum peak that are not harmonics from the previous one.

3.4.3 Comparison with non-linear results

We come back here on the results obtained with the non-linear simulations and presented in §3.3.2.
The comparison is shown in Fig. 3.20, where the non-linear regions are superimposed on the graph
giving the growth-rate and frequency of the linear modes. The white background indicate the
region 1y (steady cases). The light gray background at high stiffness refers to the region no, and
to the region ny4 at low stiffness. The dark gray background corresponds to the region ns (deviated
oscillations). Finally, the quasi-periodic region ns is marked with the hatches. In addition, the
vertical dashed lines indicate the position of the different non-linear calculations associated with
each region n;. The graph at the bottom further compares the non-linear frequencies (black circle
and square symbols) and the linear frequency obtained as the imaginary part of the unstable
eigenvalue (colors).

Transition between stable and unstable regions (ny/ns)

The first transition at £ = 88678 between the regions n; and nsy is perfectly captured by the
linear analysis. An oscillating situation is obtained non-linearly as soon as an unsteady mode (O)
becomes unstable. Furthermore, close to the threshold the linear vibration frequency A* matches
exactly the non-linear one, as represented in Fig.3.20 at the bottom. A fairly good agreement
is actually found over the whole range where the unsteady, high-frequency mode is unstable. A
deviation not greater than 10 % is observed. The overall picture is clear for the cases where there
is only one unstable mode: the instability develops according to this single mode, then eventually
saturates non-linearly. Features observed linearly such as the pattern of oscillation in the plate
are conserved in the limit-cycle, and the plate’s oscillation frequency is only weakly modified non-
linearly.
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Figure 3.21 — Time-series in the vicinity of high-stiffness threshold na/ns. Plot of the plate’s
transverse tip displacement as a function of time for (a) & = 11164 and (b) & = 6667, both
located in region ns.

Transition between symmetric and deviated regimes (ny/ns/ny)

The steady modes are obviously related to the process that results in the deviated cases, for they
indeed describe a deviation (see Fig.3.16). The presence of unstable steady modes (0) in the cou-
pled fluid-structure spectrum does however not perfectly coincide with the presence, non-linearly,
of a mean deviation (region ng3, dark gray). If the deviated case is always observed non-linearly
when the stationary mode is the only unstable one, the deviated/not deviated transitions occur
somewhere in the region where the stationary mode coexists with an unsteady mode. Further-
more, unsteady oscillations are always eventually observed non-linearly, even in the region where
the steady mode is the only unstable mode. This is for instance visible in the time-series in Fig. 3.8a,
for a case located in the region l4/n3: a mean deviation first sets in (in agreement with the pres-
ence of a single unstable, steady mode in the eigenvalue spectrum), but then unsteady oscillations
develop. This pushes for seeking for a secondary instability, which will be the object of the next
section.

For the moment, let us examine into more details the upper threshold at £ = 12000 between
regions no and n3. The instability threshold is predicted with a deviation of about 20 % by the
stability analysis (transition between regions Iy and I3 at & = 14 157). Since two unstable modes
coexist in the range 4500 < & < 14157 (region l3), they interact non-linearly and might actually
lead to different scenarios. For rigidities greater than 12000, the unsteady mode seems to be pre-
dominant, and leads to non-deviated oscillations. Below this threshold, the combined growth of
the steady and unsteady modes result in oscillations superimposed to the quasi-steady deviation
of the plate. For instance, at a stiffness £& = 11164 (Fig.3.21a), the growth of the unsteady
oscillating mode (A" = 0.029) coexists with that of the steady mode (A" = 0.023), resulting in
oscillations that slowly reach a non-zero mean deviation. The deviation nevertheless occurs over
a longer timescale than would be expected from the value of the growth-rate of the steady mode
only, which emphasizes the non-linear effects at play there. At lower rigidities, the growth of the
steady mode overcomes that of the unsteady mode: one observes first the static deviation, then
oscillations that seem to appear as a secondary instability (Fig. 3.21b). On the other hand, as noted
before, slightly above £ = 12000 and below £ = 14157, the growth of the symmetric oscillating
mode overcomes that of the steady mode, and no deviation is observed. It is nevertheless also
likely that the very small growth-rate of the steady mode prevents it from being visible during the
period of time covered by our simulations (just in the case displayed in Fig. 3.21a it takes already
1000 non-dimensional time units for the deviation to take place).

In the vicinity of the lower threshold for the mean deviated cases (transition between regions n4
and ng), a less good agreement is found between the non-linear simulations (threshold at £ = 1100)
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Figure 3.22 — Time-series in the vicinity of the low-stiffness threshold n4/ns. Plot of the plate’s
transverse tip displacement as a function of time for and £ = 1091.

and the linear stability analyses (threshold at £ = 690). In the vicinity of this transition, another
type of behaviour is observed, as reproduced in Fig.3.22. A deviation following the steady mode
(A" = 0.063) first develops (this mode is the leading mode: the growth-rate for the oscillating
symmetric mode is A" = 0.026). But then, unsteady oscillations develop from ¢ ~ 400, and
eventually “kill” the deviation from ¢ ~ 850, which result in a limit cycle that has again a zero
mean transverse displacement. This transition comes with a sudden frequency shift (Fig. 3.20) at
&Es = 1100.

Transition towards a quasi-periodic state (ny/ns)

Finally, let us examine the transition that leads to the quasi-periodic states. the linear analysis
provides only little reliable information as to the threshold at which the quasi-periodic state is
reached. It occurs when the low-frequency mode reaches a “very high” growth rate. For cases at
higher stiffness, the high-frequency mode seems to dominate the initial growth and the non-linear
saturation, like is for instance the case for the non-linear computation at £ = 560 (Fig.3.9). On the
other hand, as seen in Fig. 3.20 at the bottom, the two non-linear frequencies observed non-linearly
match surprisingly fairly well with the frequencies of the two unstable modes.

3.4.4 Neutral stability curves

Before going further, let us briefly give a more general overview of the stability properties of
the cylinder-splitter plate configuration. By variing the Reynolds number and the stiffness, we
can determine stability regions in the (s, R.) plane. Results are displayed in Fig. 3.23, where
the neutral curves (A" = 0) are displayed for the different modes evoked before. The general
features already reported before are conserved when the Reynolds number is varied in addition
to the stiffness, which allows to identify the different types of modes (low-frequency, steady and
high-frequency) when both parameters are varied. At low Reynolds numbers, we observe that the
configuration is stable: oscillations are damped by the viscosity. For Reynolds numbers greater
than 92, a fourth type of mode is identified (its neutral stability curve is displayed with the blue
color). This mode is clearly akin to the vortex-shedding, since it is the only unstable mode when
the stiffness is high. Moreover, the marginal stability curve forms a line that is all the more
horizontal when the Reynolds number is large, which also indicates the hydrodynamic nature of
this mode. A typical mode of this kind will be studied more specifically in the next chapter on
shape optimization.

At high Reynolds numbers, we observe that the upper limits (in terms of rigidity) of unstable
zones for stationary, low-frequency and high-frequency modes form almost vertical lines. Rather
than the Reynolds number, the instabilities are driven by the stiffness of the splitter plate. This
is particularly the case for the steady mode.

No computations were done for Reynolds numbers higher than 140. When the Reynolds number
increases well above the threshold of vortex shedding at R, = 92, the stationary flow field ceases
indeed to be the relevant baseflow on which to perform the linear stability analysis (Sipp & Lebedev,
2007; Barkley, 2006) and other method should be employed.
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3.5 Steady deviated states and secondary instability

We have seen that unstable steady modes are found in the regions l3/l4/l5. These modes are
related to deviated equilibrium positions for the plate, and we will see that the thresholds are
associated to symmetry-breaking pitchfork bifurcations that result in steady, deviated, non-linear
equilibrium solutions. It is then possible to test the linear stability of these deviated solutions so
as to characterize the secondary instabilities that might develop on the deviated configurations.

3.5.1 Computation of the non-linear deviated branches

The deviated branch that appears at the high-stiffness threshold at £ = 14157 can be computed
using our steady solver. At a stiffness slightly below the threshold, the Newton solver is initialized
by the symmetric steady flow plus the real part of the unstable eigenvector found by the linear
eigenvalue analysis, scaled with a small amplitude 0.1. With this initial guess, the non-linear solver
converges towards the steady deviated solution in a few iterations if the symmetry constraint (a
Dirichlet boundary condition enforcing a zero transverse displacement along the centreline of the
plate) is relaxed. It is then possible to compute the deviated states along this branch of non-linear
solutions, by slightly reducing the stiffness at each step and take as an initial guess the steady
deviated solution previously computed.

The corresponding results are reported in Fig. 3.24, where the lift coefficient for the plate and
the cylinder is reported as a function of the stiffness. As the stiffness is decreased and crosses
the critical value of £ = 14157, a supercritical pitchfork bifurcation occurs, that is associated
with the apparition of two (up or down) steady deviated solutions, depending on the sign of the
perturbation in the initial guess used in the Newton method. Just after the critical stiffness had
been reached, the plate undergoes a deviation that follows the mechanism already reported in
Fig.3.16. When the stiffness is decreased, the deflection increases while the lower recirculation
region shrinks. Along the lower branch, this process is associated with a rapid decrease of the lift
coefficient, until it reaches a minimal value that correspond to the point where the tip end of the
plate touches the limit between the recirculating and the free-stream region. At lower flexibilities,
the plate tends to align with the free-stream streamlines, as visible in the inserts in the middle and
at the bottom.

No difficulties have been experienced to follow the deviated branch, even below the second
critical value at £ = 690. Note that even for a stiffness away from the divergence threshold, it
is possible to “jump” directly from the steady, symmetric branch to the steady deviated branch,
provided that the amplitude for the mode used in the initialisation of the Newton loop is well
chosen. This is probably because the sum of the steady flow plus the perturbation is a fairly good
approximation of the non-linear, steady deviated solution.

Initializing the Newton solver using the unstable mode was not sufficient to reach the non-
linear, deviated branch close to the lower-stiffness threshold at £ = 690. Using this method, only
the symmetric solution, or the deviated solution presented before could be reached. An additional
constraint was therefore added in the non-linear loop, taking inspiration from arc-length methods
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Figure 3.24 — Steady deviated configuration, supercritical branch. The graph on the left displays
the bifurcation diagram, where dashed lines indicate unstable states with respect to the steady
deviation. Horizontal lines mark the limits ls/l5 (§s = 690) and I3/l (s = 14157) where the
steady mode is marignally stable. A few deviated solutions are represented in the right side, for
which the lift is directed towards the bottom (negative lift). Dashed lines indicate the contours
where the streamwize velocity is zero and +0.05.

(Chan & Keller, 1982). Namely, the solution was forced to be orthogonal (in the space of the state
vector Q plus the stiffness parameter &) to the initial guess Q(o) composed of the steady solution
plus the mode. The stiffness parameter is then itself an unknown that adapts so as to satisfy
the orthogonality constraint. Using this method, it was possible to reach a non-linear, deviated
branch, for values of the stiffness below the instability threshold. The transition between regions
l5 and lg comes therefore with a sub-critical pitchfork bifurcation, as reproduced in Fig. 3.25. The
deviated branch is unstable to steady deviations and is thus marked with a dashed line.

3.5.2 Linear stability analysis of the deviated supercritical branch

Once non-linear, steady deviated solutions are computed, it is possible, using the same approach
as in §3.4.2, to investigate the linear stability of this new equilibrium. We focus here on the
supercritical branch, because it covers the region 4 that did not exhibit modes that are consistent
with the observations made from non-linear computations.

In this case, only one type of unstable, unsteady modes are found, represented in Fig. 3.26 with
the cross symbols. For sake of comparison, the modes obtained about the symmetric configuration
are also reported in the background, in light colors and following the same nomenclature as in
Fig. 3.19.

Close to the high-stiffness threshold for a deviated equilibrium (l3/l4), the eigenvalues almost
coincide with those obtained from the linear stability analysis of the steady, symmetric solution.
Discrepancies appear away from the threshold. It is observed that the region where the steady
mode (on the symmetric configuration) is unstable is associated to the modes on the deviated
configuration having the lowest growth-rate, and a frequency that is close to that of the high-
frequency modes. The frequency is reduced in the region & ~ 103. Close to the low-stiffness
threshold for static divergence and below, the growth-rate of the modes again increases while their
frequency slightly decreases.

A representation of a few modes eigenvectors is displayed in Fig.3.27. The pressure is repre-
sented in the fluid region while snapshots of the solid displacement are also displayed, showing the
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Figure 3.25 — Steady deviated configuration, subcritical branch. The graph on the left displays
the bifurcation diagram, where dashed lines indicate unstable states with respect to the steady
deviation. Horizontal lines mark the limits ls/l5 (£s = 690) and I3/l (s = 14157) where the
steady mode is marignally stable. A few deviated solutions are represented in the right side, for
which the lift is directed towards the bottom (negative lift). Dashed lines indicate the contours
where the streamwize velocity is zero and +0.05.

<
=
o

0.10 fex N
AT ('X‘*x*xx.,‘xxxx

0.05 X i
xxxx

\
0.00 . | 1 L | L1 L
10% 10* 10°

1.50 T TTT T T T 117 T T T T T 1717

)\’i XXX: XXX

0.00 L—t—t vt :
10° 10% 10°

Es

Figure 3.26 — Eigenvalue variation with & on the supercritical deviated branch. For the case
Re = 80 and M = 1, evolution of the unstable eigenvalues (x) noted A = \" + it computed by
investigating the stability of the deviated supercritical branch, as a function of the plate stiffness
coefficient £;. For comparison, unstable modes obtained in the symmetric case are also represented
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Figure 3.27 — Modes on the steady deformed configuration. Representation of the real part of
the pressure component of the fluid-structure mode in the fluid region, and snapshots of the solid
deformation (the real part of the displacement being emphasized by the orange color). Contours
are the same in all the graphs.
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Figure 3.28 — Instability mechanism for the deviated case at £ = 2804. Plot of the plate’s transverse
tip displacement as a function of time, and exponential growths deduced from the linear stability
analyses.

evolution of the deformation pattern from a pure S; mode to a combination of S; and S, modes
when the stiffness is reduced. In (a) a non-deviated case is represented, while in (b-e) the modes on
the deformed configuration are displayed. In particular, the case (b) is close to the high-stiffness
divergence onset and shows little differences with (a) — except that the mean position of the split-
ter plate is now slightly deviated towards the bottom. In (c), a solid component Ss starts to be
visible in the solid deformation pattern. The same is observed in cases (d) and (e). Note that
in cases (b-e) the unsteady deformation of the tip of the plate is directed towards higher-pressure
zones. The real part of the mode is actually found to be close to the point where the maximal
deformation occurs, i.e. just before when the low-pressure region will again aspire down the plate.
A representation of the solid velocity shows that the transverse component is directed downwards
in the vicinity of the tip.

We can finally explain what happens non-linearly in the region l4. The deviation first occurs
according to the steady mode. The steady deviated state is eventually reach, which itself is
unstable. The secondary instability grows on the deviated state and yields to small-amplitude
oscillations about this deviated mean position. A time-series corresponding to this scenario is
reported in Fig. 3.28, for a stiffness parameter £ = 2804 located in the region I .

At lower values of the stiffness, other mechanisms than this secondary instability are at play:
in particular, the frequency jump between regions n4 and ng (Figs. 3.20 and 3.22) would suggest
to study the linear stability of the periodic limit-cycle that develops on the deviated configuration.
Other tools such as the Floquet analysis would then be required (Barkley, 1996), which is out of
the scope of the present study.

3.6 Analysis in terms of solid vibration modes

In classical aeroelastic analyses, a modal analysis of the solid is first performed so as to project
the solid dynamics on the basis of the so-called free vibration modes. This reduced model is then
coupled to the fluid through an approximate models such as the well-known flutter derivatives
(Dowell et al., 2004). If such a model is sufficient for capturing some classical aeroelastic phenom-
ena, in the case where the solid-to-fluid coupling is stronger, it is unable to predict the fluid-solid
coupled dynamics (Mittal & Singh, 2005; Meliga & Chomaz, 2010; Navrose & Mittal, 2016). In
our naturally fully coupled formulation, the fluid and solid intrinsic dynamics are coupled in an
exact fashion. The decoupled solid and fluid modes can easily be computed, as eigenvalues and
eigenvectors of sub-operators extracted from the full operator. Then, we can analyse into more
details how the fluid-structure coupling affects these decoupled modes.

3.6.1 Analysis of the high-frequency modes dynamics

We focus here on the analysis of the high-frequency unstable modes obtained by investigating the
linear stability of the symmetric steady flow (modes labelled O in Fig. 3.19).
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Figure 3.29 — Coupled and decoupled spectra. For the case £ = 46 800, plot of the spectrum of (a)
the coupled fluid-structure operator, the (b) decoupled fluid operator and (c) the decoupled solid
operator (right).
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Figure 3.30 — Free vibration modes shapes. For the case £ = 46 800, modal shapes Si, S2 and S3
found in the spectrum presented in Fig. 3.29c.

Decoupled spectra for a typical case in the region o

For a case at & = 46800 (region [y with only one unstable, unsteady mode), the spectra for the
fully coupled problem is computed in the left side of Fig.3.29, showing one unstable, unsteady
mode, while the spectra for the decoupled fluid (Z;,4¢) and decoupled solid (%", .#;) operators
are reported in the middle and right side, respectively.

Remark. A decoupling of the solid from the fluid occurs for instance physically for the solid when
M > 1 and finite values for £/ M i.e. for very large mass ratios. In that case all goes as if the
solid was oscillating in a nearly vacuum, while the fluid responds to this oscillation (by means
of the interface displacement transmitted by the extension operator) with only a weak feedbak
onto the solid. Under these assumptions, Meliga & Chomaz (2010) performed for instance a
weakly non-linear expansion for the case of a spring-mounted cylinder, and could explain the
sub-critical (with respect to the Reynolds number threshold) vortex shedding in terms of an
interaction between a so-called wake mode and a structure mode. On the other hand, when
Es — oo then the fluid is decoupled from the solid and we recover the case of fluid instabilities
in a rigid geometry.

The spectrum of the fluid operators (7,44 ), reported in Fig. 3.29b, displays only stable modes
and is typical to the spectrum computed for stable wake flows like the flow about a circular cylinder
(Sipp & Lebedev, 2007). The least stable of these modes is noted (F), with A\f = —0.044 + 0.8081i.
We clearly see on this case that the coupling of the solid and fluid operators through the interface
continuity and shape deformation operators strongly affects the overall spectrum, that in partic-
ular cannot be obtained as a small deviation from either the decoupled-solid and decoupled-fluid
spectra like in some previous works (Meliga & Chomaz, 2010) and thus justifies the need for a fully
coupled approach. This makes sense, because the low density ratio Mg = 1 comes with a strong
coupling. In the following, we will examine how the coupled, high frequency modes vary, in the
frequency range, compared to the free vibration modes.

By considering in the fully coupled problem (3.4.1) only the pair of operators (£, ) de-
scribing the solid dynamics, one obtains an eigenvalue problem describing the vibrations modes
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These modes are that of the pre-stressed (by the steady equilibrium Q) solid, vibrating at the
frequency As ;. The three lowest-frequency modes are labelled S1, S2 and S5 in Fig. 3.30, their shape
is reported in Fig.3.30. These are the three first bending modes for a beam. The solid problem
is self-adjoint in absence of viscoelastic damping (Marsden & Hughes, 1994) and the solutions to
(3.6.1) therefore form an orthogonal projection basis (normalization condition (¢, .Zs ¢ ;) =
di;). Taking a basis truncated to N modes, we can then write

<Af,j M+ Jf’(Q)) ¢s; =0 (3.6.1)

N
£x) = > p;¢2 (),
j=1

where p; = (£°, A ¢§’j> is the projection coefficient on the free vibration mode j. For the case
E; = 46800, |p1]/]|€°(x)|| ~ 1, indicating that the deformation of the coupled fluid-structure mode
is almost exclusively that of a mode S7. This makes sense, given the shape of the solid deformation
for the modes in the region ls (Fig. 3.13Db).

Evolution with the stiffness: added mass & lock-in effects

Considering the fully coupled eigenmodes £€° computed by solving (3.4.1) for various values of
Es, the evolution of the projection coefficients on the free vibration modal basis is reported in
Fig.3.31. In the regions l3/l3, the coupled mode follows almost exclusively a modal deformation of
type S1. In the regions, l5/lg/l5, the component Sy is non negligible, but the projection coefficient
associated to the mode S3 remains very low. For all cases, more than 90 % of the deformation
energy is contained in the first two modes S; and S5. In the following, we therefore only retain
these two modes for the comparisons.

The vibration frequency of the free vibration modes S; and Sy are reported in Fig. 3.32a (solid
and dashed line, respectively), together with the imaginary part of the unstable, high-frequency
unsteady fully coupled modes (O). We observe that the frequency of the coupled modes is much
lower than the frequency of the free-vibration modes. For instance, for & = 1 x 10* the coupled
mode has a projection almost only on the mode Sy but its frequency is half as low than that of the
free mode S at the same stiffness. On the other hand, comparing in Fig. 3.32c the fully coupled
vibration frequencies and the frequency of the decoupled fluid mode (whose frequency corresponds
to that of the leading mode A¢ in Fig. 3.29b), one sees that the coupled mode has more or less the
frequency of the (stable) hydrodynamic wake mode in the vicinity of the low-stiffness instability
threshold.

The significant decrease in frequency is classically attributed to an added mass effect (de Langre,
2002): all goes as if the solid had an increased mass and thus a lower eigenfrequency. To isolate
the added mass effect from other fluid effects (for instance the shear forces caused by the presence
of the bluff-body), it is convenient to determine the solid eigenmodes for a solid immersed in a
fluid at rest. Thus, the only remaining effect is that of the momentum transport caused by small
movements close to the vibrating solid. Strictly speaking, added mass effects can be reduced to an
inertia coefficient only in the case of inviscid flows. For viscous flows, even at rest, viscosity causes
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Figure 3.32 — Added-mass effects. Plot of the vibrations frequencies obtained by solving the fully
coupled problem (unstable frequencies are marked with the orange circle O), together with (a) the
free solid vibration frequencies of modes S;/S2 (——/——) obtained by computing the eigenvalue
of the pair (", .#.), (b) the vibration frequencies (---) computed in a still fluid and (c) the fluid
wake frequency (=) obtained by computing the eigenvalues of the fluid operators.

the momentum transport to by delayed in time as it propagates in space, thus resulting in much
more complex effects (Maxey & Riley, 1983). Our fully coupled approach can nevertheless be used
to evaluate added mass effects, by simply setting to zero the solid steady displacement and fluid
steady flow: in that case, all goes as if one was looking at the free, small-amplitude vibrations of
the fully coupled problem in a still fluid.

The corresponding obtained vibrations frequencies are reported in Fig. 3.32b. The fully coupled
frequencies are still reported in orange color (O), while the vibration frequencies for a solid in a still
fluid are reported with the blue dotted line. One observes that at the right end of the branches,
they match fairly well with the fully coupled frequencies, especially close to the high-frequency
instability threshold. All goes as if the frequency of the coupled mode was “locked” onto that of
the solid corrected by added mass effects.

3.6.2 Analysis of the low-frequency and steady mode dynamics

We have seen previously that the low-frequency and steady modes belong to the same branch of
modes (Fig.3.18). They are therefore conveniently studied together. Since the solid is compressed
by the load arising from the steady fluid-solid equilibrium and may drive a solid buckling instability,
we first investigate if such scenario could have occurred.

Solid buckling induced by the steady fluid-solid flow

We have seen that the solid deformation @ — although small — is not zero: the steady fluid flow
induces axial compression strains in the solid (see Fig.3.5 where the compression displacement
field is represented). We are thus here in the classical case of a long column loaded in compression,
that may suddenly spring outward laterally in a bending mode if the load exceeds some threshold
(Timoshenko & Gere, 1961). Thanks to the non-linear Saint-Venant Kirchhoff model chosen, this
buckling instability can by analysed in terms of the eigenvalues of the linearised solid operator
about the loaded state. Above the buckling threshold, the pair (#7(Q),.#s) display only pure
imaginary eigenvalues \g ; = :I:i)\;" ; that describe the free vibration frequencies of the solid. When
the compression load increases, the vibration frequencies are decreased compared to a case without
loading (Bokaian, 1990), i.e. the apparent stiffness of the plate is reduced. Increasing further the
load, at some point the apparent stiffness is zero and a divergence, or buckling instability occurs.
The trace for this in the eigenvalue spectrum is the apparition of pure real eigenvalues representing
the static growth of an instability. On the other hand, when the stationary solid deformation is
set to zero, then J#’ does not depend any more on the stationary solution and the Saint-Venant
Kirchhoff model reduces to the linear elasticity (recall that it only accounts for geometrical non-
linearities), in which case the eigenvalues X ; are always pure imaginary numbers whatever the
stiffness.
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function of the solid rigidity &s modes

Figure 3.33 — Solid dynamics as a function of &. Plot of (a) the solid vibration frequencies without
(solid line) and with (dashed line) the pre-stress generated by the stationary fluid-structure equi-
librium, and (b) snapshots of the transverse displacement for the modes 1 (top), 2 (middle) and 3
(bottom), computed without pre-stresses.

The vibration frequencies for the three first lowest-frequency solid modes S7, Sy and Ss, are
represented in Fig. 3.33a as a function of the rigidity coefficient £;. The vibration frequencies about
the pre-stressed configuration (@ # 0) are represented with the solid line while the free vibration
frequencies (Q = 0) are displayed with the dashed lines. We see how the pre-stress diminishes
the vibration frequency, down to the point that they become zero, which identifies the buckling
threshold. Namely, at & = 755 the first frequency suddenly decreases down to zero, while a
non-zero complex part appears in the eigenvalue (not represented in Fig.3.33a), which reflects the
buckling instability.

The mechanism that drives the apparition of the steady unstable modes from £ = 1460 when
the stiffness is reduced is obviously not a solid buckling instability, for the buckling threshold for
the mode S; reported in Fig. 3.33a occurs for a stiffness about one order of magnitude lower (recall
that the threshold for static instabilities is not affected by added mass effects, which only acts at
a dynamical level).

Reduced model for the steady and low-frequency modes dynamics

To further clarify the physical mechanisms at play for the low-frequency/steady modes, a reduced
model of the perturbation fluid-structure problem is considered in the following. Eliminating the
fluid and extension variables from the coupled fluid-structure modal problem (3.4.1) by the same
way as in §2.1.3, one obtains a problem that only depends on the solid displacement mode,

Es
M

1
M

()\2 M+ Jiﬂ) £° = Hots (Quigias NE°- (3.6.2)
The left-hand side is the solid vibration problem (3.6.1) already studied before, while the fluid
dynamics as well as the couplings are now written under the form of a solid-to-fluid-to-solid operator

s Qurgrai N =T Z(Quigaa N (Mt Quigga) 7o Tee + A (Tie+ Too Quiga) %' Te))  (3.6.3)

where Z;(Q,igia; A) = (A Ti(Quigia) — A (Quigia)) " is the fluid resolvent operator. Under this
form, the fully coupled problem is a solid vibration problem “forced” by a non-linear feedback
term: the load response to a displacement perturbation is extracted by means of Iflg from the fluid
dynamics, that is embedded in the — non-linear with respect to A — resolvent operator Z(Q,;giq; A)-
This part takes as an input three components: a dynamical part A Zg corresponding to the interface
velocity forcing of the fluid, and two other parts that correspond to the influence, at both a static
and dynamic level, of the domain deformation — by means of the shape deformation operator and
the extension operator.
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In the above formulation of the fully coupled fluid-structure modal problem, we have made the
following approximation concerning the steady state: Q = [0, 0, Qrigid], which amount to consider
only the steady flow about a rigid solid. This is a fairly good approximation, both at the static and
dynamical levels as long as we stay not too close from the buckling thresholds (see Fig. 3.33a that
shows the vibration frequencies for the solid). Under this assumption, the model only depends on
the rigidity through the explicit dependency that appear in front of the (thus assumed constant)
solid operator .#”. Furthermore, we have seen in the previous section that the unstable low-
frequency and steady mode involve primarily the free structural bending modes S; and S;. It is
therefore convenient to project the modal dynamics of the coupled problem on the basis of these
two free-vibration modes obtained by solving (3.6.1), i.e. note £°(&) ~ a1 1 () + oS o(2) for
some complex modal amplitudes «; and eigenvectors ¢ ., and project the problem onto the free
modal basis so as to obtain

(/\2 + /\8/1 KZ-) o = /\11 Y Kij(Naj, i=12, (3.6.4)

J=1

S,17

where K; = (¢g,;, #'¢g,;) and Kij(\) = (g, Fts(Q; N g ;), and using the orthonormalization
condition (¢ ;, 4 ¢ ;) = di; (vecall that on the contrary to the fluid, the solid operator is self-
adjoint).

Provided that we are close enough to the static instability threshold, || can be chosen arbitrarily
small, and thus it can reasonably be assumed that K;;(A) can be expanded by means of a Laurent
series with respect to the complex variable A, of the form

Ky = K + 0K + 22K (3.6.5)

in the vicinity of the static 1nstab1hty threshold. In this notation, K ) defines the coefficients of
a 2 x 2 added mass matrix, K;; () those for an added damping matrix, and K;; (2) the coefficients of
an added mass matrix, that are given by

K’L(_;)) <¢s /2l ! M_lze§ ¢§J>
Kz(jl) = - <¢)S,i’ ('% 1'/er@{e 1I€§ + '%e ﬂ Ie§ +If§) :j>

K§§>:—<¢;’,i,zf£uef;1% (T AT M o + Trody Tog + Tie) 2,) -

The added stiffness matrix only depends on the static shape derivative .4f/, i.e. that expresses
the modification of the stresses in the fluid as a result of a modification of the interface position.
Added mass and added damping matrices have more complicated expressions, that depend on the
direct load transfer through Z, the static and dynamic shape derivatives, and several applications
of the inverse of the static flow operator «%. Practically, the different coefficients K;; are built at
the discrete level, using the matrices resulting from the finite-element discretization of the different
operators involved. The inverse matrices for the static fluid and extension problem never have to
be explicitly formed since they are only involved in matrix-vector operations. We finally obtain

the reduced-order eigenvalue problem

1 1 1 &
A2 (I - —K@)) A — KO - (—K(O) - —K) =0 3.6.6
[ M, M, M, M, (3.6.6)
where o = [, ag}T gathers the modal coefficients for projections on free solid modes S; and Ss.

The solid modal matrix K is diagonal with coefficients 2.659 x 10~* and 1.034 x 1072, I is the
identity matrix while K(O), K® and K® write as

o _ [374 —5.02] .y [-331 —114] _ o [-735 5.22
K [4.47 063 'K =250 233 KT T |s28 —189]"

added stiffness added damping added mass

In these matrices, diagonal terms represent the actions of the mode on itself, while off-diagonal
terms result from the coupling of the modes by the fluid.
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Figure 3.34 — Low frequency modes and reduced models. Plot of the frequency (left) and growth-
rate (right) of the steady (O) and low-frequency modes (<>) obtained as solutions of the fully
coupled case, as well as from the modes obtained from the 2-degrees-of-freedom S;/S2 (——) and
one-degree-of-freedom S; (---) approximate models, as a function of the rigidity coefficient &s.

The unstable eigenvalues from (3.6.6) are represented in the Figure 3.34 as a function of the
stiffness £ with a dashed line, together with the eigenvalues obtained with the fully coupled
fluid-structure eigenvalue problem. The two modal branches are formed first by a pair of steady
modes, that suddenly separate into a pair of unsteady modes. One observes that the instability
threshold for both the stationary modes and the low-frequency modes is very well predicted by
the two degrees-of-freedom reduced model, as well as the frequency and growth-rate. This shows
again that the dynamics of these modes is not associated with the buckling instability of the solid,
because our model assumes a rigid stationary geometry. Rather, added mass, damping and stiffness
effect coming from the coupling with the fluid are at play. Especially, the divergence threshold
is marked by a destabilization because of an added stiffness that overcomes that of the solid —
when A = 0 in (3.6.6) there is indeed an equilibrium between the solid stiffness and the fluid added
stiffness.

The first mode S is found to be essentially involved in the destabilization process in the vicinity
of the high-rigidity threshold, while the combination of modes S; and Sy drives the lower-stiffness
thresholds. This is in accordance with the modal projections depicted in Fig.3.33b. A reduced
model where the projection basis only involves the mode S; predicts well the apparition of a static
mode at & = 14160, but not the re-stabilization at £ = 690 (dotted line). On the other hand,
a model with only the second mode Sy results in an unsteady, stable (A" = —0.58) mode down
to & = 720 then a steady and still stable mode at lower stiffness. Note also that when both the
added mass and added damping matrices are set to zero, the static and low-frequency instabilities
are still predicted with the fairly good thresholds, but the growth-rate is completely overestimated
(by about a factor 20) as well as the frequency in the low-frequency region. By the same way,
neglecting the added-mass matrix still provides a good description of the instabilities, probably
because added-mass effect have a limited influence on the low-frequency dynamics.

We can now clarify the low-frequency instability mechanisms. The static instability appears
at the high-stiffness threshold as a divergence instability that develops when the negative added
stiffness associated to the mode S; overcomes the restoring elastic force. The re-stabilization at
lower stiffness and the apparition of the low-frequency mode results from the interaction between
the modes S; and S,

Remark. One may wonder why the approach presented above was not used also in the case of
high frequency modes. Indeed, the coupled dynamics is then reduced to a system with only a
few degrees of freedom. The key assumption in the above development was to assume that the
solid-to-fluid-to-solid operator can be approximated by a development of the form of (3.6.5). It
turns out that this approximation ceases rapidly to be true when |A| is moving away from zero
(see also the discussion in §2.1.3).
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3.7 Conclusion

The linear stability of a system constituted by a flexible splitter plate attached behind a rigid
cylinder has been considered, and compared with non-linear simulations. When the stiffness is
reduced, non-linear simulations show that harmonic flow-induced oscillations appear. Decreasing
more the stiffness results in harmonic oscillations about a deviated mean position for the splitter
plate, while secondary frequencies appear at even lower rigidities. The linear stability analysis is
able to predict the onset for the flow-induced vibrations, and results in various types of coupled
fluid-structure modes, that have been described. Furthermore, this analysis provides an explana-
tion for the mechanism at the origin of the deviated oscillations, in terms of a static divergence
mode superimposed to unsteady fluid-elastic modes. Mechanisms at the origin of the coupled vi-
bration frequency such as lock-in and added mass have also been characterized by this means. It is
observed that several features present in the linear modes are actually conserved in the non-linear
limit-cycles, when one single unstable mode is dominant. When two mode present about the same
growth-rate, other types of analyses such as weakly non-linear expansions would be mandatory to
get a more precise description of the non-linear evolution of the perturbations.



CONTROL OF FLUID-STRUCTURE
LINEAR INSTABILITIES WITH SHAPE
OPTIMISATION

In the previous chapter, self-developing fluid-elastic instabilities were described on a model
problem constituted by an elastic plate attached to a circular cylinder in a laminar flow. We
address here the problem of the passive control of these instabilities by means of shape opti-
mization. An adjoint-based method for obtaining an explicit formula for the shape gradient
of a cost-function based on the coupled fluid-structure eigenvalue is first presented. These
results are applied on the two types of modes in the cylinder splitter-plate configuration
previously studied. Deforming the cylinder’s surface according to what is prescribed by the
shape optimization algorithm, we show that it is possible to stabilize the modes, but also to
design a fluid-structure oscillator beating at a prescribed frequency.

Contents
4.1 Introduction . . . . . . . . . @ i i i i it e e e e 106
4.2 Optimization problem setting . . . . .. ... ... ... ..., 107
4.2.1 Fluid-structure model . . . . . . . .. .. ... .. 107
4.2.2 Time-linearised perturbations of a non-linear steady flow . . . . . . . .. 107
4.2.3 Optimization cost-function . . . . . . . . . ... .o 108
4.3 Shape gradient computation & optimization loop . . . . ... ... ... 109
4.3.1 Lagrangian approach for shape optimization . . . . . . .. .. ... ... 109
4.3.2 Governing equations . . . . .. .. oL Lo L 110
4.3.3 Shape gradient computation . . . . . .. ... Lo 114
4.3.4 Practical gradient evaluation & optimization loop . . . . . . .. ... .. 115
4.4 Application to the cylinder splitter-platecase . . ... ... ... .... 116
4.4.1 Description of the unstable modes . . . . . . .. .. .. ... .. ..... 117
4.4.2 Adjoint modes & abstract sensitivity analysis . . . . . ... ... ... 119
4.4.3 Shape gradients . . . . . . . . . ... e 121
4.4.4 Shape optimization for controlling the growth-rate of the modes . . . . . 124
4.4.5 Shape optimization for controlling the frequency of the modes . . . . . . 128

4.5 Conclusion . . . . . v v i i i it e e e e e e e e e e e e e e e e e e e e e e 132




106 4. Control of fluid-structure linear instabilities with shape optimisation

4.1 Introduction

We consider here the shape optimization of the cylinder—elastic plate system already considered in
the previous chapter. The shape of the rigid cylinder is modified, so as to minimize a cost-function
based on the eigenvalues of the fully coupled, unsteady linear fluid-structure modal problem written
for perturbations about a steady non-linear state.

In the context of shape optimization, the key ingredient is to compute the sensitivity of the
cost-function with respect to a variation of the shape at the continuous level, for it allows to obtain
an explicit formula (Allaire & Schoenauer, 2007). This represents then the most efficient approach,
since the sensitivity is obtained at a computational cost that is independant from the number of
design variables. These ideas from the control theory (Lions, 1971) were applied in the context of
hydrodynamics for minimizing the drag of a profile in a Stokes flow by Pironneau (1973) using an
adjoint-based approach, and extended a few years later to the viscous, laminar case by Glowinski
& Pironneau (1976).

The derivation of adjoint fluid-structure equations is a tedious task, which pushed in the past
for considering approximate approaches where the geometrical couplings are neglected (Failer et al.,
2016; Feppon et al., 2018). In particular, whithin the so-called frozen domain velocity approxima-
tion (Helgason & Krajnovi¢, 2015; Heners et al., 2018), time-dependant ALE adjoint equations are
relatively easily obtained by assuming that the time-dynamics of the flow is much faster than the
mesh movement dynamics. Under this assumption (whose physical meaning does not seem to be
really clear), the sensitivity to the domain displacement is simply obtained as a post-processing
(Helgason & Krajnovié, 2015), but of course the coupling not considered in a fully consistent way.
A continuous adjoint ALE equation was obtained for a stationary Stokes flow coupled with a
chord model by Van der Zee et al. (2011), for the purpose of goal-oriented error estimation. To
our knowledge, the first attempt for deriving then solving a fully coupled fluid-structure adjoint
problem was done by Manzoni & Ponti (2016) using an Eulerian-based approach: they derived
a continuous adjoint fluid-structure problem for an unsteady Stokes flow interacting with a one-
dimensional Koiter solid model. Their derivation resulted in an unsteady Stokes problem backward
in time and expressed in the deformed configuration, coupled with the solid model through a rather
complicated interface term, that was found to depend on the adjoint flow field and on the geomet-
ric properties of the interface (for instance, the expression involves the tangential gradient of the
normals). The authors used then the adjoint equations to solve a shape optimization problem in-
spired by haemodynamics concerns. In this work, we rather adopt the Lagrangian-based approach
for deriving a shape gradient formula in the fully coupled case, because of its more favourable
numerical properties (see the chapter 2).

Turning now on the unsteady effects, only few attempts for taking into account a self-developping
unsteadiness in the flow about a structure to be optimized were done. In the context of pure
hydrodynamics, one can mention the work by Heuveline & Straufl (2009) were the geometry is
parametrized by a few points, and that by Nakazawa & Azegami (2016) who used an adjoint-
based approach without an a-priori parametrization of the shape. For both cases, efforts are put
on the stabilization of an unstable mode developing on the steady viscous Navier-Stokes solution, in
the case of a rigid geometry. We continue on this way by considering the time-linearised fluid-solid
perturbations developing on the steady equilibrium.

In the following sections, we first state the optimization problem, the governing state and adjoint
equations are then presented, and details on the numerical method are given. The approach is then
used to control the system studied in the previous chapter. Varying the Reynolds number of the
flow and the stiffness of the material, two types of unstable modes can be found, one essentially
related to the wake instability and another related more specifically to the fluid-structure coupling.
The shape gradients for these two modes are presented and analysed, then the shape optimization
is carried out.
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4.2 Optimization problem setting

4.2.1 Fluid-structure model

We consider here the interaction between an incompressible fluid and the Saint-Venant Kirchhoff
elastic material already considered in the previous chapter. The equations are written in the stress-
free reference domain () that is constituted by the solid geometry ), taken as not deformed, and
the complementary fluid region Q. When time goes on, due to the interaction between the fluid
and the solid, recall that the actual (observable) domain evolves with time and differs from the
reference domain. For sake of clarity, whenever possible the problem will be written under the
symbolic operator notation of the problem (1.1.1), that is

94

E - f/%sl(q) =0, (421)

%si(q\)
where the fluid-solid operator Jii is obtained from (1.1.35), and N from (1.1.36). The state
vector §(&,t) contains all the fluid-solid variables, split between a solid variable §, (containing
the solid displacement é and the solid velocity s, so as to have a first-order problem in time),
an extension variable ¢, containing the extension displacement ée and the interface Lagrange
multiplier Xe ensuring the continuity of the displacement at the interface, and a fluid variable
gy composed of the fluid velocity 4@, the fluid pressure p and the interface Lagrange multiplier X
ensuring the continuity of the velocity at the fluid-structure interface.

4.2.2 Time-linearised perturbations of a non-linear steady flow

Like in the previous chapters, we assume that the flow can be approximated by a finite-amplitude
steady component, plus a time-dependant perturbation component of infinitesimal amplitude ¢ <
1. The coupled fluid/elastic state vector §(&,t) is thus split as follows:

d(z.t) = Q(z) + e Ne{G°(z) exp((\" +iA)t)} +o(e), (4.2.2)

where Q(w) is a steady solution of (4.2.1), and §°(x) exp(\t), with A = A" + i\’ is the complex
linear perturbation field taken under the form of a global mode (Sipp et al., 2010). Neglecting the
higher-order terms, we obtain a description of the fluid-structure system where the steady, non-
linear component of the flow is taken into account, as well as its asymptotic stability when ¢ — oc.
A case with A" < 0 means that a small perturbation to Q(a:) will eventually decay exponentially,
while A" > 0 means that this perturbation is exponentially amplified, leading to the development
of an unsteady flow with structural vibrations at the frequency A, at least during the linear phase
of the instabilities.

Plugging the decomposition (4.2.2) into (4.2.1), the governing equations for the steady (order
€9%) and unsteady (order ') parts then writes as follows:

— Ni(Q) =0 in Q, (4.2.3)
{7+ 7(Q) - A@Q@ }a° =0 n 0 (4.24)

The first equation represents the steady equilibrium equations (2.1.2), while the second equation
is the linear modal perturbation problem about this steady equilibrium. In particular, recall that

the linear operator e/i?fq’l(Q) corresponds to the linearisation of A4; about the steady stationary
solution Q,

AO

The problem (4.2.4) is an eigenvalue problem, that admits a set of solutions {\} + i\¢, §7; A5 +
i\y, 4s; ...} whose size depends on the numerical discretization of the problem and on the spectral
properties of the continuous linear operator. However, the only eigenvalue pair that is of interest
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0(2) o(2)
(a) Lagrangian shape parametrization of (b) Lagrangian shape parametrization of
the cylinder’s border and stress-free refer- the cylinder’s border and steady deformed
ence configuration 2 reference configuration €2

Figure 4.1 — Lagrangian shape parametrization. Sketch representing the Lagrangian parametriza-
tion @ of the shape of the cylinder (a) in the stress-free reference configuration and (b) in the
steady deformed configuration deduced from the stress-free reference configuration by means of the
steady displacement =. The displacement perturbation field in the steady deformed configuration
is represented by &’.

here is the one that has the largest growth-rate, because it becomes predominant over the other
modes when t — oo. For that reason, in all what follows, it should be always understood that the
pair {\"+i)\; ¢°} corresponds to the mode of (4.2.4) having the largest growth-rate (leading mode).

4.2.3 Optimization cost-function

The question is: which optimal shape stabilizes or destabilizes the perturbations, or modifies the
frequency of unstable fluid-solid oscillations in a prescribed way ? We therefore introduce a cost-
function based on the most unstable eigenvalue of (4.2.4), and the optimization problem reads

Q;

min _#£(Q), _7(Q)= %(AT(Q) . xg)2 +% (Ai(Q) _ Ai)2 (4.2.5)

QEWad

under the constraints (4.2.3) and (4.2.4). In the above notation, A’ and A are the control param-
eters, and «a, and a; belong to {0,1}. For instance when «, = 1 and «; = 0 one tries to control
only the growth-rate of the perturbations while the frequency is left free.

Let us now precise what we mean here by “shape”. We will consider in the applications the
cylinder splitter-plate configuration already studied in the previous chapter, and deform the rigid
cylinder (more precisely, the portion f‘rgd of the cylinder represented with the red colour in Fig. 4.1,
that excludes the portion I'® where the splitter plate is clamped) through the shape optimization
process. In the above formula, W,q is a set of admissible shapes defined here as the set containing
all the shapes that can be obtained by continuously deforming the initial shape made by the circular
cylinder (this excludes for instance the creation or coalescence of holes), and such that the farfield
boundaries T'os, TP and I' are kept fixed.

Special attention should be paid to the different domains in the context of fluid-structure
interactions: in addition to the variations of the domain introduced for the purpose of shape
optimization, the structure might also deform by itself because it is flexible and is subject to the
loads coming from the surrounding fluid (see Fig. 4.1). Like in the chapter 2 we therefore distinguish
between (a) the stress-free reference configuration and (b) the steady deformed configuration. Since
frgd is a portion of the rigid part of the domain’s boundary, it can however only be deformed during
the shape optimization process: spatially, there is no overlap between the deformation induced by
the shape optimization and the deformation induced by the fluid-elastic coupling. In the vicinity
of f‘rgd the stress-free and steady deformed configuration therefore coincide — which is not a priori
the case close in the neighbourhood of the elastic solid.
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4.3 Shape gradient computation & optimization loop

The solution of the optimization problem (4.2.5) is sought using gradient descent. The key point
is therefore to derive a formula for the gradient of _# with respect to a modification of ().

4.3.1 Lagrangian approach for shape optimization

To define the notion of differentiation with respect to a geometrical domain, we presently rely on
the boundary variation approach initially developed by Hadamard (1908). Developments of this
approach have led to what is now called geometric shape optimization (Henrot & Pierre, 2006;
Allaire & Schoenauer, 2007; Delfour & Zolésio, 2011). In this framework, the variations of the
stress-free reference domain ) are considered on the form of a Lagrangian parametrization

Q) = (1d+6)(Q) (4.3.1)

where 0 is a smooth, one-to-one field (Henrot & Pierre, 2006) used to deform the interface f‘rgd,
as visualised on the sketches in Fig.4.1. For € to be in W,q, we set

0:R*>-R? =0 on ', ,UIPUT,

that is, 0 is allowed to be non-zero only on the interface Frgd to be optimized. With this respect,
taking a derivative with respect to Q) amounts to differentiate with respect to the field 0 close
to zero. Using the Lagrangian parametrization of the domain, the Taylor expansion of the cost-
function (4.2.5) with respect to a small domain variation is naturally defined as

S (Q0) = 7 () + 7'()(8) +o(16]), (4.3.2)

where at the linear order, the function  — J'(Q ()(0) defines the sensitivity of the cost-function
with respect to 60— usually referred to as the shape derivative.

As mentioned in introduction, the most efficient approach for computing the gradient consists
in using an adjoint-based approach in which the variations with respect to the domain are obtained
in one single step. An explicit formula is obtained by applying the method of Céa (1986), which
is based on a Lagrangian approach. Two groups of adjoint variables Q and qu are introduced.
These additional variables are Lagrange multipliers used to enforce the state equations (4.2.3) and
(4.2.4).

We first consider the general problem of the shape gradient of an eigenvalue, from which we
easily deduce the shape gradient for (4.2.5). Noting A = A" +i)\?, the following complex Lagrangian
function is introduced,

2(2,Q.Q1.¢%.a1.0) = 2 - (@ ~4(@))
(@', (A 7i(Q) - A(@) 7).

An explicit form of this Lagrangian function can be obtained from the weak formulations (1.1.35),
(1.1.36) and (2.1.4). Extra care has to be taken when it comes to Dirichlet boundary conditions:
they should be enforced using Lagrange multipliers, otherwise the variables are not truly indepen-
dent since their support domain depends on Q (Allaire & Schoenauer, 2007). Like what was done
for the velocity continuity condition on the fluid-elastic boundary r (with the Lagrange multiplier
)\) the no-slip velocity condition on Frgd is therefore also enforced weakly (with a Lagrange mul-
tiplier also noted )\) Details are given in Appendix D, where the developed expressions are also
available.

Once the Lagrangian is formed with independent variables, classical optimization results are
used (Wright & Nocedal, 1999; Allaire, 2012): the governing equations and the gradient are ob-
tained by taking the derivative of the Lagrangian function with respect to the different independent
variables. The shape gradient is obtained by seeking for the stationarity conditions for (4.3.3), from
which we obtain equations for each unknown as well as the expression of the gradient:

(4.3.3)

féf (5QT) =0 veQt (non-linear stationary equation),
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é(M?) = V6Q (linear stationary adjoint equation),

! (6" =0 vogt (direct eigenvalue problem),

4

1 (0G°) =0 v384° adjoint eigenvalue problem),

4
L (6N) = VoA (direct/adjoint modes normalization),
Z (60) = N(Q)(0) (shape sensitivity of \).

These are conditions written for the directional derivatives of . in the direction of the i*" group
of variables, i.e.

2, (6Q;) = Im * (£(Qu. . Qi +20Q,....Q,) ~ £(Q1..Q,)).

e—=0¢
In the following, we keep the abstract notations in the derivations for readability reasons. The
local form of the equations are given here without further details, while their derivation is reported
in Appendix D.
4.3.2 Governing equations

Non-linear stationary equilibrium

By construction, the variations with respect to the adjoint stationary variable Qf give the station-
ary equilibrium equation (4.2.3). The developed equations are written:

-V-PE)=0 in Q,
— V- -32.(&B) =0 in Q, (4.3.4)
(VOO -V -2(U,P,E.)=0, V- (®E)0)=0 iy

The first equation represents the solid equilibrium equation, the second line is the extension problem
and the last line the ALE Navier-Stokes equations. These equations are completed with fluid-solid
interface conditions on I', namely U = 0 (no-slip velocity), E-E.=0 (displacement continuity)
and P(2)a = (U, P,&.)# (stress continuity). The (fixed) farfield boundary T's, is composed
of an inflow boundary I'j,, an outflow boundary I'y,; and lateral boundaries I'.;. We take the
inflow condition U = Us, on [y, the outflow condition f](f],p, ée = 0)ir = 0 on 'y, the zero
extension displacement 2.=0on GQf\ (f‘ UT'eq) and solid displacement E =0 on 90, \ [, and
a zero normal velocity condition on the lateral boundary I'i,;. On the rigid boundary I'yzq, the
no-slip velocity condition U = 0 is enforced.

The problem (4.3.4) is solved using a Newton method, in the same way than what was already
described previously.

Direct and adjoint modes

Like already introduced in the chapter 2, there are two equivalent descriptions for the perturbation
problems. They can be written in the stress-free reference configuration O — Eq. (4.2.4) — but
also in the steady deformed configuration ) obtained from the stress-free reference configuration
through the combined solid-extension displacement Z, solution of (4.2.3),

Q= (Id+E)(Q).

It is more convenient to write the perturbation problems in the steady deformed configuration,
since the expressions are simpler.

A summary for this process is reported in Fig. 4.2. Changing the variables accordingly in (4.3.3),
ie. Q=Qo(Id+E)!, ¢° = §° o (Id+&)~" and q' = ¢ o (Id+&)~!, and taking the variations



Shape gradient computation € optimization loop 111

geometric shape steady, non-linear unsteady, linear
optimization fsi equilibrium fsi dynamics

stress-free stress-free || steady unsteady
reference optimized |, deformed deformed
domain

0 (&) d(imflin | domain Y (1) dorflain
Q Q(0) ! Q Q

Figure 4.2 — Physical domains flowchart. The shape optimization problem is set at the level of
the stress-free reference domain, defining a stress-free optimized domain. The steady deformed
domain is deduced from the stress-free, optimized reference domain by means of the steady
displacement = obtained from (4.2.3), while the unsteady deformed domain — by the fluid-
solid linear perturbation solution of (4.2.4) — is deduced from the steady deformed domain by

g€ (x,t) = eRe{€°(x) exp(At) }.

with respect to g (that does not depend on the steady deformation), one therefore obtains the
direct eigenvalue problem in the steady deformed configuration:

(7@ - @}a =0 i @ (4.3.5)

This problem is linear: to set the amplitude of the eigenmodes g°, we add the normalization
condition

<q°, ﬁsi(Q)q°> =1 (4.3.6)

The direct eigenvalue problem (4.3.5) is the modal problem already derived from the problem
(2.1.2). Recall that the corresponding local equations read as follows:

A =u, A(MSIE))us -V P(EE) =0 i 0,
~V-Z()=0 in O

A+ (VU) (u? = A€2) + (Vu) U + (VU)/(€) U - (4.3.7)
~V - (o(u®,p°) + (U, P;€2)) =0 in O
-V-u® -V (®(EHU)=0 in Q.

These are the solid equations, the extension equation and the Navier-Stokes momentum and con-
tinuity equations, in that order. They are supplemented by interface conditions

u’ —ul =0 on T,
u® =0 on I'yeq,
e —€°=0 on I
(o(u®,p°) +X'(U,P,£))n—P'(E;£°)n=0 on T,

and completed by zero extension displacement farfield conditions, £ = 0 on 99 \ T', zero solid
displacement £€° = 0 on 99 \ I', and the outflow condition (o (u°,p°) + X' (U, P,£2))n = 0 on
Fout. A zero condition holds for the velocity on I'ygq, I'in and I', and the slip condition on I'i.

The determination of an analytic formula for the shape gradient requires to adopt a continuous
approach for deriving the adjoint problem. Quantities such as the adjoint interface stress should
indeed be determined. Like previously, it is convenient to write the problem in the steady deformed
configuration. Changing the variables and varying the Lagrangian function (4.3.3) with respect to
q° gives the condition

<qT,(A<7fsi(Q)— féi(Q))5q°>:0 Vq°.



112 4. Control of fluid-structure linear instabilities with shape optimisation

To obtain the corresponding local equations, the adjoint operators Z5(Q)" and A, (Q)T are
introduced, such that

(a', (A 7(@Q) - H:(@))0a°) = (V" (@) = 4@ )d',00° ),
from which we obtain the adjoint equation
{M7u@' - @' f ' =0 (4.38)

Practically, the transformation is achieved using integration by parts and the formulas reported
in Appendix C.1. The derivation is detailed in Appendix D. The corresponding developed, local
equations write as follows:

¢ =\ (M/J(E)) uf e -V .P(Eul)=0 inQ,

—vU" ()\*u“r (VU) "l — (VuT)U) —(vuh)'VUU -
V. (28(51) +siW, P, uf,pT)) —0 inQ
& =0 onT,
Al + (VU)TUT —(Vu U -V - ol p)=0 inQy
~V-ul =0 inQy,

u' —ul =0 onT,

(4.3.9)

N o(ul,phn + (EC(EZ) +3i(U, P, uT,pT)) n—P(E;ul)n=0 onT.

The first equation is the adjoint solid vibration problem written under the augmented form.
This problem is self-adjoint as is the case for solids in absence of damping (Marsden & Hughes,
1994), except that the adjoint displacement plays the role of the direct solid velocity, and vice-versa,
because of the formulation on the form of an augmented problem.

The second equation is the adjoint extension equation that takes a rather complicated form,
that also involves the tensor

sH U, Put,ph) = —(P &' (uh)T + PT@'(U)T) o

’ 73{ - ((vu")' D) + (VU)"D(W") ) + (D) : D(uT)>I}.

(4.3.10)

The adjoint displacement £ is prescribed to be zero at the fluid-solid interface (third line). This
makes sense: adjoints can indeed be interpreted as the receptivity to forcings of the direct equations
(Luchini & Bottaro, 2014a,b); with this respect the adjoint displacement expresses the receptivity
to a forcing of the extension equation, that must be zero on the fluid-solid interface: otherwise,
this would signify that the extension equation may influence the physical problem.

The fourth and fifth equations are the adjoint Navier-Stokes equations, that take the same
form as would be obtained in a pure hydrodynamic case (Luchini & Bottaro, 2014a,b). Since
the adjoint velocities express physically the receptivity to a physical mechanism that would have
injected momentum in the system, they are also continuous across the interface (sixth line). The
adjoint stress balance however couples in a rather complicated way the adjoint fluid and solid
stresses, plus the adjoint extension pseudo-stresses.

Finally, the other boundary conditions are the zero extension displacement farfield conditions,
El = 0 on 9Q\ T, the zero solid displacement &' =0 on 89, \ T, and finally the outflow condition
o(uf,p)n+ (U -n)u’ = 0 on I'yy. A zero condition holds for the velocity on I'ygq, i and T,
and the slip condition on I'j,¢. The variation of the Lagrangian function (4.3.3) with respect to the
eigenvalue A\ eventually gives the normalization condition between the direct and adjoint modes,

<qT, «%si(Q)q°> =1 (4.3.11)
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Note that the block-formulation of the adjoint problem is obtained by taking the block-transpose
of the block formulation (2.1.1).

Let us give some details on the numerical resolution of (4.3.5) and (4.3.8). After space discretiza-
tion with finite-elements, ARPACK (shift-and-invert mode) is used to find the leading eigenvalues.
The complex shift is taken close to the estimated unstable eigenvalue and only the leading mode
is retained. Finally, the modes are normalized using (4.3.6) and (4.3.11). The adjoint problem
can be discretized directly from (4.3.7), or derived at the discrete level, i.e. by simply taking the
hermitian transpose of the direct problem (Thevenin & Janiga, 2008). This latter approach is
used practically, for it avoids from having to assemble the matrix of the direct problem first, and
then the matrix of the adjoint problem: only the direct problem needs to be assembled. This
also ensures that the discrete adjoint mode is the exact counterpart of the discrete direct mode,
independently from the mesh discretization.

Adjoint stationary equation

The adjoint stationary equation is obtained by differentiating (4.3.3) with respect to the stationary
variables Q. When Zé (5(:)) is set to zero whatever 6Q, we obtain

Ot @@ ) = (at. [ 275] 50- 2s) 50 g wveo. (4.3.12)
0Q |, 2Q |,

Compared to a pure hydrodynamic case, Trsi depends on the steady variables because of the
geometric non-linearities. The same is true for .4;/,, where they have to be considered in addition
to the quadratic velocity advection term. Introducing the operators .4; and .7, such that

A A .o A ajsi A AO > A A0 A 8’/‘;8/1 A 4°
F(Q,6°)0Q = SsQ 3¢ and 2Q,6°)8Q = T 6Q 3 §°,
0Q |, 2Q |,

and using again the properties of adjoints, we arrive to the adjoint steady fluid-solid equation
21 (AT A > (A A° 210 A Aoy ) A
L@QIQT = (\TL(Q.6) - AUQ.6) dl (4.3.13)

sensitivity to steady flow modifications VQ/\

In the context of a pure hydrodynamic problem, Marquet et al. (2008) showed that the right-hand
side of this equation has a physical interpretation in terms of the sensitivity of the eigenvalue A
to steady flow modifications. The exact same interpretation holds in the fluid-elastic case. In the
hydrodynamic case, its explicit expression is however way simpler, since 0T / 8@ =0, and J@;l
only depends on the velocity.

In the fluid-elastic case, there is also a dependency with respect to the deformations of the
steady flow. For this reason, the exact expression for the right-hand side of the above expression
is particularly tedious to derive: in the stress-free reference configuration, each term of the fluid
equation depends on the stationary extension domain displacement (see Eq. (2.1.4) and in Appendix
D). We therefore consider an approximate sensitivity to steady flow modifications, where the effect
of the displacements are neglected. This approximation is valid when the displacements are small,
as is the case for the cylinder-splitter plate configuration in absence of steady deviations that will
be studied in what follows. This amounts indeed to assume that the computation of (4.3.13) can
be done by assuming that = Q. The adjoint steady equation then reduces to the adjoint Navier-
Stokes equations, forced by sensitivities V(M) and Vp(A). All calculations done (see Appendix
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D), we have in the steady deformed configuration

Vo) = — (Vu)Tul + valu*
~®/(£)TVUT ul + Vuld (27U
—\* (VuJr ISR V¥ S uT)
+V -3 (ul,p' €57

(4.3.14)

for the sensitivity to variations of the steady flow. The first line is exactly that obtained by Marquet
et al. (2008), while the other terms represent the corrections coming from dynamic flexibility effects.
In the fluid-elastic case, there is furthermore a sensitivity to pressure variations,

Ve(\) =& (€297 : Val. (4.3.15)

The approximate adjoint stationary equation with the approximate right-hand side writes as follows
in the steady deformed configuration:

(vO)'U' - (VUNYU -V -o(U', P = Vi(\) in Oy,
~V-U ' =Vp(\) inQ (4.3.16)
U'=o0 on I'UT,gq,

completed by the outflow condition (U - nf)UT + 0'(U‘L7 Phn; — af(uf, p!, €2)n = 0 on Ty and
the other farfield velocity conditions.

Remark. We have also considered the exact equation deduced from (4.3.12) at the discrete level.
The left-hand side can indeed be computed at the discrete level using a matrix transpose op-
eration — or at the continuous level by the same manipulations than that used to derive the
adjoint eigenvalue problem. When it comes to the right-hand side, once the derivatives 0%/ oQ
and &/Vfbfi / 8@ are computed, we have actually to our disposal a weak formulation that can be
directly used to assemble the discrete right-hand side of the equation. What is missing then is
an expression of the strong form for the right-hand side in (4.3.13), that should be obtained from
direct/adjoint manipulations. When examining the shape gradient, no differences between the
exact and approximate approaches were observed on the test-case considered, so that we rather
consider here the approximate formula.

4.3.3 Shape gradient computation

It now remains to differentiate (4.3.3) with respect to the Lagrangian domain mapping 6 in order
to obtain the shape gradient, which basically amounts to differentiating an integral with respect
to its support domain. From the so-called structure theorem (Hadamard, 1908; Delfour & Zolésio,
2011), it can be shown that the shape derivative takes then the generic form

ZL(50) = N (Q)(68) = /F Gy -00dr Va6, (4.3.17)

rgd

where the function G\7v is referred to as the shape gradient and depends on state and adjoint
variables. In (4.3.17), the shape derivative only depends on the normal component 7 - 86 of the
boundary variation, reflecting the intuitive idea that variations of the border BIY) along the normals
affect Q) at first-order, while the tangential variations have only a second-order influence. In the
present case, all computations done (see the detail in Appendix D), we obtain the remarkably
simple formula

2 g 2
Gr=— DO : DU — =

Re
G/\,s G/\,u

*

D(a°) : D(ah) on

>

red> (4.3.18)
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where we have noted G5 and Gy, the so-called steady and unsteady components of the shape
gradient. Recall that on I‘rgd, D= =1/2 (V + VT), and that A : B = A;;B;;. In the case where
the interface to be optimized would be elastic, the expression is however a priori much less simple
(see again Appendix D). In the above expression, G s is related to the stationary part of the
problem, with Uand U being respectively the steady fluid velocity and the adjoint stationary
fluid velocity. On the other hand, G, represents the contribution of the unsteady part of the
problem, where @° is the fluid velocity eigenmode and @l is the adjoint fluid velocity eigenmode.
Eventually, the shape gradient for the parametrized cost-function (4.2.5) is deduced from (4.3.18)
simply as follows:

G = (N = A)) Re{Gr} + (X' — AL) Tm{ G, }. (4.3.19)

The decomposition of the gradient between two components results from the fact that the sen-
sitivity of the eigenvalue with respect to a domain variation actually depends on two mechanisms.
We can indeed write A = A(Q, Q(Q)). The first argument refers to the fact that, for a given Q,
the structure of the eigenvalue problem (4.3.5) is obviously affected by a variation of the domain
Q). The second argument expresses that the stationary flow Q is itself a function of through
the stationary problem (4.2.3). Counsidering a variation 60 of the domain mapping, a correspond-
ing variation d\ of the eigenvalue can therefore be formally written, with the appropriate scalar
products (-,-), as

6x = (Vo 00) + (V). 0Q)

The first term is related to how a modification of the domain influences the cost-function, for a fized
stationary flow. This term is thus related to mechanisms that influence the eigenvalue through
linear, unsteady mechanisms (term G ,). On the other hand, the second term is related to the
influence of the variations of the steady flow through a modification of the geometry (term G ).

4.3.4 Practical gradient evaluation & optimization loop

From (4.3.2) and (4.3.17), a descent direction that diminishes the cost-function is then for instance
¢=-Gn. (4.3.20)

An other choice, though similar in principle, is made practically. There is indeed a numerical diffi-
culty to solve here: the gradient is defined only at the fluid-structure interface, that is practically a
boundary of the fluid mesh. Using the gradient information to deform the surface vertices is thus
likely to result in degenerated neighbouring cells if the update step is too large. A representation
of a circular interface (in orange) placed in the middle of a mesh in Fig. 4.3 illustrates this phe-
nomenon: in (a) the descent direction computed from (4.3.20) is represented. One observes that
on the top of the circle, mesh reversal will occur because the displacement exceeds the thickness
of the first layer of cells, and thus remeshing will be mandatory. On the other hand, a general
lack of regularity is observed, notably because the formula (4.3.19) giving the gradient requires to
differentiate the previously computed fields, and because the discrete boundary necessarily lacks
of smoothness.

For all these reasons, the interface gradient information is propagated onto the whole domain,
exactly in the same way as the ALE extension operator does. An efficient method to propagate
and regularize the gradient is to use the so-called H'-method (Allalre & Pantz, 2006; Dapogny
et al., 2017) where the shape gradient is identified from _#'({2)(0) by means of the H! scalar
product on Qf, ice. (a, b>H1(Q ) = fQ a-b+ Va : Vb)dQ, rather than an usual £2 scalar product
on I'. This defines a variational formulation for a Poisson equation. The descent direction is then
solution to

(4.3.21)
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Figure 4.3 — Mesh extension-regularization approaches. Comparison of the £?-based and #'-based
approaches, for G = cos(2nz) sin(2my) around a cylinder of diameter 0.5, showing the superiority
of the latter one.

A comparison with the £2-based approach is showed in Fig. 4.3b, showing the clear improvements
provided by the latter: first, the interface deformation is now propagated in the whole domain that
can thus be deformed without remeshing, and the smoothness is greatly improved. Note that with
the H'-based approach, the deformation field is no longer along the normals at the deformable
edges.

To address mesh-related issues, once the regularized gradient is computed and the new position
of the interface is determined, even if not mandatory, the region around the optimization interface
is nevertheless remeshed, in order to prevent from mesh cell degeneracy. For instance on the case
depicted in Fig. 4.3b, the updated shape will be moved upwards, resulting in a compression of the
cells in the upper region, and a elongation of the cells in the lower region. A remeshing generates
a new distribution of cells that have a more regular aspect ratio. For some cases, it is also useful
to use a two-level discretization (Allaire & Schoenauer, 2007): one fine grid to resolve the physics
and a coarse grid that supports the interface. We have observed that in some specific cases this
approach prevents from the apparition of spikes in the optimization surface. Using one single mesh
was however sufficient for the applications presented in what follows.

The optimization loop is represented schematically in Fig.4.4. The procedure only requires
an initial shape QO as an input, which is that with the circular cylinder. Within one iteration
of the algorithm, several steps are realized sequentially. First, the non-linear stationary problem
(4.2.3) is solved. The steady deformed configuration is then computed, and the direct eigenvalue
problem (4.2.4) is assembled, then solved. The adjoint eigenvalue problem (4.3.8) is solved using
the discrete transpose-conjugate approach, which avoids having to reassemble the corresponding
matrix. The direct and adjoint modes are scaled according to (4.3.6) and (4.3.11). Then, the adjoint
stationary equation (4.3.13) is solved. The matrix for this problem is also obtained practically by
taking the transpose of the Jacobian matrix used in the Newton loop considered for solving (4.2.3),
since the exact Jacobian has been determined. Finally, the shape gradient is computed using the
analytic formula (4.3.19). A fixed descent step k is chosen, that sets the magnitude of the shape
deformations for the current iteration. The extended-regularized descent direction is computed
from (4.3.21), and the mesh is updated accordingly. The stop criterion is set on the magnitude
of the deformation of this deformation field. Finally, the non-linear solution at the current step is
interpolated on the new mesh and serves as an initial guess for the next step.

4.4 Application to the cylinder splitter-plate case

In this section, following what was introduced before, we consider the problem constituted by an
elastic plate attached to a rigid cylinder, already introduced in section 3.2 (see also a sketch of
the configuration in the Fig. 3.3). The optimization procedure is applied to the rigid part of the
object, as mentioned before and as represented in the Fig.4.5. In the following, we first describe
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Figure 4.5 — Shape optimization for stabilizing an unstable mode. The shape of the rigid part of
the object is optimized so as to stabilize an unsteady mode, as represented in (b), or to modify the
frequency of the mode (not represented).

two types of modes found at different values of the stiffness and Reynolds number, and carry out
a sensitivity analysis so as to identify the active regions in the development of the instabilities.
The general shape gradients for both modes are then introduced and discussed. Results of shape
optimization for stabilizing the modes are presented. Finally, we consider a case where one tries
to design an unstable configuration oscillating at a prescribed frequency.

4.4.1 Description of the unstable modes

Solving the stationary flow equation (4.2.3) and eigenvalue problem (4.2.4) for different parameters
(&5, Re) results in two regions of unstable, unsteady modes, as represented in Fig. 4.6 that reports
the stability regions in the (€, R¢) plane. The region where unstable modes are found is emphasized
by the gray color, while neutral stability curves are drawn with the solid lines. At high rigidities
and for Reynolds numbers greater than 92, an unstable region is found, where only one unstable
mode is present. These modes are referred to as “fluid” modes, for they remain unstable if the
rigidity is increased up to the point that the solid is rigid. Their governing mechanics is thus likely
to be related to the unstable vortex wake that develops downstream to the cylinder. Keeping
the Reynolds number constant and decreasing the stiffness results in a stabilization of these modes
(precisely, when one crosses the boundary depicted with the blue solid line in Fig. 4.6), but another
type of unstable modes appear at some point (when one crosses the boundary depicted with the
orange solid line in Fig.4.6). These modes are referred to as “solid” modes, for they do not exist
at high rigidity and are thus necessarily related to the fluid-structure interaction. They are also
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Figure 4.7 — Non-optimized case (F). Eigenvalue spectrum (left), streamwise velocity component
of the stationary flow (top right, dashed negative contours, the first solid line in the vicinity of the
recirculating region marks the limit of zero velocity), and real part of the streamwise component of
the leading mode (bottom right, 40 contours between +0.015, dashed negative). Snapshots of the
solid deformation for 25 phases uniformly distributed over a period of oscillation of the mode are
depicted with the black solid line, while the real part is represented in orange color.

stabilized by a decrease of the Reynolds number, but however survive down to R, = 60 — in
which case the rigid case yields to a stable flow. In the following, we concentrate on two reference
unstable cases, a case (F) in the fluid modes region, at a Reynolds number R, = 100 and high
rigidity £ = 4.68 x 10°, and a case (S) in the solid modes region, having a Reynolds number
R = 80 and a lower stiffness £ = 105 000.

Unstable case (F')

The main features for the case (F) are presented in Fig.4.7. The streamwise velocity for the
stationary flow for the case (F) is reported in the upper right picture. In the fluid region, a
wake flow with two symmetric recirculating regions above and below the splitter plate that merge
downstream to the plate. This recirculating region extends here down to z = 5.54. A very small
compression towards z < 0 in the solid is observed, that does not exceed —1 x 10~7. The spectrum
that is obtained by solving the coupled fluid-structure eigenvalue problem (4.3.5) for this set of
values is reported in the graph on the left side. As mentioned above, one single unstable eigenvalue
pair A(py = 2.677 x 1072 £ 0.794i is found. The spatial structure (real part of the streamwise
velocity component of the perturbation) of the corresponding eigenvector is represented in the
bottom right picture, showing the classical features of an unsteady vortex street wake (Sipp &
Lebedev, 2007; Williamson, 1996) associated with a one-node bending vibration of the solid.
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Figure 4.8 — Non-optimized case (S). Eigenvalue spectrum (left), streamwise velocity component
of the stationary flow (top right, dashed negative contours, the first solid line in the vicinity of the
recirculating region marks the limit of zero velocity), and real part of the streamwise component of
the leading mode (bottom right, 40 contours between £0.03, dashed negative). Snapshots of the
solid deformation for 25 phases uniformly distributed over a period of oscillation of the mode are
depicted with the black solid line, while the real part is represented in orange color.

Unstable case (S)

Computed for a smaller rigidity coefficient & = 105000, and a slightly lower Reynolds number
R. = 80, the steady flow for the case (S), represented in the upper right picture in Fig. 4.8,
displays a shorter recirculation region that extends down to & = 4.32. Due to the smaller rigidity,
the maximal compression (at the tip of the plate) reaches a slightly higher value of —5 x 10~¢
The fluid-structure eigenvalue spectrum is reported in the graph on the left side and shows one
unstable eigenvalue pair A(g) = 2.039 X 1072 £ 0.977i. A representation of the real part of the
streamwise velocity component of the mode is also shown in the bottom right picture. Compared
to the case (F), structures are observed closer to the fluid-structure interface (even if the amplitude
chosen for the contours is twice as large as in the previous case), while a typical vortex shedding
pattern is also present in the wake. In this case, the deformation amplitude in the solid is also
about 2500 greater than for the mode (F), while the amplitude in the wake decreases more rapidly
in the downstream direction.

The very low values found for the displacement justify the choice for an approximate adjoint
stationary flow.

4.4.2 Adjoint modes & abstract sensitivity analysis

We have seen in §4.3.3 that the expression (4.3.18) for the shape gradient depends on the direct
and adjoint steady and unsteady velocities. If adjoint fields might be viewed only as a convenient
mathematical ingredient that allows to compute the gradient, they have also been interpreted
more physically in terms of sensitivity (Giannetti & Luchini, 2006; Marquet et al., 2008; Luchini &
Bottaro, 2014a). The same kind of analysis is extended here to the fluid-structure case, allowing
to get further insights on the dynamics on the modes, and evaluate their overall potential for being
controlled, regardless of the specific method used practically. The analysis is divided in two parts,
the first focusing on the effect of a modification of the steady flow (steady part), and the second
dedicated to the sensitivity to a modification of the structure of the eigenvalue problem (unsteady

part).
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Figure 4.9 — Sensitivity to a stationary flow variation. Maps of the magnitudes for the real and
imaginary parts of (a,b) VyA, and (¢,d) of VyA minus the pure hydrodynamic contribution
—(Vu*")Tu’ + Vulu®*. The same levels are taken everywhere.

Sensitivity to steady flow modifications

The sensitivity of the eigenvalue A to a steady flow modification can be evaluated by looking at the
gradients VA obtained from (4.3.14). The results are reported in Fig. 4.9 where the complete term
is represented in (a,b), while the difference between VA and the pure hydrodynamic contribution
—(Vu*)Tul + Vulu®* derived by Marquet et al. (2008) is represented in (c,d), with the same
color levels.

Looking first at the full component (a,b), we see a clear difference between the cases (F) and
(S): for the mode (F), there is a large sensitivity in the wake and a smaller sensitivity in the
vicinity of the detachment area at the surface of the cylinder. Conversely, structures concentrated
all around the solid are found for the mode (S). Notice also the difference in terms of growth-rate
and frequency sensitivity close to the cylinder. For the mode (F), the contributions are very similar,
while stronger differences are observed for the mode (S). This indicates that for a given modification
of the steady flow in the vicinity of the detachment region at the surface of the cylinder, different
effects on the frequency/growth-rate are likely occur, depending on the nature of the mode.

On the other hand, looking in (c,d) at the magnitude of the difference between the complete
sensitivity map obtained from (4.3.14) and that from Marquet et al. (2008), we clearly see the
“fluid” nature of the mode (F): all the sensitivity is contained in the pure hydrodynamic term.
Conversely, we see in (d) that the corrections induced by the fluid-elastic part are not small, even
in the vicinity of the cylinder.

We see here how a modification of the steady flow might influence the eigenvalue. Especially,



Application to the cylinder splitter-plate case 121

shape optimization will certainly act locally (because there are sensitive regions close to the cylin-
der) but also non-locally, since a modification of the shape of the cylinder is also likely to affect
the wake.

Structural sensitivity

A measure of the sensitivity of the eigenvalues to perturbations of the eigenvalue problem is the
structural sensitivity, first introduced by Giannetti & Luchini (2006) in the context of the linear
stability analysis for a cylinder flow, as a measure of the sensitivity of the eigenvalues to a modi-
fication of the structure of the eigenvalue problem. A generic perturbation §.# of the eigenvalue
problem (4.2.4) generating perturbations A + d\ and ¢° + §G°,

{0+ T(Q) ~ Q@ +68) = 67(0°),

results at first-order, using the properties of the adjoint equation and the normalization condition
(g1, Ze:(Q)G°) = 1, to the relation

[6Al = [(4T,8(4°))|

An upper bound for the eigenvalue variation can then be obtained if one considers that .7 takes
the form of a spatially localized force-velocity feedback. According to Giannetti & Luchini (2006),
such feedback could practically be produced by introducing small devices exerting a force whose
direction and strength depend on the local value of the velocity field. In the fluid-structure case,
the greatest eigenvalue drift is thus bounded as [0A| < S(&) for a disturbance located in &, with

where || - || is the algebraic 2-norm computed pointwise, thus defining S(&) as a spatial field. The
above definition ensures that S defines a continuous and smooth field, because both the direct and
adjoint fluid and structure velocities have indeed to match at the interface. High sensitivities are
associated to an high receptivity to a structural modification of the eigenvalue problem. In the
context of fluid dynamics, the sensitivity maps obtained for a cylinder flow could explain how the
stability of the wake is affected by the presence of small control cylinders (Giannetti & Luchini,
2006; Strykowski & Sreenivasan, 1990).

A map of the structural sensitivity is reported in Fig.4.10 for both modes, and shows great
differences. The structure with two symetrically placed lobes observed in the sensitivity map for
the mode (F) is very close to what is also observed in the cylinder flow by Giannetti & Luchini
(2006), although it is shifted more downstream because of the presence of the splitter plate. Close
to the cylinder’s surface, the sensitivity is however very weak. This indicates that a mechanism
concentrated at the interface — typically, shape optimization — should act in a non-local way for
provoking an eigenvalue drift.

For the mode (S), the sensitivity peaks at the tip end of the plate, as could have been speculated
from the mode (Fig.4.8) that concentrates structures close to the solid. Again, this emphasizes
the “solid” nature of the mode: the largest drift of the eigenvalue is obtained by a perturbation in
the solid. On the other hand, a relatively large-amplitude sensitivity is also located close to the
top and bottom ends of the cylinder. A local effect of the shape optimization of the cylinder can
therefore be expected.

At the level of the eigenvalue problem, we again see that different sensitivities are found de-
pending on the nature of the mode. Let us now compute the shape gradients.

4.4.3 Shape gradients

In the following, we use the regularized descent direction ¢, to represent graphically the shape gra-
dient of A\ along the cylinder’s surface. Recall that it writes as ¢, = —G\f when the £2-approach



122 4. Control of fluid-structure linear instabilities with shape optimisation

(a) mode (F) (b) mode (S)

Figure 4.10 — Structural sensitivity. Plot of S(&) for (a) the mode (S) and (b) the mode (F). Colors
scaled with respect to the highest values (darker is higher).

is used. From the shape gradient expression (4.3.18), recall also that we can split the expression
as the sum of a steady part ¢, , and an unsteady part ¢, ,. The sensitivity of the eigenvalue to
a variation of the shape of the cylinder is then visualized as follows:

decrease the growth-rate = deform according to Re{ Drs Tt (]5/\7“},
decrease the frequency = deform according to Tlm{qb As T @ A’u}.

The real parts of the steady and unsteady components of ¢, are related to a modification of
the growth-rate, while the imaginary parts are related to a modification of the frequency. In the
following graphs, the arrows thus represent the oriented interface displacement (arbitrary scaled)
that should be prescribed so as to decrease either the growth-rate or the frequency of the mode.
All the components are found to be symmetric with respect to the horizontal axis. This property
can easily be deduced from the symmetries of the problem (the stationary flow is symmetric with
respect to the horizontal axis). Let us now detail the features of the shape gradient.

Shape gradient for the mode (F')

Let us first turn our attention for deformations of the cylinder’s surface that modify the mode (F)
in the direction of the decrease of the components of the leading eigenvalue. We immediately notice
in Fig.4.11 the different scale of the two components (that have been magnified for the purpose
of the visualization): the steady component is at least 200 times greater than the unsteady one.
This means that almost all the controllability of the mode (F) has to do with a modification of the
steady flow rather than a modification of the structure of the eigenvalue problem.

Let us then focus on the predominant component whose features are reported at the top in
Fig.4.11a for the growth-rate and at the top in Fig.4.11b for the frequency. The imaginary part
has an amplitude about twice as large as the real part and, interestingly, it also observed that the
two components are almost proportional: they both cross zero at almost the same position (the
first crossing occurs at § = 64° and the second one at # = 126° for both the real and imaginary
part). Furthermore, the peaks for both curves is reached at about the same angle. The major
peaks are located slightly upstream to the top/bottom of the cylinder (f = 95° and 6 = 97° for
Re(y ;) and Jm(¢, ;) respectively). The contributions have however opposite signs: a decrease
of the growth-rate is associated to a flattening of the shape along the vertical axis — which seems
reasonable —, while a decrease of the frequency is associated to a blowing of the shape in the
opposite direction.

Shape gradient for the mode (S)

Moving now to the analysis for the mode (S) and focusing first on the real part, it is observed in
Fig.4.12 that both the steady and the unsteady components have roughly the same amplitude.
Looking at ¢, , and @, ,, it is clear that the two components act in an opposed way. The
stationary component is associated with a blowing in the directions 6 + 135°, while the unsteady
component prescribes a crushing of the shape along the vertical axis. If the slendering of the shape,
by reduction of the cross-section, has an evident stabilizing effect, the blowing effect observed in
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Figure 4.11 — Gradient-based shape modifications for the mode (F). Plot of the real and imaginary
parts of the steady and unsteady components of a descent direction that decreases (a) the growth-
rate (real part of ¢, , and @, ,) and (b) the frequency (imaginary part of ¢, , and ¢, ,) of the
mode (F). The angle 0 represents the position along the cylinder’s surface, counted in anti-clockwise
direction from the middle of the boundary where the plate is clamped to the cylinder.
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Figure 4.12 — Gradient-based shape modifications for the mode (S). Plot of the real and imaginary
parts of the steady and unsteady components of a descent direction that decreases (a) the growth-
rate (real part of ¢, , and ¢, ,) and (b) the frequency (imaginary part of ¢, , and ¢, ,) of the
mode (F). The angle 0 represents the position along the cylinder’s surface, counted in anti-clockwise
direction from the middle of the boundary where the plate is clamped to the cylinder.
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Figure 4.13 — Spectrum and leading eigenmode in the optimized case (F). Eigenvalue spectrum
(left), streamwise velocity component of the stationary flow (top right, dashed negative contours,
the first solid line in the vicinity of the recirculating region marks the limit of zero velocity, and
the initial cylinder’s shape is materialized by the orange circle), and real part of the streamwise
component of the leading mode (bottom right, same levels as in Fig.4.7). Snapshots of the solid
deformation are also reported (same nomenclature and scaling as in Fig. 4.7).

¢, is less evident to interpret. The combination of the two seems to generate a more “D-shaped”
bluff-body when it comes to decrease the growth-rate of the mode.

The imaginary part is associated to a modification of the frequency and roughly act with
the same signs, but with very different amplitudes. The amplitude for steady the component is
actually about 10 times higher than the one for unsteady. For instance, decreasing infinitesimally
the frequency of the mode (S) therefore essentially requires to deform the shape according to
Jm(¢, ) into an ellipse whose major axis is directed along the vertical axis, while the information
in ¢, , only intervenes as a second-order effect.

4.4.4 Shape optimization for controlling the growth-rate of the modes

We focus in this section on the shape optimization for controlling the growth-rate of the modes.
We therefore consider . = 1 and a; = 0, i.e. in this section the cost-function writes

F@ =5 (v@-x)

Using the gradient descent algorithm described in the Fig. 4.4, optimal shapes satisfying A" = A
(up to a prescribed tolerance) are computed. In particular, setting A7 < 0 amounts to finding
shapes which suppress the instability. On the other hand, taking A} greater to the initial growth-
rate (that found in the non-optimized case) results in shapes that come with a stronger instability.
Note also that the frequency is left unconstrained in this case. The case where the a target
frequency is set will be considered in §4.4.5.

Optimal shapes

Let us first set the growth-rate control to a slightly negative value A, = —0.02. The results of the
shape optimization for the mode (F) are reported in Fig. 4.13, with the same nomenclature as that
used in Fig. 4.7 (except that a slightly closer view is taken to depict the stationary flow, so as to see
more clearly how the shape is modified). In the spectrum on the left, the target growth-rate has
been identified with the vertical dashed line, and we see that the optimized eigenvalue has reached
the target. Compared to the initial mode, the frequency is increased to 0.88. It is observed that
the mode is stabilized through a small flattening of the cylinder. The deformation is not symmetric
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Figure 4.14 — Spectrum and leading eigenmode in the optimized case (S). Eigenvalue spectrum
(left), streamwise velocity component of the stationary flow (top right, dashed negative contours,
the first solid line in the vicinity of the recirculating region marks the limit of zero velocity), and
real part of the streamwise component of the leading mode (bottom right, same levels as in Fig. 4.8).
Snapshots of the solid deformation are also reported (same nomenclature and scaling as in Fig. 4.8).

with respect to the x = 0 axis: the cylinder is slightly more flattened in the region « < 0. Despite
this small variation of the geometry, the stationary flow is noticeably modified. For instance, the
limit of the reciculating region in the streamwise direction, initially located at x = 5.54, is moved
upstream up to x = 4.45. The reduction of the wake comes with modal structures that are located
more downstream, as seen in the lower right picture.

The results for the shape optimization in the case (S) are reported in Fig.4.14. Although the
control value is the same (A, = —0.02), the optimal shape that stabilizes the mode (S) notably
differs from what was observed previously. If again the cross-section is reduced (which has a
stabilizing effect, since it reduces the apparent Reynolds number), there is kind of a growth on
the front face of the cylinder, which forms a steeper change of curvature than previously. Like
previously, the recirculation region is smaller in the optimized case (limit at z = 4.35 in the initial
case and « = 2.81 in the optimized case).

Let us now vary the value of the target growth-rate A]. The least stable eigenvalue obtained
once the optimization has converged is represented in the complex plane in Fig. 4.15. The vertical
axis thus displays the reached growth-rate A” as well as the objective growth-rate AL, which are
the same up to the prescribed tolerance. The initial cases are depicted with the Bl symbol for the
case (F) and with the M symbol for the case (S). In both cases the converged, optimized eigenvalue
evolve similarly: the more stable the target growth-rate, the higher the frequency. For the case (S)
however, the frequency reach a maxima as Al is increased up to about 0.05, then decreases again.
Note also that for the same value of A, the frequency does not reach the same value in both cases
(F/S).

A few shapes are represented in the inserts (arrows indicating which is the corresponding
eigenvalue). Their properties make sense: a stabilization of the mode is achieved by flattening the
shape. This lowers the apparent Reynolds number of the bluff-body, but not down to the point
that it reaches the critical Reynolds number of 92: the streamlining effect induced by the decrease
of the curvature of the shape indeed also tends to stabilize the flow by favourably positioning the
detachment point (the limits of the recirculating region in the optimized shapes are indicated with
a dashed line). If the overall trend is the same for both types of modes, the optimal shapes for
the modes (F) and (S) is not the same: the shapes associated to the cases (S) they are somewhat
sharper.

Rather than targeting a specific value for the growth-rate, it is also interesting to examine,
for a fixed target AL, the influence of the initial state. For that purpose, we consider a set of
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Figure 4.15 — Shape optimization for controlling the growth-rate. Representation, after shape op-
timization, of the leading coupled fluid-structure eigenvalues for the case where the growth-rate is
optimized (the growth-rate satisfies at convergence |\" — A7| < tol). The square symbols represent
the initial location in the spectrum of the leading eigenvalue. A few optimized shapes are indicated
with the inserts, where the limits of the back-flow region behind the bluff-body has been marked
with a dashed line.

unstable configurations at R, = 80 with different values of & (represented by the small orange
squares in Fig.4.6), and consider the growth-rate optimization problem with A, = —0.01, that is,
one tries to stabilize the unstable mode. In all cases it has been checked that the optimized shape
yields to only stable eigenvalues in the global spectrum. The corresponding results are reported in
Fig.4.16. We see in Fig.4.16a that for all the cases considered (the intitial, unstable eigenvalues
are displayed in the left side of the complex plane, each point representing a different value of
the stiffness) a stabilization can be achieved. The stabilized modes have an increased frequency
compared to the initial ones, as indicated by the dashed lines that link the intial and the optimized
modes leading eigenvalues. Some characterisics of the optimal configuration are reported in the
Figs.4.16b and 4.16¢, that show non-monotonic variations. For instance, at moderate stiffnesses,
the cross-section of the optimal shape decreases with &, before reaching a minimum and then
increasing with the stiffness. The same observation holds for the length of the recirculating region,
as represented in Fig. 4.16c. The variation of the cross-section indeed directly influences the length
of the recirculation region. The plateau between £ = 0.5 and 0.8 corresponds to a case where the
limit of the two recirculating bubbles touches the tip of the plate.

Algorithm convergence € global fluid-structure spectrum modifications

Let us finally give some technical details about the optimization algorithm. Starting from the initial
case where the rigid cylinder is circular, the optimization algorithm results in modified shapes that
are no longer circular but present a modified curvature. The convergence of the method is tuned
with the update parameter k, that sets the magnitude of the deformation along the direction given
by the gradient. We also found that no normalization of the gradient was needed. We did not
develop any special feature other than trial-and-error for choosing k. Our selected values were
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Figure 4.16 — Influence of the initial state for (S)-like modes optimization.
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Figure 4.17 — Evolution of the global features during shape optimization. (a) plot of the coupled
fluid-structure spectrum for different iterations of the optimization algorithm. (b) snapshots of the
fluid-structure mode at iteration 0 (top), 5 (middle) and 10 (bottom). The streamwise steady flow
velocity is depicted in blue shade color, the modulus of the transverse displacement in the solid is
depicted in orange color, and a snapshot of the streamwise velocity of the fluid-structure mode is
represented with the lines (dashed lines indicate negative contours). The phase has been adjusted
between the different modes. The H' extended-regularized deformation field obtained from the
shape gradient is represented by the red arrows (amplitude magnified 20 times).

between 0.1 and 2 for all the cases tested. The key point is to find a balance between a too small
value that comes with a slow convergence, and a too high value. In this latter case, the shape
at iteration n 4+ 1 might be notably different from the shape at iteration n. In that case, like for
every optimization algorithm one could simply miss the minimum of the cost function. Another
problem, specific to our eigenvalue tracking procedure, is the following: in the Arnoldi process
for solving the eigenvalue problem at step n + 1, the eigenvalues are sought in the vicinity of a
complex shift that is defined in our case as the eigenvalue at iteration n. If the new shape at
iteration n + 1 is very different from the previous one, this shift value might lie in a region of
the fluid-structure spectrum where the most unstable eigenvalue no longer lie. In that case, the
tracking of the eigenvalue might be lost. This is easily observable in an history of the eigenvalues:
in that case, a large discontinuity is then observed between two successive iterations.

Although our approach could be easily adapted for handling several eigenvalues, we consider
here the case where only one eigenvalue is modified through shape optimization. Therefore, it is
relevant to examine how the modification of one eigenvalue affects the entire spectrum through
the optimization process. To address this question, let us consider as an example the case where
p (Q) = 1/2(\" 4 0.1)2 — other cases would lead to the same observations. We take an update
step of k = 2, in which case 14 iterations are required for _# (2) to decrease down below 1 x 1077,
The main features of the evolution of the fluid-structure system are reported in Fig.4.17. The
global spectra at iterations 0 (initial configuration), 5, 7 and 10 are represented in Fig.4.17a. The
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Figure 4.18 — Shape optimization for controlling the frequency. Representation, after shape opti-
mization, of the leading coupled fluid-structure eigenvalues (+) for the case where the frequency
is optimized (the frequency satisfies at convergence |/\i — /\2\ < tol). The square symbols represent
the initial location in the spectrum of the leading eigenvalue. For the sake of comparison, the
eigenvalues reported in Fig.4.15 (optimization of the growth-rate only) are also reported (x).

evolution of the leading eigenvalue towards the left side of the complex plane is associated with
a global decrease of the growth-rate of the modes. However, at some point (between iterations
7 and 10), the tracked mode (its path is emphasized by the gray arrows) ceases to be the most
unstable one for the benefit of a zero-frequency mode. This illustrates the need for an a-posteriori
computation of the entire spectrum, to ensure that no other mode has become unstable elsewhere.
Snapshots of the flow are represented in Fig. 4.17b, together with a representation (red arrows) of
the H' deformation field that extends the information of the gradient onto the whole fluid domain.
The phase of the streamwise velocity mode at iteration 5 (middle) has been adjusted in such a way
that it corresponds to the phase of the mode at iteration n = 0, and the same contour levels have
been kept between the three pictures.

4.4.5 Shape optimization for controlling the frequency of the modes
Frequency optimization

We now consider the case where the frequency is set to a specified value A\, while the growth-rate
is left free to evolve. In the present case, the cost-function therefore writes as

70 =5 (@)

The obtained eigenvalues at convergence of the algorithm are reported in Fig. 4.18 for both reference
cases, as a function of the target frequency A.. We observe that the converged eigenvalue are
clustered in the same region of the complex plane as previously: for comparison, the gray crosses
represents the location of the optimized eigenvalues obtained by targeting a specified growth-
rate. In particular, for the case (F) it seems that the optimizations with (a,,a;) = (1,0) and
(ar, ;) = (0, 1) result in modes that collapse on the same curve. The same is not true for the case
(S), although the same global tendency is observed.

The remarkable link between the frequency/growth-rate optimization for the mode (F) can be
interpreted by coming back to the gradients. It has been observed for the mode (F) that (i) the
steady component is largely dominant over the unsteady component (Fig.4.11), and (ii) that the
real and imaginary parts of the steady component are almost proportional with opposite signs,
Im{Gx s} ~ —0.5Re{G, s}, see Fig. 4.11 or Fig.4.19. Combining these two assumptions, we can
simplify (4.3.19) as follows,

G =0, (X" = X)) Re{Gr} + ai(\" = \L) Im{ G\ }
~ (a (A" = ML) = 0.5a;(A" = ML) Re{ G s}
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Figure 4.19 — Shape gradients for the mode (F). Representation of the real (---) and imaginary
(——) parts of the stationary part for the shape gradient G» s, and plot of the composite gradient G
(=) for (a) G(a) = 0.47Tm(Gx s) and (b) of Gy = —0.76 9Re(G s), as a function of the position
0, in degrees, along the cylinder’s surface (6 = 0 corresponds to the side where the splitter plate is
clamped).

In other words, the gradients for the frequency-based and growth-rate-based optimizations are
almost proportional.

Let us for instance consider two optimization cases. The shape gradients are reported in
Fig.4.19, as a function of the angle 6 along the cylinder’s surface in order to facilitate quantitative
comparisons. In the first case (a), we set (ay-, ;) = (0,1) with a target frequency set to AL = 0.7
(looking in Fig. 4.18a, the optimized eigenvalue is then 0.065 4+ 0.71). As a second case (b), we set
(ar, ;) = (1,0) and a target growth-rate to 0.065 — which would result in the same eigenvalue
0.065 4 0.71 after shape optimization. The associated shape gradients for these two objectives
have the same signs and are proportional: with A(p)y = 0.0277 +0.794i being the initial eigenvalue,
we have Gy ~ 0.094Jm(G s) and and Gy ~ —0.0373Re(G ). Since Im(G) s) and Re(G 5)
have opposite signs, these two gradients have eventually the same sign, as reported in Fig.4.19
where the two gradients (scaled differently) are reported with the thick red line.

This property is actually conserved during the optimization steps, which shrinks the set of
reachable eigenvalues to a curve passing through the initial (non-optimized eigenvalue). Conversely,
because of the richer structure of the gradient for the mode (S), more varied optimal shapes can
be reached. In the next section, we perform a combined optimization aiming at specifying both
the frequency and the growth-rate.

Remark. Note that in the case of a stable flow, changing the target frequency or growth-rate
would result in stable flows having different features (drag/lift) depending on the choice of A%,
but there is a priori no simple way to connect the objective eigenvalue to integrated quantities
such as the drag of the object in the steady flow. In this case, it is more adapted to adopt an
approach in which the objective-function is directly the drag like for instance in the work by Lund
et al. (2003), or a measure of the distance to a prescribed velcity er energy criteria (Pironneau,
2012). This can be relatively easily done within the present framework — the derivation of the
shape gradient is in that case by any means simpler as what is needed in the unsteady case.

Combined frequency € growth-rate optimization: design of a fluid-structure
oscillator

A practical outcome for the frequency-based optimization would be the ability to design a fluid-
structure oscillator, beating at a prescribed frequency. In the case where the flow is slightly
unstable, an exponential growth of perturbations oscillating at frequency A: will be observed (in
an experiment or in non-linear simulations) in the linear regime of development of the instabilities
if no significant transient growth affects the process (Schmid & de Langre, 2002). Hopefully, some
features observed linearly would then persist once the non-linear limit-cycle is reached, as it was
already observed in the previous chapter. If all these requirements are fulfilled, the optimized
system would behave as a self-sustained oscillator at a frequency close to A%. Practically, these
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Figure 4.20 — Optimal fluid-structure oscillators. For the cases with AL = 0.01 and (a) AL = 0.95,
(b) AL = 1.025 and (c) AL = 1.1, plot of the absolute value of the Eulerian pressure perturbation
P —p' —VPE (blue colors in the fluid) and of the absolute value of the solid deformation mode £°,
transverse component (orange color in the solid). The limits of the back-flow region of the steady
flow is marked with the dashed black line, while the maximal x extension of the back-flow region
for the initial, non-optimized shape materialized with the orange circle is marked with a cross (x).

features could for instance be exploited to design more efficient energy-harvesting devices, by tuning
the resonance frequencies of the system in order to maximize the energy transfer (Carini et al.,
2017).

To do so, the growth-rate should nevertheless stay positive. The approach where only the
frequency is taken as a part of the cost-function is thus not very appropriate, since we have seen
above that in that case the flow becomes at some point stable when the frequency target is increased.
We therefore set here a cost-function that depends on both the growth-rate and the frequency, that
is, ) ) ) A o

J@ =5 (V@ -x) +5 (M@ -N)
On the contrary to the previous case where an high target frequency results in a stable flow, an
unstable fluid-structure oscillator at a prescribed frequency can be designed here. In the following,
we choose a constant positive growth-rate A, = 0.01 for all cases. We consider here the case (S).
Probably for the reasons presented above (proportionality of the gradients), for the case (F) it was
actually not possible to obtain shapes associated with other values (A", A\?) than that reported in
Fig. 4.18a.

An overview of the optimization results is displayed in Fig.4.4.5., which is indicated by the
dashed line in the figure. As the frequency objective is varied, different shapes are obtained, four
of them being displayed in the inserts (top left: A% = 0.925, top right: \. = 0.950, bottom left:
Al = 1.025, bottom right: AL = 1.1). For the case with A’ = 0.925, a second unstable mode located
at 0.0411 + 0.514i is found in the spectrum of the linearised problem, after convergence of the
algorithm, in addition to the controlled mode located at 0.01 + 0.925i. Since its growth-rate is
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Figure 4.21 — Shape optimization for design-
A" ing a fluid-structure oscillator. Plot, in the
0.10 ‘ ‘ (A", ") plane, of the converged eigenvalues
0.05 1 / / i obtained with an optimization for the growth-

rate (fixed to A\, = 0.01) and the frequency
0.00 7 X7 TR K A =X - K X - - - o (variing between 0.925 and 1.1). A few opti-
mal shapes are represented, with A% = 0.925
(upper left), AL = 0.95 (upper right), X} =
1.05 (below left) and A, = —1.1 (below right).
—0.1973 0_55 1 1_65 %1 115 The eigenvalue corresponding to the initial
shape (circular cylinder) is represented with
the orange square symbol.

—0.05 -

much larger than the target value of Al = 0.01, it overcomes the growth of the optimized mode and
is the predominant mode of the flow. A two-points optimization taking into account of these two
unstable modes would be mandatory to treat this specific case, but will not be considered here.
For all the other cases displayed in Fig.4.4.5, only one unstable mode is found.

Let us describe more precisely the obtained flow for three cases. The corresponding results are
reported in Fig. 4.20 where, for sake of comparison, the initial (i.e. before the optimization process)
shape is materialized by the orange circle, and the limit of the recirculating region of the stationary
flow along the streamwise axis is marked with a cross symbol. The cases with A’ = 0.95 (top),
AL = 1.025 (middle) and A\! = 1.1 (bottom) are represented. First, we note that even if the three
modes have the same growth-rate, they are associated to steady flows having recirculating regions
(whose limits are marked with the dashed line) of very different lengths: the maximal extension is
reached at « = 5.39 for the lowest-frequency case (a), © = 3.23 for case (b) and = = 2.65 for the
higher-frequency case (c). This situation is quite different from what is observed for a rigid case.
In the circular cylinder flow for instance, the growth-rate of unstable modes is found to increase
with the length of the stationary back-flow region (Giannetti & Luchini, 2006). Here, the shorter
the recirculating region, the higher the frequency. A possible mechanism to explain this behaviour
is that the ratio between the recirculating region and the splitter plate length might determine
the vibration frequency, by specifying at which point vortices should be released so as to interact
favourably with the solid. In this sense in (a) the vortex formation region is larger as in the case
(¢), and this increased half-width makes it longer for a vortex to complete its period of oscillation.
Note however that previous studies, in which the length of a flexible splitter attached behind a
circular (Lee & You, 2013; Wu et al., 2014) or square (Mat Ali et al., 2011) cylinder was varied,
reported that the vortex shedding frequency possible varies non-monotonously, and in any case
non-linearly with the length of the splitter plate. Complex mechanisms might therefore be at play.

The pressure mode in the fluid region is depicted with a blue color. The absolute value is
represented so as to have a visualisation independent from the phase (real and imaginary parts
are symmetric with respect to the axis y = 0). The structures close the the solid have roughly
the same shape for all cases, indicating that the fluid-structure dynamics close to the solid is not
dramatically different between the three cases. In particular, the absolute transverse displacement
in the solid indicates that the vibration pattern in the solid is in all cases that of a bending mode
with one vibration node at the clamped end.

Finally, the non-linear behaviour of the fluid-structure oscillators can also investigated. How
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does the “optimal” linear frequency obtained with the time-linearised shape optimization process
relates to the non-linear frequency resulting from a fully non-linear, time-marching simulation 7
Except for the case i = 0.925, that comes with another unstable mode (the corresponding non-
linear simulation comes with an oscillation frequency of wpng = 0.69), a fairly good agreement is
found. For instance, for the case A\ = 1, the non-linear frequency obtained using a Fast Fourier
Transform of the lift signal once the limit cycle has been reached is wpns = 1.037. This is in
accordance with the observations in the previous chapter, where we observed that the predictions
for the linear frequency are found to match pretty well with that extracted from the non-linear
limit-cycles. The time-series exhibits a symmetric flapping regime with an amplitude of oscillation
of the tip of the plate of 0.12.

4.5 Conclusion

A shape optimization approach for controlling the growth and the frequency of time-asymptotic
linear, strongly coupled fluid-structure instabilities has been proposed. This approach has been
applied on a model problem that consists in a flexible splitter plate clamped behind a cylinder and
placed in a viscous, laminar flow. The control of two types of modes has been achieved, one first
mode truly related to the fluid-structure interaction (i.e. that disappears in the rigid case) and
another mode that is essentially related to the instabilities at play in the wake behind the cylinder.
It is shown that it is possible to stabilize unstable fluid-structure modes by modifying the shape
of the rigid cylinder, or to design an fluid-structure oscillator beating at a prescribed frequency. It
has also been shown how the type of mode influences the region of the complex plane that can be
eventually reached after the optimization process.



BOUNDARY-LAYER INSTABILITIES
OVER A FINITE-LENGTH COMPLIANT
COATING

We now turn on to the analysis of the second class of instabilities evoked in the introduction.
We consider here a laminar boundary-layer flow, which is classically known for amplifying
external perturbations such as noise or gusts. Specifically, we analyse the zero adverse
pressure gradient boundary-layer flow over a flat plate in which a viscoelastic, finite-length
compliant coating is embedded. Using a resolvent analysis of the linearised fluid-structure
operator, we show in what extents the flexibility of the coating helps in reducing the growth
of low-frequency Tollmien-Schlichting waves, but also triggers higher-frequency, solid-based
travelling-wave flutter instabilities. These latter waves are globally unstable for purely elastic
coatings and are stabilized by viscoelastic damping, but may still result in a large energy
amplifications, which are analysed.
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5.1 Introduction

If the search for drag reduction has already a long history in engineering sciences, in nature
billions of years of evolution have endowed both plants and animals with many astute features for
decreasing the energy spent for locomotion, which furnishes as many endless sources of fascination
and inspiration for engineers and scientists. Bio-inspired flow control mechanisms are indeed a
promising way for progressing towards more efficient means of locomotion.

Among the different forms of drag — pressure drag, lift-induced drag and skin-friction drag,
we concentrate here on the latter. Skin-friction drag is generally much lower than the pressure
drag, except when the flow remains attached, which is the case for streamlined objects. In that
case, a strong drag increase is observed when the flow undergoes the laminar-turbulent transition
— for instance, depending on the Reynolds number, factors as large as 10 can be reached between
the drag in a laminar and a turbulent boundary-layer over a flat plate (Emmons, 1951). Control
mechanisms delaying the laminar-turbulent transition could thus provide valuable energy savings.
Taking inspiration notably from the surprising ability of flying or swimming animals to move fast
without spending too much energy, several devices have therefore been proposed to postpone the
laminar-turbulent transition of boundary-layers. Blowing and suction devices, wave cancellation
disturbance generators, moving walls or heating/cooling devices have for instance been designed
(Gad-El-Hak, 2000). These devices are active, in the sense that they require an energy source to
feed the actuator. On the other hand, passive mechanisms do not require sources of energy other
than that from the flow itself.

5.1.1 A phenomenology of skin-friction drag-reducing mechanisms

In nature, marine animals have developed strategies to spend as little energy as possible to move
around, that engineers try to reproduce. Both active and passive mechanisms are at play: Barrett
et al. (1999) showed for instance experimentally that the power required to propel an actively swim-
ming, streamlined, fish-like body is significantly smaller than the power needed to tow the body
straight and rigid at the same speed. Even the porpoising movement of dolphins (the swimming
mode consisting of alternate leaping and submersion) seems to has power-sparing foundations: in
the review by Fish & Rohr (1999), it is emphasized that at high speeds it is more energy-efficient
for dolphins to adopt this locomotion mode. In such a regime, the dolphin benefits in particular
from the lower air density to reduce the overall drag.

Apart from these dynamical, active effects, passive mechanisms are also at play. With this
respect, two basic approaches can be undertaken for reducing skin-friction drag: either maintain
the flow laminar as long as possible, or alter the structure of the turbulent near-wall motion. Surface
additives provide a large skin-friction drag reduction, through for instance polymers, surfactants
or even bubbles (Bushnell & Moore, 1991). Permanent geometrical alterations such as ridges
are associated with skin-friction drag reduction in turbulent flows. For instance, dolphins and
sharks are found to benefit from ridge features, occurring as dermal denticles, to control the
wall-turbulence (Bandyopadhyay & Hellum, 2014). In engineering applications, riblets (Walsh &
Lindemann, 1984; Gad-El-Hak, 2000) are now commonly used to reduce the drag of boat hulls,
aerofoils and aircrafts. Reductions as large as 12 % have been reported (Itoh et al., 2006).

When the surface is flexible, wave propagation effects might also be at play. Some results have
been obtained inspired from the study of the dolphins (Kramer, 1961): a typical cross-section of
the skin has been reproduced from Carpenter et al. (2000) in Fig. 5.2a. The upper epidermal layer
forms a dense elastic membrane considered capable of transmitting the pressure fluctuations to
the underlying layer. This dermal layer is made of softer, more hydrated tissues, with a strong
anisotropy induced by the presence of the dermal ridges, that also act as reinforcing structures
(Pavlov, 2006). Note that these ridges are not homogeneous in the transverse direction of the
skin but form rather regularly spaced pillars (Carpenter et al., 2000). Wave propagation effects
coming with this arrangement of the skin were evidenced for instance by Essapian (1955), who
observed skin-induced skin folds at the surface of a high-speed swimming dolphin (Fig.5.1a).
In-vivo measurements have furthermore been performed so as to characterize the surface waves
propagating along the skin of dolphins (Madigosky et al., 1986). Apart from dolphins, Aleyev Yu
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() (b)

Figure 5.1 — Flow-induced skin folds. Observation of flow-induced elastic deformations (a) on
the skin of a fast-swimming dolphin (Essapian, 1955), (b) on the skin of a human diving down
(Aleyev Yu, 1977) and (c) at the surface of a viscoelastic coating (Gad-El-Hak et al., 1984)

(1977) also observed deformation waves on the skin of humans diving down, see Fig.5.1b. The
phenomenon has also been reproduced in more controlled environments, for instance by Gad-El-
Hak et al. (1984) who studied the interaction of a viscoelastic coating with a boundary-layer flow,
see (Fig.5.1¢). An immediate question is then to know whether these flow-induced elastic surface
deformations may help in reducing the drag.

The dolphin paradoz € transition delay with flexible coatings

This question was raised after a controversy that begun with a study by Gray (1936). He asserted
that if the resistance of an actively swimming dolphin at 10ms~! is equal to that of a rigid model
towed at the surface, the power requirements would exceed by at least a factor seven the estimated
power that the slow fibres of the muscles of a dolphin could generate in a continuous effort. If
the boundary layer were to remain laminar, no such discrepancy would exist, hence the so-callled
“dolphin paradox”. From this statement, some researchers have inferred that dolphins must be able
to maintain laminar flow by some process involving the flexibility of their skin (Kramer, 1961).
New estimates for the energy balance (Babenko & Carpenter, 2003; Fish, 2006) and the drag
reduction that comes with the swimming motion (Bale et al., 2014) showed that there is actually
no need to invoke special transition-delaying properties conferred by the elasticity of the dolphin
skin. Nevertheless, laminar flow control is very likely to be profitable not for reaching the top
velocity but rather for sparing energy during long slower swimming phases: it might be during the
glide phase of deep dives that a laminar-flow capability would be the most efficient (Williams et al.,
2000). Rather that swimming, marine animals tend actually to glide most of the time of their dive,
for it spares energy. The exact fluid-elastic properties conferred by this complex skin arrangement
are still debated today (Fish, 2006), but in any case, this initial “paradox” has triggered the study
of the drag-reducing properties (if any) of elastic coatings.

Kramer’s coating and transition-delaying compliant walls

Inspired by the “dolphin paradox”, Kramer (1960) proposed a passive drag-reduction engineer-
ing device, inspired by his observations of fast moving dolphins (Kramer, 1961). The basic idea
consisted in preventing the transition to turbulence of a laminar boundary layer by substituting
the decrease of the fluid viscous damping as the Reynolds number increases, with an distributed
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Figure 5.2 — Dolphin-inspired compliant coating. (a) cross-section cut of a typical dolphin skin re-
produced from Carpenter et al. (2000), showing a. surface cutaneous ridges (upper epidermal layer),
b. dermal papillae, c. dermal ridges, d. the upper epidermal layer and e. fatty tissues. (b) Cross-
section cut of the compliant coating of Kramer (1960), showing the different layers (dimensions are
in 1/1000 of an inch, i.e. 2.54 x 1072 cm)

(a) Gaster (1988) experiment (b) Compliant wall section

Figure 5.3 — Experiments from Gaster. Reproduced from Lucey & Carpenter (1995).

damping embedded directly into the wetted surface of a flexible coating. Practically, he designed
a compliant wall (see in Fig.5.2b a cross-section cut) made with a heavy rubber diaphragm sup-
ported by an array of tiny rubber stubs. The flexible inner skin, the outer diaphragm and the stubs
were all made of the same soft natural rubber. The stiffness of the different materials involved was
evaluated from 0.4 to 1 MPa. The space between the rubber stubs is filled with a silicone fluid that
acts as a damper. Kramer reported an astonishing maximal drag reduction (compared to the rigid
case) of about 60 %. However, the best results in terms of drag reduction were obtained at speeds
of 18 ms~!, which is twice as much the normally assumed maximum speed for dolphins (Babenko
& Carpenter, 2003). Kramer believed that the drag reductions achieved in his tests were a results
of the transition-delaying properties of hies coatings, but this hypothesis has not been confirmed
by later works (Carpenter & Garrad, 1985): it is more likely that the drag reductions observed
were a result of a favourable interaction of the wall with a fully turbulent boundary layer. More
recent experiments (Choi et al., 1997) showed that drag reduction of up to 7% can be achieved in
a turbulent flow over a compliant layer (modulus of elasticity of order of 2 MPa).

The two decades that followed the experiments by Kramer offered only limited experimental
confirmations of the speculated transition-delaying properties of compliant coatings, as documented
in the review paper by Carpenter & Garrad (1985). The transition-delaying and drag-reduction
capabilities of compliant surfaces were however again observed in careful experiments conducted by
Gaster (1988). He used a compliant wall about 10 mm thick, made with viscoelastic silicon rubber.
The elastic moduli was adjusted by adding silicon oil in the rubber and was estimated ranging
between 1 x 10* Pa and 3 x 10° Pa, i.e. much softer than that used by Kramer. The rubber plate
was covered with a very thin (tenth of a milimeter) and stiffer (elastic moduli of 1 MPa) latex
rubber membrane, and the ensemble placed in a water channel with an inflow velocity ranging
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Hydrofoil Torpedo Nuclear sub. Dolphin

Length L* (m) 1 5 100 3
Velocity U (ms™!) 15 20 15 7
Wetted area (m?) 0.6 3.7 3100 4.7
Reynolds number R, 1.5 x 107 1x10% 1.5x10° 2 x 107
Initial transition pos. (m) 0.06 0.05 0.07 0.14
Delayed transition pos. (m) 0.40 0.30 0.40 0.86
Overall drag decrease (%) -33% -6 % -0.5% -25%

Table 5.1 — Estimates for drag reduction. For an initial transition Reynolds number of R = 10°,
estimate of the overall drag decrease with a 6-fold increase of R&™™ when the relation (5.1.1) is
used to compute the overall laminar-turbulent drag.

ext. noise

W =

LELLLL

linear growth non lin. turbulent

Figure 5.4 — Laminar-turbulent transition scenario in a low-amplitude distrubances environ-
ment. Reproduced from Kachanov (1994) for the case of a flat plate boundary-layer without adverse
pressure gradient. ¢ refers to the characteristic thickness of the boundary-layer.

between 1 and 4ms™!, resulting in an initially laminar boundary-layer flow. A sketch of the

experimental setup is reproduced in Fig. 5.3, taken from a paper by Lucey & Carpenter (1995).
The best surface tested showed an increase in transition Reynolds number of 30 % over that of
a rigid surface. It is then now established that compliant materials can postpone the laminar-
turbulent transition. Theoretical studies (more details will be given in the next paragraph) have
shown that the transition Reynolds number might be increased by up to a factor 6 (Carpenter,
1993). The practical benefits of such delay can be estimated for various objects, by computing the
drag using the Prandtl-Schlichting formula for a mixed laminar-turbulent boundary-layer over a
flat plate (Schlichting, 1979): the overall skin-friction drag coefficient can be roughly estimated by

_ 0455 RE™ST[ 0074 1.328
= log(Re)2'58 Re (Retrans)l/5 (RetranS)l/Q

F (5.1.1)
where R, is the Reynolds number based on the characteristic length in the streamwise direction, and
RIS js the transition Reynolds number that we take here to RE™ = 10%. The results for a few
underwater devices are reported in Tab. 5.1, showing the potential of transition-delaying materials.
Of course, the smaller/slower the object, the largest the overall skin-friction drag reduction. We
have only considered underwater objects, because the main benefits in terms of laminar-turbulent
transition delay would probably be obtained in this context rather than for aeronautic applications
(Carpenter et al., 2001), in particular because too soft materials would be mandatory in this case.
Note finally that aside from drag-reduction features, compliant surfaces have also other useful
applications such as acoustic noise reduction (Gad-El-Hak, 2000), and this technique is relatively
easy to apply practically, even if it seems that there are some practical issues about the ageing of
the materials (Bandyopadhyay et al., 2005).

Let us now move on to the theoretical description of the interaction between compliant walls
and boundary-layer flows, in order to elucidate the different processes at play.

5.1.2 Theoretical studies

The physics of the flow over compliant walls is rather complex. For conciseness of the presentation,
we restrict ourselves to the study of low-level disturbances in a boundary layer over a flat plate
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without adverse pressure gradient. In this case, the transition to turbulence is known to happen
via amplification of so-called Tollmien-Schlichting waves.

Transition by Tollmien-Schlichting waves

As represented in Fig. 5.4, the early stages of the laminar-turbulent transition can be understood
by means of the amplification of external perturbations such as acoustic noise, free-stream gusts,
etc. Low-amplitude waves generated close to the leading edge are advected by the flow, up to a
critical point where an exponential amplification sets in. This exponential growth is well described
by the hydrodynamic linear stability theory.

Assuming homogeneity in the streamwise direction z, it is convenient to study the propagation
of waves of type A(y)expi(wt — kz) with temporal stability analyses (Tollmien, 1929; Schlichting,
1933) that show that when the frequency w € R is varied, the boundary layer amplifies waves
(Jm(k) > 0) in some frequency range; provided that the Reynolds number based on the displace-
ment thickness is greater than 520. The streamwise position in the flow where the perturbations
are amplified actually also depends on the frequency of the excitation and form kind of a “banana
curve” represented in Fig.5.5. Within the “banana” all disturbances are amplified, while in all
other regions the disturbances are damped. The curve itself is called the neutral curve. At some
point, it may happen that the linear amplification grows too big (“too big” meaning here that the
distrubances amplitudes reach a few percents of the free-stream velocity) and triggers non-linear
wave interactions, that eventually result in a fully turbulent flow (Kachanov, 1994). Experiments
(Schubauer & Skramstad, 1947) confirmed the existence of these unstable, mainly two-dimensional
Tollmien-Schlichting waves. More recent works focused on the response of the boundary-layer flow
to external disturbances, showing that strong transient growth effects are at play, that amplify
external noise up to the point that the transition begins (Reddy et al., 1993; Schmid & Henning-
son, 2012; Akervik et al., 2008; Sipp & Marquet, 2013). For that reason, the resolvent analysis is
adapted to the study of boundary-layer flows. Note that for higher-amplitude initial disturbances,
other transition scenarios are likely to occur (Fedorov, 2011), but are not discussed here.

When flexibility is added in the solid, new effects emerge. The Tollmien-Schlichting waves
(TSW) are affected by the compliance of the wall and the possibility for waves to travel in the
solid favor the emergence of new class of instabilities, in particular the so-called travelling-wave
flutter (TWF). A summary of the different instabilities observed in the literature is reported in
Fig. 5.6 adapted from Gad-El-Hak (1996). Let us now describe them.

Classification of fluid-solid instabilities in compliant coatings

Thanks to pioneering works by notably Benjamin (1960) and Landahl (1962), it is by now well-
known that laminar boundary layers over flexible surfaces are susceptible to at least three main
types of instabilities. A vast literature is devoted to the study of linear disturbances evolving on
a parallel (local analysis), weakly non-parallel or fully streamwise-evolving flow (global analysis)
coupled with an infinite or finite-length panel. When the compliant coating is supposed to be
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Fluid-solid instabilities

Fluid-based Solid-based
persists at infinite rigidity vanishes at infinite rigidity
strong viscous effects strong pressure effects
Tollmien-Schlichting Travelling- Wave Static Divergence
Wave (TSW) Flutter (TWF) Instability (SDI)
Class A (convective) Class B (convective) Class C (absolute)
Transitional

Class C (absolute)

Figure 5.6 — Classification of the instabilities in compliant walls. Inspired by Gad-El-Hak (1996).
The classification with letters (A,B,C) is from Benjamin (1963), while the distinction between
absolute and convective instabilities refers to the classification by Huerre & Monkewitz (1990)
and makes primarily sense in the infinite-length case. The distinction between solid-based and
fluid-based instabilities relates back to the work by Carpenter & Garrad (1985).

of infinite extent in the x direction, it is convenient to study the propagation of waves of type
A(y) expi(wt — kx), that allows in particular to determine the dispersion relation of the coupled
solid-fluid problem. However, no account is taken for the ends of the coating in that case. Although
some studies have been conducted in 3d (Yeo, 1992; Lucey & Carpenter, 1993), the majority of
the approaches deal with 2d geometries, for the instability mechanisms at play at low-amplitude
noise level are essentially bi-dimensional (Schlichting, 1979). The well-documented series of papers
by Carpenter & Garrad (1985, 1986) and review papers from Gad-El-Hak (1996) and Carpenter
et al. (2001) cover most of the field between the 60’s and early 2000’s.

In the energy classification by Benjamin (1963), the Tollmien-Schlichting waves (TSW) modi-
fied by the wall flexibility have been related to oscillations involving conservative energy-exchanges
between the fluid and solid. Travelling-wave analyses in a one-dimensional wall model interacting
with disturbances following the Orr-Sommerfeld equation (Benjamin, 1960; Landahl, 1962; Car-
penter & Garrad, 1985) characterized this instability as a slowly convective, downstream-travelling
wave in the solid, associated with modified Tollmien-Schlichting waves in the fluid. These waves are
found to be stabilized by the flexibility of the coating, but destabilized by viscoelastic damping in
the solid. Using a more complex model of the solid (bi-dimensional Navier equations), Yeo (1988)
arrived to the same conclusions. Using a weakly non-parallel approximation, Yeo et al. (1994) also
observed that the effects of the boundary-layer growth have only a mild influence on TSW, that
increases as the Reynolds number is decreased.

If TSW’s exist in the rigid case, travelling-wave flutter (TWF) develop only when the wall is
flexible. On the basis of the travelling-wave analyses, this instability is classified as another con-
vective instability involving conservative energy-exchanges between the fluid and solid (Benjamin,
1963), but flexibility and damping play a reversed role: while decreasing the stiffness of the coating
destabilizes the TWF, an increase of damping has a stabilizing effect. Travelling-flutter waves are
observed as downstram-travelling waves with a velocity close to those of the free-surface waves. As
noted by Carpenter & Garrad (1986), the stabilizing effect of damping on TWF is more marked
than its destabilizing effect on TSW. These are dangerous instabilities: as noted by Gad-El-Hak
(1996), althougth the frequency band where the instability occurs is narrower that for the TSW, it
extends indefinitely as the Reynolds number increases downstream (see an illustration in Fig. 5.5).
It is actually believed that the TWF were the main route to transition in the experiments by Gaster
(1988), as reported by Lucey & Carpenter (1995). The TWF instabilities are also found to be more
sensitive to non-parallel effects than TSW: Yeo et al. (1994) showed that strong destabilization
can occur due to boundary-layer growth in some TWEF regimes.

A third type of instability occurs in the case of an unidirectional energy-transfer from the fluid
to the solid Benjamin (1963), more precisely if the pressure fluctuation amplitude outweights the
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restoring force due to the stiffness of the coating. Due to this negative added stiffness mechanism,
the instability has been identified as a static divergence (SD) instability, well known in aeroelasticity
(Dowell, 1971). This instability has been observed in water-channel experiments by Gad-El-Hak
et al. (1984) on the form very slow two-dimensional waves normal to the flow, and also on the
skin of dolphins and fast human swimmers (Aleyev Yu, 1977) — see in Fig.5.1. Yeo et al. (1996)
showed that static divergence appears when the coating is sufficiently soft, but can be suppressed by
decreasing the thickness of the coating. Travelling-wave flutter and standing wave analyses of the
static divergence instability in infinite panels arrived to the somewhat surprising conclusion that
viscoelastic damping is necessary to trigger the instability (Landahl, 1962; Carpenter & Garrad,
1986; Yeo et al., 1996). The role of damping in finite-length coatings has been studied by Lucey
& Carpenter (1992) using a potential flow approach. They showed in that case that damping is
not necessary any more for triggering the instability. According to them, in infinite-length panels,
the energy transfer that leads to divergence is favoured by the slight wave propagation slowdown
caused by damping. For finite-length panels, this role is essentially played by edge boundary
conditions. In that case, viscoelastic damping has its more classical role of attenuating the growth
of the instability.

Another class of instability, referred to as transitional, occurs as a coalescence of TWF and
TSW waves (see in Fig.5.6). This instability has been documented in particular by Sen & Arora
(1988). In the work by Wiplier & Ehrenstein (2001), transitional instabilities are also found as a
coalescence between an evanescent wave and a TSW.

We focus here on the TWF and TSW instabilities, in the context of a finite-length coating. In
this case, it is no longer possible to assume streamwise homogeneity. This case has been treated in
the past using non-linear time-marching simulations of inviscid flows (Lucey & Carpenter, 1992,
1993) or linearised Navier-Stokes flows (Davies & Carpenter, 1997; Stewart et al., 2009) interacting
with a spring-backed solid. More recently, Tsigklifis & Lucey (2017) performed modal and transient
growth analyses for the case of a viscous boundary-layer flow interacting with a finite-length coating
modelled by a spring/damper-backed plate equation. The analysis is extended here in two ways.
First, we consider a fully elastic solid. Secondly, for the first time a resolvent analysis is performed
in the context of a finite-length coating.

After having introduced the physical modelling in section 5.2, the complex dynamics of the
viscoelastic patch alone is first analyzed (§5.3.1), making it possible to identify which vibration
modes are likely to interact with the flow. In particular, the dispersion relation in the case of a
patch of infinite length is linked to the vibration modes of a patch of finite length. The fluid-solid
coupled modes are then determined for different patch stiffness and viscoelastic damping parame-
ters (§5.3.2). In the case of sufficient viscoelastic damping, all the modes are stable. The resolvent
analysis is then adapted. We first evaluate how the fluid-elastic configuration responds to optimal
perturbations determined in the fluid-rigid case (section 5.4). Finally, optimal perturbations and
responses are determined in the fluid-elastic case (section 5.5).

5.2 Physical modelling & numerical model

5.2.1 Non-dimensional parameters

The solid is characterized by its density p¥, Young modulus E} and viscoelastic damping coeflicient
nt. It is assumed to be incompressible, as is often the case for rubber-like materials. The fluid
is considered incompressible with a uniform density pf and a dynamic viscosity vj. The coupled
problem is non-dimensionalized with respect to the fluid variables, namely the farfield velocity UZ
and the boundary-layer displacement thickness §; at the inlet of the computational domain (see a
sketch of the configuration in Fig. 5.7 where the dimensions are included) that is a good reference
length for boundary-layer flows. Four non-dimensional parameters govern the physical properties
of the system, namely
N UM Ps iUso
gs_p}kU;f’ DS—pFU:Oéj, /\/ls—[ffk and R, = (5.2.1)
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Figure 5.7 — Boundary-layer flow over a compliant coating. Non-dimensional lengths are indicated,
the reference length being the boundary-layer displacement thickness at the inflow position. The
solid domain is represented in orange color.

for the non-dimensional Young modulus and damping coefficient, density ratio and Reynolds num-
ber respectively. In what follows, the density ratio is fixed to Mg = 1 and the Reynolds number
(based on the streamwise distance) to R, = 3000. For this Reynolds number, unsteady Tollmien-
Schlichting waves developing on the steady boundary-layer flow are found to be convectively un-
stable (Schmid & Henningson, 2012; Sipp & Marquet, 2013). With the parameters used here, the
Reynolds number based on the boundary-layer thickness evolves between 3036 and 3179 over the
compliant coating. For the solid, we consider a stiffness £ = 1 and a damping coefficient Dg = 0.2
for the reference flexible case.

For a water flow (density pj = 1000kg m~3 and dynamic viscosity nf = 1.00 x 1073 Pas) with
Us, = 10ms~!, & = 1 corresponds to a Young modulus of 0.1 MPa, while a flow ten times slower
comes with a stiffness reduced by a factor hundred, i.e. on the order of 1000 Pa. For the same flow
velocities the thickness of the boundary layer is of the order of 0.3 mm to 3mm. For comparison,
in the experiments by Gad-El-Hak et al. (1984) on a laminar boundary-layer (see also the picture
(c¢) in Fig.5.1), the material (a viscoelastic plastisol gel, obtained from polyvinyl chloride resin
combined with a plasticizer and a stabilizer) was found to have a Young modulus between 15 Pa
and 37500 Pa. The materials used in Gaster’s experiments is found in the same range (Gaster,
1988; Lucey & Carpenter, 1995). As said before, on the other hand, experiments studying turbulent
boundary layers used materials with a stiffness that is more in the range of 1 MPa (Choi et al.,
1997; Bandyopadhyay et al., 2005). The parameter £ = 1 thus seems to be representative of the
flexibility of compliant coatings used in laminar boundary-layer flow experiments. Realistic values
of the damping coefficient are much harder to determine a priori. For instance, low-stiffness,
high damping viscoelastic plastisol gels have damping properties that depend strongly on the
temperature or the solicitation frequency (Nakajima et al., 1981; Nakajima & Harrell, 2001). The
present damping coefficient was thus mainly chosen so as to reproduce earlier results, but should
not be considered as being truly representative of a wide range of real coatings.

5.2.2 Navier-Stokes flow

A viscous, incompressible Navier-Stokes flow is considered in the fluid region above the wall. Since
it takes a while for the boundary-layer to develop, the computational domain Q¢ U ()5 starts at
a non-dimensional distance Ly = L*/§F = 1014 from the leading edge of the plate, in such a
way that the Reynolds number based on the displacement thickness is 3000 there. Over this
distance, the flow is modelled by a Blasius profile that is then used as an inlet condition. This way
of proceeding is relatively common in the literature and comes with very small deviations from
a Navier-Stokes solution over the complete plate (Brandt et al., 2011). In particular, the local
displacement thickness computed for a Blasius flow is an excellent approximation of the “true”
displacement thickness that can be computed from the Navier-Stokes flow. The coating is placed
at a non-dimensional distance L,,, = 25 from the inlet such that the inflow velocity is not influenced
by the presence of the coating. The distance between the end of the coating and the outlet is fixed
to L, = 25 unless otherwise stated.
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Remark —computation of the Blasius inflow condition. In order to avoid from having to solve the
Navier-Stokes equation over the whole span of the plate, the development of the boundary-layer
flow is assumed to follows a zero pressure gradient Blasius flow in the region x < 0. Practically,
the self-similar asymptotic boundary-layer Blasius flow

U*(x*ay*) Y ’U*(x*,y*) - 1 V;; /
T = f'(n), T = 5\/ U~ o (77f (n) — f(n))

is first computed (Schlichting, 1979), with n = y*(UZ /(vjz*))"/? the similarity variable (z* is
counted — with dimensions — from the beginning of the plate) and f is the solution of the
Blasius equation " 4+ 1/2 f”f = 0 with f/(0) = f(0) = 0 and f’(4+00) = 1. Then, the local
displacement thickness

oo u*(x*, y*) viz*
3 (x*) = / <1 - ’) dy ~ 1.72
0 U U

is computed, which allow to determine the different scalings for the non-dimensional problem. For
instance, solving 6*(L0;) = 6F gives L. = Re/(1.72)?, and the non-dimensional displacement
thickness for the Blasisus flow evolves as

§(z) = 5*5(? =1+ 1.7227%. (5.2.2)

By the same way, the length L, is fixed by the choice of the Reynolds number.

In the present approach, the steady deformations in the coating are assumed to be zero. We look
on how the flexibility of the wall affects the development of these instabilities at the dynamical
level only, that is, we neglect the stationary deformation of the coating induced by the shear
stresses produced by the steady boundary-layer flow. This is actually found to be a very good
approximation, since the steady deformation is very small. In all what follows, we will thus
investigate the behaviour of perturbations computed for a fluid-elastic model, in the case where
the stationary equilibrium, whose stability is investigated, is assumed to be that of a rigid solid
surrounded by a viscous flow’. The stationary base fluid flow (U, P) then reduces to the solution
of the equations in a rigid case, i.e. of the Navier-Stokes equations with a Blasisus inlet condition

(VU)U + VP -R. VU =0 in Q,
V-U=0 in Q,
U = Uslasius in [y,

completed with a no-slip condition on the surface of the plate. On the top boundary (y = 30),
the streamwise velocity is fixed to that of the Blasius flow (the transverse component being left
free), while at the outflow boundary (x = L., + L. + Ly, ) the transverse velocity is set to that
of the Blasius flow (the streamwise component being left free). At the perturbation level, zero-
velocity conditions are taken in the inflow boundary, no-slip conditions are taken along the plate
and stress-free conditions are considered elsewhere.

5.2.3 Viscoelastic solid

In theoretical studies of compliant coatings, a simple approach commonly adopted consisted in
modelling the solid as a spring-backed beam with damping, as represented in the sketch in Fig. 5.8a.
Several authors have considered the case of homogeneous panels infinite in the streamwise direc-
tion as a convenient way for analysing the limit of a “long” coating — see for instance Carpenter
& Garrad (1985) and the many references herein. To investigate edge effects, the spring-backed

Lin that case, the stress-free reference and steady deformed configurations coincide, and we will adopt here the
notations related to the steady deformed configuration
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model has also been applied for modeling finite-length panels (Davies & Carpenter, 1997; Pitman
& Lucey, 2009; Tsigklifis & Lucey, 2017), or an association of finite-length panels with different
material properties, as considered by Carpenter (1993). More complex models including material
anisotropy have also been studied, for instance by Carpenter & Morris (1990). A more realistic,
yet computationally more expensive approach, consists in viewing the solid as a continuous elas-
tic, possibly non-homoneneous media, as represented in Fig.5.8b. This latter approach was also
selected by several authors, assuming either homogeneous one-layer coatings (Duncan et al., 1985)
or two-layer (in the transverse direction) coatings (Yeo, 1988; Duncan, 1988; Dixon et al., 1994).
Mixed models have also been used, for instance Lucey & Carpenter (1995) considered the combina-
tion of an upper, thin layer, governed by a plate equation, with a lower, thick layer, governed by the
Navier elasticity equations. To our knowledge, in all these approaches the coating was however as-
sumed to be of infinite extent in the streamwise direction. This motivates the present study, where
the case of a two-dimensional, finite-length coating is addressed. Namely, we consider a rectangu-
lar coating of dimensions L} in the z direction and H} in the y direction (see the sketch in Fig. 5.7).

We choose to model the solid elasticity by an incompressible hyperelastic neo-Hookean model,
for it is the simplest physically-based constitutive equation for rubber materials commonly used in
compliant-wall experiments (Gad-El-Hak et al., 1984; Gaster, 1988), derived from molecular chain
statistics considerations (Treloar, 1943). More involved models such as for instance the semi-
empirical Mooney-Rivlin, Ogden or Yeoh materials are more representative for the real behaviour
of silicon-rubber and soft tissues (Martins et al., 2006), but as pointed by Marckmann & Verron
(2006), for small strains (about 150 % and below), the neo-Hookean solid should be used because
of its physically-based origin, its small number of parameters and its robustness with respect to
various experimental load configurations. With dimensions, the first Piola-Kirchhoff stress tensor
for a general non-linear, incompressible neo-Hookean solid is given (Ogden, 1997) by

I (F F ) (5.2.3)

Where p = EJ/(2(1 4 1)) is the second Lamé coefficient, that is more conveniently written here

as E*/3 because of the solid’s incompressibility (v5 = 0. 5) If one further sets E =&+ 55'
= P* + e p/*, in the above relation we obtain

Ak A A A Ay A A A A A A, T A A
+e{ = B0 T+ P RE)TVE + 2 (VERE)T +FE)TVE) JREDT
In the present approach, the steady base displacement is assumed to be zero. Then, setting E=0
and Py = 0, the above neo-Hookean solid strain-stress relation reduces at the first-order to that of
the linear elasticity, namely

E;
o) €)= —() 1+ = (Ve +veT), (5.2.4)
while the incompressibility condition .J (é ) = 1 reduces to V-£&" = 0. Like for incompressible fluids,
the solid pressure can be viewed as a Lagrange multiplier that ensures the solid incompressibility.

Compliant materials should also present viscoelastic properties (Gad-El-Hak et al., 1984; Gaster,
1988), because the solid viscous damping helps for absorbing the energy produced by wall-based
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instabilities. When undergoing deformation, viscoelastic solids exhibit both viscous and elastic
characteristics. Unlike pure elastic materials that immediately respond to stress, then immediately
return to their original state once the stress is removed (they can only store energy), viscoelastic
materials show in addition time-delay and memory effects, associated to the rate at which energy
is lost (storing and dissipation of energy). In the most general viscoelastic case, the current value
of the strain depends upon the complete past history of the components of the stress tensor, which
results in models where the strain depends on a convolution integral between the stress an the
so-called creep functions (Christensen, 2012). However, is can often be considered that only a very
short part of the history has an influence on the present material state, in which case the full
viscoelastic model can be reduced to the so-called differential relations (Truesdell & Noll, 1992).
These models are much easier to manipulate, for strain and stresses are in that case linked by
differential relations, and the elastic and viscous responses can be distinguished. In the present
case, we adopt the most simple differential material of Kelvin-Voigt type, where the viscoelastic
part reduces to the time-derivative of the strain tensor. Combining the elastic and viscoelastic
parts for the strain-stress relation and non-dimensionalizing, we obtain the following relation,

Es Ds 0
o0 &) = A1+ (Ve + Ve )+ 2o (Ve +veT) (5.2.5)
where Dy = 1 /(pf UL 0F) is the non-dimensional damping parameter build upon the solid kine-
matic viscosity ¥ (in kem~!s™1). Such model can be seen as the most simple generalization of
the one-dimensional spring-damper Kelvin-Voigt model displayed in Fig. 5.8a. The solid equations
finally read as follows:

o2¢’ &, D, OV2¢’
Msa—ti = —Vp. + ?stl +5 af , (5.2.6)
vV-¢ =0 (5.2.7)

The first equation is the small-displacement momentum equation deduced from (1.1.10) and the
second equation represents the incompressibility constraint — Eq. 1.1.13 in the case of infinitesimal
displacements.

5.2.4 Coupled problem and numerical settings

The linearised fluid-structure problem (2.1.1), slightly modified by the presence of the solid pres-
sure, is written here under the form of the 2 x 2 problem

!/
T R A A 0

o | = (5.2.8)
o & \ S G #(Q) |\ gt P f’
T1(Q) A (Q)

In this notation, (%s, %%) represent the linearised solid operators that only depend on the material
parameters Ds, Mg and &. The augmented solid variable is g, = [¢/,ul,pl]T that gathers the
solid displacement, solid velocity uf = 9¢’/0t and solid pressure p.. The fluid operators (%, <%)
regroup the linearised Navier-Stokes equations in the ALE framework plus the extension problem,
ie. gf = [€, A, u/,p', N]T. The steady flow Q is a pure hydrodynamic boundary-layer flow of
velocity U and pressure P that thus only depends on the Reynolds number. The off-diagonal
operators %y and % are the coupling operators. Finally, the right-hand side term accounts for
an external volumic forcing in the fluid momentum equation, the operator & being introduced to
adjust the dimension of the vector, i.e. Z;f = [0,0, f,0,0]T. The different operators involved
in the coupled problem (5.2.8) take a form that is similar to what was already described in the
chapter 2. The only difference is that the solid model is incompressible.
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Remark —coupling with transpiration. We found that in the range of parameters investigated
in this study, the approximate Eulerian-based approach (i.e. with a fluid-structure coupling by
means of the velocity transpiration only, see in §2.1.4) gives actually results that are very close
to that given by the Lagrangian-based approach. Significant differences only arise for much more
viscous boundary-layers.

The computational domain of the solid region is discretized with a structured mesh made with
17982 triangles and 9352 vertices. The computational domain for the fluid region €2 is discretized
with a structured mesh made of 72324 triangles and 36 686 vertices. At the fluid-solid interface,
that conforms with the solid mesh, the grid resolution in the streamwise direction is Az = 0.15 while
the transverse resolution is Ay™" = 0.03. The transverse grid resolution is smoothly decreased in
the y > 0 direction using a sine law and reaches Ay™®* = 0.3 close to the upper boundary. Finally,
the extension region is made as a layer (of width 5) around the solid, and the Laplace operator is
taken as the extension operator.

5.3 Eigenvalue analysis

5.3.1 Free solid dynamics

Before analysing the coupled fluid-structure perturbations, it is useful to describe the dynamics of
the compliant coating alone, i.e. vibrating in vacuum without the surrounding fluid. This allows
for instance to determine what types of solid vibration modes are to be expected in the coupled
analysis.

For this free solid vibration analysis, the non-dimensionalization with respect to fluid variables
is not the most adapted. In this section, we therefore rewrite the equations by taking as a reference
velocity the transverse (shear) elastic waves velocity

E*

S

3
C
t %7
3p%

which is the propagation speed for elastic waves in an infinite, incompressible elastic media, whose
vibration direction is perpendicular to the direction of propagation (Landau & Lifchitz, 1967). The
width of the coating, H is naturally taken as the reference length. In this section (and this section
only), the solid equations then writes as

¢ / D; 0\ o2pr ’

which are simply (5.2.6)—(5.2.7) rewritten with the new scalings. In this analysis, the non-
dimensional solid dynamics only depends — apart from the aspect ratio of the plate — from the
ratio D, = nl/(piH}C}) between the characteristic time for wave propagation H;/cf and the
characteristic time for diffusion p}(H*)?/n*. The boundary conditions are here

os(pl,€)m =0 on T, (5.3.2)
! = 0 on Fbottoma (533)
¢ =0 on Tgide. (5.3.4)

We start by the analysis of an infinite-length coating of finite thickness, in which case a dispersion
relation for travelling-waves can be determined. For this case, we only consider the boundary
conditions (5.3.2) and (5.3.3). Then, we move on to the finite-length case, and show the great
variety of vibration patterns that are obtained in this latter case. For this second case, the side
edges condition (5.3.4) should be prescribed as well.
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Ibottom

Figure 5.9 — Free, finite-length solid. The solid domain is represented in orange color, with the
scaling used for the free-solid analysis.

Infinite-length, finite-thickness coating

The limit case where the length of the coating is assumed to be infinite is convenient, for it allows
to compute the dispersion relation of the coating and thus give a clear physical overview of the
vibration dynamics in the coating. For that aim it is convenient to introduce a solid stream function
¢ such that
e = 52 o
Y 9z’

that enables the incompressibility condition V - £ = 0 to be automatically satisfied. Then, we
obtain the following momentum equations,

3 / 3 3
¢ 8ps+<1+7353)<3¢ a¢>

920y~ oz 2 ot ) \oz2oy T 0p°

_83¢ —_8ps_ 1_|_2;g @—Fﬁ
ot20xr Oy 2 0t) \ox3  Oy20x )’
for the x and y components respectively. The pressure can be eliminated from the above equations

by considering the difference between the z component differentiated with respect to y and the y
component differentiated with respect to x. This results in the fourth-order equation

and €] y =

0? D. o
2 (Vi) = (1 n wt) (V).

Seeking there for modes ¢(x, y,t) = q?)(y) exp i(At—kz) propagating in the homogeneous x direction,
with k£ € R and A is the frequency — possibly complex when D, # 0 —, gives

) e DE ) o

The modes should satisfy the zero displacement condition (5.3.3) at the bottom at y = —1 (recall
that the reference length is here H instead of ;) and the stress free conditions (5.3.2) at y = 0.
The first condition writes

=kd(-1)=0 (5.3.6)

-1

do
dy

while the stress-free condition is obtained by evaluating o4(p., &' )n at the interface. The normal
vector being aligned with the y axis, we obtain

d2qb
Ly Ds )
( dyQO
, do DL\ [ &3¢ B
5 (o) (23] o] ) o

In the second term of the above relation (y component), the pressure appearing in the stress has
been eliminated using the x equilibrium equation.

+k%$(0) =0,

R (5.3.7)
2 49

k
3 dy
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Figure 5.10 — Infinite-length coating without damping. (a) Dispersion relation for an infinite-length
coating with Ds = 0. For sake of comparison, the A — k relation for Rayleigh surface waves is
depicted with the red dashed line. (b) Modal shapes for the first three lowest-frequency branches
with zero damping ((ﬁ(l) corresponds to the lowest branch) and a wavenumber k& = 1 (identified in
the dispersion relation by the crosses).

After discretization in the y direction (practically, second-order centred finite-differences in a
regularly spaced grid, with ghost cells for handling the boundary condition), equations (5.3.5),
(5.3.6) and (5.3.7) form an eigenvalue problem of type (A2A (k) +iAB(k) + C(k))¢ = 0, that can
be solved numerically for various wavenumbers k, yielding to couples (A, é) and to the dispersion
relation (k, A(k)). Since the problem has a relatively small size (less than 500 unknowns are
required for converging the first modes), all the eigenvalues are explicitly computed using dense
algebra libraries implemented in the software SCILAB, and the lowest-frequency eigenvalues are
then retained.

Remark. Note that it is also possible to derive an explicit equation for the dispersion relation.
The fourth-order above differential equation (5.3.5) admits a solution space basis that can be
written with trigonometric functions {sin, cos,sinh cosh}. Applying the boundary conditions
(5.3.6) and (5.3.7) to an arbitrary element of the solution space results in a 4 X 4 determinant
that should be zero, which gives the dispersion relation in the plane (k, A) for the elastic waves
in the coating,

kA1 (k, \) cosh(k) cosh(k) — kAy(k, A) sinh (k) sinh(k) — kAs(k,\) = 0 (5.3.8)

where we have noted a = 1+ iXD./2, k = k(1 — (A\/k)?/a)'/?, and where the coefficients A;
are given by Aj(k,\) = 8a2k* — 4ak?(N\)® + (N, Aa(k,N) = 8a2k* — 8ak2(N)? + ()" and
As(k,\) = 4ak?((\)* — 2ak?). This equation cannot be solved analytically and a numerical
treatment is required. In the context of a compressible material, Gad-El-Hak et al. (1984) or
Duncan et al. (1985) obtained a similar formula. We furthermore observed that the graph of
(5.3.8) coincides with their dispersion relation when v — 0.5. In our case, we rather solved
directly (5.3.5) for various values of k, which of course allows to recover the graph of (5.3.8), but
also compute the modal shapes (that are not directly available from the dispersion relation).

The obtained dispersion relation is represented in Fig.5.10a for the case without damping
(Ds = 0). A is then a real number representing the circular frequency. Several branches of
increasing vibration frequencies are observed, all located above a cutoff frequency Ay, = 1.57
reached for small wavenumbers — i.e. large wavelengths. Each branch (labelled by an integer (7)
in Fig. 5.10) is associated to a particular vibrating pattern, as represented in Fig. 5.10b that displays
the modal shapes for three modes at k = 1 (identified by crosses in the dispersion relation). Higher-
order modes are characterized with an increase of the number of the inflexion points in the modal
shapes (an additional one for each branch of higher frequency). The evolution of the deformation
in the x direction is represented in Fig.5.11 where the y displacement deduced from the modes
is represented for the three first branches. In the z direction, the wavelength of the structures is
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Figure 5.11 — Mode shapes (y displacement) for an infinite-length coating with a fixed
wavenumber k = 0.5, for the first three modal branches. Contour lines (dashed negative)
indicate the levels £1. The interface is deformed according to the y displacement field.

Figure 5.12 — Cutoff frequency. Dis-
persion relation for the spring-
backed string equation (5.3.9), with
asymptotic features. K / M

given by 27 /k, while the transverse pattern is that observed in Fig. 5.10b.

At high wavenumbers, the waves are almost non-dispersive (see Fig.5.10a), and the lowest
branch is asymptotic to the dispersion relation A = 0.955k established by Rayleigh (1885) for
the propagation of interface waves in a semi-infinite media ((z,y) € R x R™). This makes sense,
because in that case the small characteristic size for the waves makes as if the rigid wall at the
bottom bottom is sent back to infinity.

On the other hand, low wavenumbers come with a stronger dispersion. Furthermore, each
branch is marked with a frequency cutoff — the cutoff for the branch (1) being Apnin. No propa-
gation occurs below this limit. When k& — 0, all goes actually as if the coating was experiencing
a bulk displacement over its whole length, and the frequency limit is thus the natural frequency
for this movement. This phenomenon can be better understood in a the case of a spring-backed
solid. Considering the model used for instance by Carpenter & Garrad (1985) and neglecting
damping and flexural resistance, the transverse displacement &, for the string of linear density M
and tension T placed above the bed of springs of stiffness K is given by

0%, _ 0%,

M ot? 0x?

- K¢, (5.3.9)

Then, the dispersion relation for waves of type &,(z,t) = éy expi(At — kx) writes as

T K
A=) —k2 4+ —.
Mt T M

This dispersion relation is represented in Fig.5.12. In the limit of very long waves (k — 0), this
relation becomes A ~ /K /M which is the eigenfrequency for the springs alone, that oscillate as if
they were alone. In our more complex elasticity model, the reason for the apparition of the cutoffs
is essentially the same, except that in that case there are several modal branches.

Note that a fluid model can be added quite easily to this travelling-wave analysis, by modifying
the stress boundary condition: for the case of a compressible material, Duncan et al. (1985)
determined for instance dispersion relations for a compliant coating interacting with a prescribed
pressure wave applied in the upper interface, akin to fluid pressure perturbations coming from the
surrounding fluid.
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Figure 5.13 — Free vibration frequencies for finite-length coatings. Lowest frequencies obtained in
the free vibration problem for a finite-length compliant coating without damping as a function of
the coating’s aspect ratio L /H.. The dashed lines mark the n frequencies obtained in the limits
k — 0 for each branch of the dispersion relation for the infinite-length coating (see Fig. 5.10).

Finite-length, finite-thickness coating

Let us now move on to the case of a finite-length coating of width H} in the y direction and
length L} in the = direction, clamped on its bottom side but also on the left and right sides, and
free to vibrate in vacuum in the upper side. The travelling-wave analysis performed above is no
longer appropriate because of these side conditions. Therefore, the solid displacement field is now
decomposed as gg(z,t) = g¢p,..(x) exp(At) in the solid equations (5.2.6)-(5.2.7), with A € C and
4 rce = [Efreer US free = A &free] This now amounts to solve the solid part of (5.2.8) — still with the
solid-based non-dimensionalization —, that is,

{)\ B, — Ms}q;ﬁee —0. (5.3.10)

This eigenvalue problem is solved by a shift-and-invert strategy using the ARPACK library (Lehoucq
et al., 1997).

Remark. The free vibration problem (5.3.10) is written on the form of an augmented first-order
problem, where qgZ.. has a velocity and displacement component. In absence of damping
(Ds = 0), the eigenvalues are pure imaginary numbers. Physically, because there is no am-
plification/decay mechanism in this case. Mathematically, because the solid operator J#” in o7
is positive and symmetric. When Dg = 0, the free vibration modes {q:,freei}izlxz,m form therefore
an orthogonal basis.

The lowest-frequency eigenvalues for this problem are represented in Fig.5.13, for different
aspect ratios L’ /H} and no damping. We recover the main features obtained from the infinite-case.
First, we again notice a cutoff frequency for all coating lengths. For “long” coatings (aspect ratio
greater than about 10) the cutoff at A = A\j, determined in the infinite-length case is recovered.
Shorter coatings come with an increased lowest frequency. Sort of “modes accumulation zones” are
also noticed on the spectrum shown in the middle figure, which correspond to the eigenfrequencies
prescribed by the dispersion relation for the infinite coating in the limit & < 1: because the slope
of the dispersion relation is almost flat in this region, there are many of modes having different
wavenumbers but the same vibration frequency. This is made more visible in the graph on the right
side, where the moving average density of modes per unit frequency is displayed, showing peaks
close to the location of the frequency cutoffs for the branches (1), (2) and (3) of Fig. 5.10a. Setting
a finite length in the x direction amounts in a certain extent to selecting integer wavenumbers in
the infinite-length dispersion relation (wavelengths L%, L*/2, L*/3, etc. ).



150 5. Boundary-layer instabilities over a finite-length compliant coating

AL = 1.654i ’ | | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
A2 = 3.299i ’ | | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
A3 = 4.685i ’ | | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
A4 = 5.395i ’ | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
As = 5.508i ’ | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
X = 7.890i ’ ‘
A7 = 8.045i ’ | | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Figure 5.14 — Mode shapes (real part of the transverse displacement, Re(&f,..)) for a finite-
length coating of aspect ratio L:/H* = 20, ordered by increasing vibration frequency.
Contour lines (dashed negative) indicate the levels +1.

A few mode shapes for the case with an aspect ratio 20 are reported in Fig.5.14, represented
in an increasing order in terms of their frequency. The y displacement is shown together with the
interface deformation for a better visualisation. This “zoology” of modes shows the great variety
of modal behaviours that can be found. The first, second and fourth modes have actually the same
transverse distribution than that of the mode (ﬁl presented above, and almost the same in the x
direction (apart from the sides were edge effects alter the deformation, the modal pattern is very
similar to the what is shown in Fig.5.11 for the mode in the branch (1)). Because the length of
the coating is finite, the admissible streamwise wavelengths are actually L%, L%/2, L% /3, etc. and
for the same transverse pattern, all possible integer values for the streamwise wavenumber can
possibly be found. At higher frequency, the trace of the second modal branch with modes (ﬁg is
found (fifth mode) as well as its  subdivisions (seventh mode). More complex patterns are also
found, like the third, sixth mode or last mode. For these cases, the spatial distribution is more
specific to the finite-length case.

Finally, the influence of the viscoelastic damping onto the free-vibration eigenvalues is reported
in Fig. 5.15. In presence of damping, the eigenvalues are no longer real-valued as it is the case when
Ds = 0 but present a negative growth-rate (damped oscillations). The higher the frequency, the
more negative the growth rate is, as it is traditionally observed for damped oscillators. From (5.2.6)
and (5.2.5), the decay of the growth-rate can be for instance evaluated as A" = —3D;/(2&,) A},
where A} is the frequency of the modes without damping.

5.3.2 Fluid-elastic eigenvalue analysis

We now compute the global modes for the fluid-elastic configuration. Considering a finite-length,
spring-backed solid interacting with a boundary-layer flow, Tsigklifis & Lucey (2017) showed indeed
that the configuration can become globally unstable. In this latter case, the system acts as a self-
sustained, self-amplified oscillator, and global modes are appropriate to describe its behaviour.
Since the characteristic frequency for the solid is 1/Es/ Mg, we should find a trace there for the
solid modes described in the previous paragraph, at somewhat lower frequencies compared to the
free vibration case, because of added mass effects.

In all what follows, we consider the case of a finite-length coating of aspect ratio 20, and the
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Figure 5.15 — Free vibration frequencies for finite-length coatings, influence of damping. Plot of
the eigenvalues for the cases without damping, Ds = 0.1 and Ds = 0.2, for the case L;/H; = 20.
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Figure 5.16 — Eigenvalue spectrum for the fluid-elastic configuration without damping (s = 1,Ds =
0). (a) Fully coupled spectrum showing the fluid-elastic eigenvalues (e), and (b) superposition of the
hydrodynamic (rigid-wall) spectrum (e) and free solid vibration frequencies (4 ), rescaled according
to the fluid-based non-dimensionalization (the non-dimensional width of the coating being 5, all
frequencies are 5v/3 ~ 8.66 times smaller as what is shown in §5.3.1).

Reynolds number for the flow is fixed to R, = 3000. We look here for coupled fluid-elastic modes

()= (g ol

in the linearised fluid-structure problem without any forcing term, where A" is the growth-rate of
the perturbations and A* is the angular frequency. This results in the eigenvalue problem

{()\T +1iX%) (%’s %O)f> B <%(%;Ds) JZZE))} (g%) o (53.11)

Solving (5.3.11) for different values of the stiffness and damping parameters allows to determine
the region in the parameter space — if any — where the flow is globally unstable.

Pure-elastic case

We consider first the pure-elastic case (£ = 1 and Dy = 0). The eigenvalue spectrum of the fully
coupled, linearised fluid-solid operator is displayed in Fig.5.16a, while the decoupled spectrums
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for the fluid (blue) and the solid (red) is displayed in Fig.5.16b. In the left side (A\* < 0.15) in (a),
only stable modes are found. These modes are also found in the rigid-wall configuration, whose
eigenvalues are depicted in Fig. 5.16b with dot symbols. These stable modes are associated to the
Tollmien-Schlichting waves (Ehrenstein & Gallaire, 2005; Akervik et al., 2008). Actually, if the
individual two-dimensional modes are stable, an appropriate superposition of them may exhibit a
transient growth (Ehrenstein & Gallaire, 2005). The dynamics of the Tollmien-Schlichting waves
has indeed more to do with receptivity and energy amplification mechanisms than modal behaviour
(Schmid, 2007). For that reason, a resolvent analysis will be performed in Section 5.5. Compared to
the rigid case (b), in the flexible case, the TSW’s are slightly attenuated: the maximum growth-rate
decreases from —0.0155 in (b) down to —0.02 in (a).

Unstable modes are found in the pure-elastic case (a) in a frequency range between 0.35 and
0.70. Theses modes are clearly related to the destabilization of the free vibration solid modes
(depicted with + symbols in Fig.5.16b) through the interaction with the fluid. Note that the
frequency of the coupled modes is slightly shifted towards lower frequencies, because of added
mass effects. This part of the spectrum is in qualitative agreement with what was observed in
the global mode analysis by Tsigklifis & Lucey (2017) in the case without damping: one branch
of unstable modes was found in about the same frequencies. In the present case, more than one
branch of modes is observed. This makes sense, since our solid model enables to carry many more
types of modes than the spring-backed solid considered by Tsigklifis & Lucey. In the following, we
refer to these modes as the travelling-wave flutter (TWF) modes.

Remark. 1t is well-known that the eigenvalues related to the Tollmien-Schlichting waves are
sensitive to the location and type of boundary conditions considered (Ehrenstein & Gallaire,
2005). We also observed this phenomenon by varying the distance between the end of the
coating and the outflow. With the chosen dimensions for the domain, the region that drives the
instability (referred to as the wavemaker region by Giannetti & Luchini (2006)) is indeed not
completely covered by the computational grid. This is however not really an issue, because we
are rather interested by the effect of variations of the material parameters than by the absolute
values. On the other hand, the eigenvalues related to the solid-based instabilities are completely
insensitive to the dimensions of the domain.

The spatial structures for the global modes labelled (a) to (e) in Fig.5.16 are displayed in
Fig.5.17. Large perturbation velocities are observed in the vicinity of the fluid-solid interface. We
have kept separate colors to better distinguish the solid from the fluid region, but the contour
levels are the same in both regions. In each case, the structures of the mode are concentrated in
the vicinity of the solid, and quickly decay in the streamwise direction after the coating’s end at
x = 125 has been reached. For a better visualisation of the transient interface dynamics, snapshots
of the interface at different phases of the modes are also reported, as well as the instantaneous
position at zero phase (real part of the deformation).

The mode (a) is stable and corresponds to the lowest-frequency mode in the first TWF modal
branch that appears in the spectrum. The mode (b) is the lowest-frequency unstable mode. The
mode (c) is the most unstable mode, while modes (d) and (e) are higher-frequency, unstable modes.
As one evolves toward higher-frequency modes, the vibration pattern becomes more and more
complex. In particular, the instantaneous interface deformation counts more and more vibration
nodes: in case (a) there are two vibration nodes at the clamped ends, while in case (c) the snapshots
of the deformation reveal 22 nodes.

The space-time structure for the mode (c) is reported in Fig. 5.18. The velocity vibration nodes
observed in Fig.5.17 form vertical lines in the space-time diagram, that break periodically the
oblique stripes corresponding to the wave propagation. Downstream and upstream directions of
propagation are observed here, that correspond to the superposition of two travelling waves that
form one standing wave. We clearly see in this representation the spatial amplification of the waves
in the streamwise direction, and edge effects close to the clamped side at z = 125. Downstream
of the coating’s end, the cut in the fluid (y = 1) shows how the mode recovers a downstream
travelling-wave structure, that quickly decays down to zero.
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Figure 5.17 — Global modes. For the modes labelled (a,...,e) in Fig. 5.16, plot of the real part of the
transverse velocity in the solid (blue color) and in the solid (orange color, same levels). The bottom
inserts depict snapshots of the solid interface deformation at different phases, while the orange line

depicts the real part (zero phase).
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Figure 5.18 — Space-time diagrams. For the unstable global mode (c), plot of streamwise (left) and
transverse (right) cuts of the mode Re{u’(z,y = yo) exp(iAt)} in the (z,t) plane, for (a) yo = —1,
(b) yo =1 and (c¢) yo = 2.
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Analysis in terms of free vibration modes

The coupled modal deformation represented in Fig.5.17 shows a complex pattern. A projection
of the solid component of the coupled fluid-solid mode allows to better understand how the cou-
pled mode is related to the free vibration modes described in §5.3.1. Considering a basis of N
free vibration modes {&€g.. ;}i=1,..,n (ordered by increasing frequency) and projecting £° on this
orthogonal basis gives 7

N |£ sfree z>‘
i:zl le°)®

provided that N is chosen sufficiently large. The coefficients p;(£°) = [(£°, &fee Z>| /€017 give
how the solid kinetic energy of the coupled fluid-structure mode is distributed on the basis of
free vibration modes. For instance, p; = 0.9 would mean that 90 % of the mode’s solid kinetic
energy is related to the lowest-frequency free vibration mode. The coefficients p;(&° j) are reported
in the scatter plot in Fig.5.19, where ﬁoj is the j* mode in the TWF branch (ordered by an
increasing frequency) of fluid-structure modes. The free modal basis consists of all the modes
having a frequency smaller than 0.8. Each vertical slice (at some frequency of a coupled mode)
thus represents the frequency histogram of the projection on the free vibration basis. Darker points
indicate regions with a larger projection coefficient.

A complex pattern is observed. The high projection coefficients are mainly concentrated above
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Figure 5.20 — Eigenvalue spectrum for the viscoelastic configuration, effect of damping and stiff-
ness. (a) Plot of the eigenvalues for the case without damping (e), the case Ds = 0.1 (+) and the
case Ds = 0.2 (X). The red lines mark the growth-rate of the free-vibration modes. (b) Plot of the
eigenvalues for the case Ds = 0 and & = 0.5.

the y = x line, because of added mass effects. We see that several free vibration modes contribute
to the coupled dynamics.

Effect of viscoelastic damping and stiffness variation

Still considering the case £ = 1, let us now consider a few cases with viscoelastic damping. The
stabilizing effect on the modes is clearly visible in Fig. 5.20a that shows superimposed spectra for
Ds =0, Dy = 0.1 and Dy = 0.2. The TSW modes are almost not affected at all by the viscoelastic
damping, on the contrary to the higher-frequency TWF modes that are strongly damped. In
particular, from Dy = 0.1 the TWF modes are all stable. The decay of the growth-rate is asymptotic
to that of the free solid vibration modes (indicated by the red line) at high frequency: out of the
frequency region where there is an interaction with the flow, the decoupled modes are recovered.

Finally, the spectrum of a case without damping and a stiffness & = 0.5 is depicted in Fig. 5.20b,
and shows a decrease of the minimum frequency attained by the modes in the TWF branch. This
makes sense, because the frequency of the solid modes scales as \/Es/Ms. The same frequency
shift is observed when there is viscoelastic damping. Compared to the reference case & = 1,
the maximal growth for the modes in the TSW branch is decreased by about 9.6 %, but a great
increase of the maximal growth-rate of the unstable modes (about a factor 2) is also observed,
showing the well-known antagonist behaviour between the TSW/TWF modes with respect to the
stiffness (Carpenter & Garrad, 1985, 1986).

5.4 Elastic response to optimal fluid perturbations

It is well known that the development of the Tollmien-Schlichting waves in boundary-layer flows is
often more conveniently analysed in terms of the receptivity of the flow to external perturbations
(Schmid, 2007) than in terms of eigenmodes. Strong energy amplifications may indeed occur
even though the eigenvalues are all stable, because of transient growth (see the Appendix A for
an introduction to these notions). We presently apply a resolvent analysis first in the rigid-wall
configuration, that allows to determine which perturbation leads to the strongest response in the
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flow. Then, considering this optimal, rigid-wall perturbation, the response in the viscoelastic case
is computed and analysed.

5.4.1 Resolvent analysis in the rigid-wall case

In our framework, the governing equation for the fluid velocity and pressure perturbation g} de-
veloping about the boundary-layer flow past a rigid wall, and excited by some momentum forcing
f', corresponds to the sub-problem

g

wn

—dhqi= P f' (5.4.1)
deduced from (5.2.8). In the linear framework, the response to a generic forcing akin to free-
stream perturbations (gusts, etc.) can be computed as the sum of independent responses to each
harmonic component of the original forcing, thanks to the superposition principle. Hence, we
assume an harmonic forcing

f'(@,t) = fopa(®) e +cc.

where c.c. stands for the complex-conjugate and the subscript “rgd” stresses the fact that the
forcing is taken here in the rigid-wall case. Because of the linearity of (5.4.1), this harmonic
forcing leads to an harmonic fluid velocity-pressure-interface stress response

q;(,t) = g¢ ga() et ..

Introducing the fluid resolvent operator Zs(w) = (iw%r — %), the fluid velocity response U,gq
to a momentum forcing f,,q(x), in the rigid configuration, writes as (the momentum forcing and
the velocity response are living in the same space)

Urgd = Pf Br(W) Py Srga- (5.4.2)

The Tollmien-Schlichting waves developing in the rigid-wall configuration can be characterized by
looking, at a given frequency w, for what is the spatial distribution of f,,,4(z) that gives the greatest
amplification G¢(w) of the fluid velocity perturbations u,qq(x) akin for these unstable waves (Sipp
& Marquet, 2013). Namely, we set

Gi(w)? = max
( | fegall?=1

lusal® with gl = | |qPas. (5:43)
Qg

that is, energy is measured over the whole fluid domain. Using (5.4.2) and the adjoint resolvent
operator Z¢(w)’, equations giving the solutions to this constrained optimization problem can be
obtained by writing the associated Lagrangian function. Looking for the stationarity conditions,
the problem then amounts to solve the generalized eigenvalue problem (Brandt et al., 2011)

(PL R (W) Py PER(w) D) Frga = 07 Frga (5.4.4)

with Gg;(w) = o; — all the eigenvalues o > 0% > --- are positive because the left and right-
hand sides of this problem are Hermitian. In the present case, the explicit form of the adjoint
resolvent operator does not need to be determined: the discrete adjoint approach is considered.
Once the forcing field is determined, the velocity perturbation response can by computed using
(5.4.2). The triplet (Gr,0, (figa),: (Urga),) is called optimal (gain, forcing, response) because (f,gq),
is the momentum forcing field that yields to the most amplified (by a factor G according to the
kinetic energy norm) velocity perturbation (urga),. The triplets (G, (figa); (Urga);) are called
the sub-optimum of order ¢ > 0, and form less amplified couples of forcing and response, that
can nevertheless still participate to the instability process if their amplification is not negligible
compared to the optimal instability mode. Note that these fields are given for each value of the
forcing frequency: both the gain, the forcing and the response field depend on w.
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Figure 5.21 — Gain curve in the rigid configuration. Plot of the amplification gain G¢ as a function
of the forcing frequency (optimal and five first sub-optimum). The forcing and response fields
associated to the points O (w = 0.06) and O (w = 0.095) are reported in Fig. 5.22.

Remark —practical resolution of (5.4.4). Generalized eigenvalue problems of type Kz = A\Mxz
with K an invertible matrix, M a symmetric positive matrix and A € C, are solved in FREEFEM++,
using an interface with the library ARPACK, that allows to find the smallest eigenpairs. More
specifically, the function complexEigenValue(...,CFA,CFB,...) is used, that requires as an
input the functions @ — K~ '@ and = — Mz coded in routines CFA and CFB. This interface is
used here to solve (5.4.4). At the discrete level, we have K = [PT R(w)"PPTR(w)P]"!, M =1
and A = (1/0)2, and look for the smallest A (i.e. the largest o). The following implementation is
done:

CFA:z — PTR(W)YPPTR(w) P,
CFB:x — x.

This requires to compute the resolvent R(w) and its transconjugate, which is done using a LU
decomposition of the operator (iwB — A). Note that only one LU decomposition has to be done,
since the transposition of the inverse can be done by transposition of the resultant lower and
upper triangular matrices. Then, having found the smallest pairs (\;, x;), the relevant quantities

are derived as 1
0 = ———, %) = x4, roi——PIRwai.
e () (f°) (r°) (w)

For values of the forcing frequency 0 < w < 0.5, solving the eigenvalue problem (5.4.4) results in
the gain curve displayed in Fig. 5.21. A peak of amplification at G¢(w = 0.06) = 3066 is observed,
in the frequency range typical to that of the TS instabilities. The optimal response curve largely
dominates over the other: the sub-optimal peak of amplification is found at G¢(w = 0.095) = 690.
From w = 0.2 to the maximum frequency w = 1 considered, a monotonic decrease of the gains is
observed.

The spatial structure of the forcing and response fields corresponding to the optimal and sub-
optimal gain peaks (materialized in Fig.5.21 by symbols O and O respectively) are represented
in Fig.5.22. They are similar to those shown and described by Sipp & Marquet (2013) at lower
Reynolds numbers 0 < z*UZ /vf < 1490, and we refer to this paper for more details. In (a)
the real parts for the optimal forcing and response are displayed. The corresponding imaginary
parts are similar to the real part but out of phase, thus describing a downstream convection of the
perturbations. The response is also amplified in the downstream direction, which is in agreement
with the fact that for the Reynolds number chosen, amplified waves are found. The forcing is made
of elongated waves inclined against the flow stream, whose maximal amplitude is found upstream
to the response. This structure of the forcing indicates that the Orr mechanism is at play (Akervik
et al., 2008). The same features are observed for the first sub-optimal mode (b), but in this case
two maxima of forcing/response are observed in the streamwise direction (before and after = ~ 100
for the response and ~ 50 for the forcing).

The analysis performed here characterizes unstable Tollmien-Schlichting waves. In the next
section, we discuss the fluid-elastic response to the previously determined optimal forcings.
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Figure 5.22 — Forcing & response for the rigid configuration. Snapshot of the real part of the
transverse velocity response (dashed negative contours, top) and of the real part of the streamwise
momentum forcing (blue-red gradient, bottom, the local displacement thickness being materialized
with the dotted line), for (a) the optimal case (O) and (b) the first sub-optimal case (O) in Fig. 5.21.

5.4.2 Fluid-elastic response to an optimal rigid-wall forcing

We now investigate the effect of the wall’s viscoelastic properties on the response to the optimal
fluid momentum forcing determined in the rigid case. Unless otherwise stated, we consider the
globally stable case & = 1 and Ds = 0.2. Introducing the optimal forcing determined in (5.4.4) as
the forcing term in (5.2.8), we have

B )@ ) ) e

where the solid response g, and the fluid response g; are determined by using the coupled fluid-
structure resolvent operator. The amplification in the flexible case can by the same way as before
be determined by computing the gain

G(w) = |Jul (5.4.6)

where u = 2 q; is the velocity component of the fluid variable. This allows to evaluate the effect
of wall viscoelasticity on the response to a given forcing. In particular, there is no need for an
optimization here, since we simply evaluate the fluid-elastic response to a known forcing field.

For each value of the forcing frequency w, the viscoelastic response to the optimal and sub-
optimum forcings determined in the rigid case is computed. The response curve computed from
(5.4.6) is displayed in Fig.5.23, and shows two distinct regions that are further analysed in the
following. At low frequency, we recover an amplification that is related to the Tollmien-Schlichting
waves, while higher-frequency amplifications are also observed. This higher-frequency amplifica-
tions are obviously related to the travelling-wave flutter of the solid.

Response in the Tollmien-Schlichting waves frequency range

In Fig.5.23, let us focus first on the low-frequency region w < 0.3. Both the responses to the
optimal and first sub-optimum rigid-wall forcings are displayed. It is observed that the maximal
amplification for the Tollmien-Schlichting waves is reduced by about 25 %, in qualitative agreement
with earlier studies on the impact of lowering the coating’s stiffness (Benjamin, 1960; Carpenter &
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Figure 5.23 — Response curve for the viscoelastic configuration. Plot of the amplification gain G
for the case with £& = 1 and Ds = 0.2, determined as the response to the optimal and four first
sub-optimum fluid perturbations. The solid line (=) refers to the rigid-wall amplification, while
the dashed (——) line indicates the fluid-elastic response. Points 0 (w = 0.055) and O (w = 0.078)
identify the peak of the fluid-elastic response, in the low-frequency TSW region, to optimal and
sub-optimal forcings respectively. Point & (w = 0.4) identifies the peak of the fluid-elastic response,
in the higher-frequency TWF region.

Garrad, 1985): Tollmien-Schlichting instabilities are damped by the flexibility of the wall. Further-
more, the frequency range where large amplifications occur is reduced. Considering the response
to the first sub-optimal rigid-wall forcing, we see that the fluid-elastic response results in a larger
amplification as what is observed in the rigid-wall case. The amplitude of this secondary response
is however still lower (by a factor about 2) than the response to the optimal rigid-wall forcing, and
the responses to higher-order sub-harmonics have all even smaller amplitudes.

The spatial structures of the responses corresponding to the peaks materialized in Fig. 5.23 by
the square (O) and circle (O) symbols are depicted in Fig.5.24. The transverse component of
the real part of the velocity response w is represented in the fluid and solid regions. For a better
visualisation, the solid has been deformed according to the real part of the solid deformation field
(scaled with an arbitrary amplitude). In the fluid, the same features as that observed in the
rigid case are observed, namely, out of phase streamwise and transverse (not represented) velocity
perturbations travelling downstream while being amplified. Two different scales have been used to
represent the solid and fluid velocities, because the solid velocity perturbations are much smaller
than in the fluid. In particular, the solid velocity perturbation in the vicinity of the interface
is very small compared to the fluid velocity perturbations (about 1% of the maximal velocity
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Figure 5.24 — Elastic responses to optimal fluid forcing. Fluid and solid transverse velocity com-
ponents (real part) for the response to the momentum forcing determined in the rigid case, for (a)
the peak of response to the fluid optimum (point O in Fig.5.23) and (b) the peak of response to
the fluid sub-optimum forcing (point O in Fig.5.23).

fluctuations).

In the solid, the longitudinal wavelength of the deformation is the same as that of the surround-
ing Tollmien-Schlichting waves. The displacement is in phase quadrature with the velocity, since
us = iwg. The deformation history is better visualised in Fig.5.25. Ten snapshots of the solid
deformation during an oscillation period are reported there, showing the temporal evolution of the
solid deformations. Arrows indicate the displacement field while the colours indicate the velocity
magnitude. Using this representation, we clearly see the wave propagation (and amplification in the
x > 0 direction) at a constant phase speed, which is also that of the fluid perturbations. Although
smaller than that of the transverse deformation, there is a noticeable streamwise deformation in
the solid — that is in any case necessary, so as to guaranty the incompressibility of the material.

In Fig.5.26, two space-time diagrams show the evolution with ¢ of Re{u(z,y = 1) exp(iwt)} in
the fluid and Re{us(x,y = —1)exp(iwt)} in the solid (transverse component). We see here that
the fluid wave propagation is not much altered by the presence of the solid (presence of almost
straight oblique stripes) between z = 25 and « = 125. The second cut (right) shows how edge
effects alter the wave propagation in the solid, in the vicinity of the coating’s ends. On the contrary
to what was shown in the modal analysis, the response to the rigid-wall forcing generates only a
downstream travelling wave in both media.

Response in the travelling-wave flutter frequency range

Let us now focus on the higher-frequency region w > 0.3 in Fig. 5.23. Large peaks of amplification
are found around the forcing frequency w = 0.4. On the contrary to what was observed for the
Tollmien-Schlichting waves, in the present case the optimal forcing computed in the rigid case is
no longer that who produces the largest viscoelastic response. Rather, the travelling-flutter waves
are amplified with a large magnitude for both the optimal and at least the four first sub-optimum
forcings. The higher the order of the forcing, the lower the frequency of the peak of response. For
frequencies larger than 0.6, a monotonic decay of the response is again observed.

The mode corresponding to the peak of the response curve to the second sub-optimum (point
< in Fig.5.23) is displayed in Fig.5.27, together with the fluid forcing computed from (5.4.4),
displayed with the blue-red gradient. The mode takes the form of a downstream travelling-wave
that vanishes after the coating’s end. Like for the global modes, the perturbations have the same
order of magnitude in the solid and in the fluid, and are spatially amplified in the downstream
direction while travelling in the vicinity of the coating. The forcing fields take the same form of
oblique elongated waves inclined against the flow stream. On the contrary to what was observed
for the T-S waves, the region where the largest forcing amplitudes occur is located farther away
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Figure 5.25 — Solid response to TSW optimal forcing. Snapshots of the solid during an oscillation
period. The interface deformation is shown, while arrows indicate the displacement field, coloured
by the solid perturbation velocity magnitude (darker is higher)

from the interface, close to y = 1, i.e. in the region where the displacement thickness is unity. The
modes corresponding to the other peaks of response show very similar features.

These observations push for determining the optimal perturbation in a fully elastic framework,
that is, take into account the fluid-structure interaction when determining the optimal perturba-
tion. Before moving to this, let us clarify the mechanisms of wave attenuation/amplification.

5.4.3 Mechanism of wave attenuation/amplification

In the expression (5.4.5), the distributed forcing of the fluid momentum equation triggers the
amplification of fluid waves, that also excite the viscoelastic coating, and its vibration can in
return modify the amplification of the fluid waves because of the off-diagonal coupling terms.
To better distinguish between these effects and thus shed light on the physical mechanism by
which the viscoelastic coating mitigates the growth of Tollmien-Schlichting waves and amplifies

60 : : : 6 60 : : : 0.3
a0} ] 40}
t 0 0
20} ] 20|
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cut at yo = 1 (in the fluid) cut at yo = —1 (in the solid)

Figure 5.26 — TSW wave propagation. Plot of transverse velocity cuts Re{u(z,y = yo) exp(iwt)}
in the (z,t) plane, for yo =1 (left) and yo = —1 (right).
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Figure 5.27 — Elastic responses to optimal fluid forcing in the TWF region. At the top, plot of the
response corresponding to the point & (2“d sub-optimal) in Fig. 5.23, where contour lines depict the
real part of the transverse velocity (dashed negetive contours) in the fluid (blue background color)
and in the solid (orange background color). At the bottom, plot of the corresponding rigid-wall
fluid forcing.

the travelling-flutter waves, we decompose the fluid-solid response as

()-8 (7))

where the first term g .4 is the optimal fluid response in the rigid-wall configuration, computed
from (5.4.4). The second term g ,,q is the solid deformation/velocity induced by the optimal fluid
response, that we define as the solution of

(iW%S - JZ{S) s rgd = <gsf s rgd- (548)

Finally, the third term in the above decomposition is the feedback fluid-solid response, solution of

the forced problem
. (P 0 s Gy Ts 0
_ = ) 5.4.9
(T 2)- (@ w@)) () - (aa) (549

This system is similar to (5.4.5) but the right-hand side forcing is the solid velocity/deformation
induced by the fluid forcing instead of the fluid forcing itself. Finally, the fluid response is composed
of two terms: the rigid-wall response g;,,q and the response r¢ induced by the coupling with the
coating dynamics. Similarly, the solid dynamics decomposes into the external excitation by the
fluid waves on the rigid-wall configuration, g .4, and the self-excitation response rs generated by
the coupling with the fluid. The above decomposition allows to clarify the input-output relation
between the forcing and the response, that writes as

-1
u= 2L { G (B, — ) Catiwhi— S}y Pt .

Depending on the forcing frequency, we see here that different resonances (fluid or solid) are likely
to be excited, resulting to the different peaks of response.

Wave-cancellation mechanism for the Tollmien-Schlichting instabilities

The attenuation of the Tollmien-Schlichting waves can be seen as a wave-cancellation process. A
representation of the different components of the above decomposition is reported in Fig. 5.28. The
rigid-wall pressure response (corresponding to the point O in Fig.5.21) is displayed in (a). The
solid vertical displacement induced by this optimal fluid response is displayed in (b). As can be seen
with the help of the dashed vertical lines, this component is out of phase with the fluid pressure.
This can be explained as follows: the forcing term 6yt g g in (5.4.8) corresponds to the pressure
and viscous stresses applied on the solid interface. The transverse component is dominated by the
pressure. Since this pressure excitation has a frequency that is away from the solid resonances
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Figure 5.28 — Decomposition of the coupled response in the TSW range. For a forcing frequency
w = 0.06, decomposition of the fluid-elastic response to the rigid-wall fluid forcing — displayed in
(d), between (a) the rigid-wall response q; .4, (b) the solid excitation by the fluid waves on the
rigid configuration g, ,,q and (c) the coupling components rs and r¢. Plot of the real part of the

pressure in the fluid and of the transverse displacement in the solid.
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(the considered frequency w = 0.06 is way below the smallest free vibration frequency in the solid
that appears at a frequency of about 0.19 — see in Fig. 5.16), the resulting solid acceleration is in
phase and the corresponding displacement, displayed in (b), is out of phase. Looking now at the
coupling components displayed in (c), we observe that they are almost out of phase compared to
the previous components. This phase delay, driven by the fluid-solid interaction and all the more
pronounced as & is small, yields to a wave cancellation effect. The superposition of (a,b) and (c)

results indeed in the attenuated response (d).

This attenuation is quantified more clearly by looking at the interface shear stresses reported
in Fig.5.29. The rigid-wall stress is depicted with the solid line, while the coupling component is
displayed with the dotted line. The sum of these two waves results in the attenuated fluid-elastic

response.
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Figure 5.29 — Wave-cancellation for TSW'’s attenuation. For a forcing frequency w = 0.06, plot of the
fluid-to-solid shear stress perturbation components at the interface (recall that A° = (o (u®,p°) +
a'(U, P,£2))n) decomposed according to (5.4.7): rigid-wall stress (——) obtained from g; .4, stress

of the coupling response (.. .) obtained from r¢, and total stress (=) obtained from g; (sum of the

two previous ones).
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Figure 5.30 — Decomposition of the coupled response in the TWF range. For a forcing frequency
w = 0.45, decomposition of the fluid-elastic response to the fluid-rigid forcing — displayed in (d),
between (a) the rigid-wall response g; .4, (b) the solid excitation by the fluid waves on the rigid
configuration ¢, ,,q4 and (c) the coupling components rs and 75. Plot of the real part of the pressure
in the fluid and of the transverse displacement in the solid.

Amplification mechanism for the Travelling- Wave Flutter instabilities

Let us now do the same analysis in the TWF range, as summarized in Fig. 5.30. At a frequency w =
0.45, the pressure response in the rigid-wall configuration is displayed in (a). The solid displacement
that results from this pressure wave is displayed in (b). We see here that the displacement is no
longer out of phase, a phase delay has appeared, driven by resonance effects (at the frequency
w = 0.45 many solid modes might be excited). Furthermore, the coupling components (c¢) computed
as the response to this solid excitation remain almost in phase with it. The coupling term largely
dominates over the rigid-wall solid excitation responses and is the main component of the coupled
response (d).

The shear stress components are reported in Fig.5.31. We see here clearly how the coupled
fluid-elastic response originates almost exclusively from the coupling term. On the contrary to what
was happening in the previous case, here an amplification mechanism provoked by the fluid-solid

- - --rigid-wall
Re(A;)

coupling response
fluid-elastic

| |
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Figure 5.31 — Wave-amplification for TWF. For a forcing frequency w = 0.4, plot of the normal
fluid-to-solid shear stress perturbation components at the interface (recall that A° = (o(u°,p°) +
a'(U, P,£2))n) decomposed according to (5.4.7): rigid-wall stress (——) obtained from g; .4, stress
of the coupling response (- --) obtained from ¢, and total stress (—) obtained from g; (sum of the
two previous ones).
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coupling is at play.

5.5 Fluid-elastic resolvent analysis

5.5.1 Fully coupled resolvent analysis

As seen in §5.4.2, if the dynamics for the Tollmien-Schlichting waves interacting with the flexible
coating are rather well described in terms of the response to a forcing determined in the rigid
configuration, this is not as much the case for the travelling-flutter waves. We therefore consider
here a combined fluid-elastic resolvent analysis. Namely, we seek for the optimal harmonic forcing

F(z,t) = f(z) e +cc.

of the fluid momentum equations, that produces in return a fluid-elastic response

qi(z, 1)\ _ (as(x) .
<q§(w,t)> = (qf(w)) exp(iwt) + c.c.

As a measure of the response, we still consider the fluid velocity like previously. This analysis
gives the worst-case scenario for the development of instabilities in the fluid, since we allow the
forcing to be distributed everywhere in the fluid, and measure the response everywhere in the fluid.
We did not include the solid region in the forcing nor in the response, because we are primarily
interested in the influence of the coating on the development of the instabilities in the fluid. Note
that including a solid forcing could make sense if one aims at determining the effects of external
solid vibrations on the development of the instabilities. Introducing this decomposition in the
linearised problem (5.2.8), we obtain

(0 0) - (@ e} (3) = () 631

which is very similar to (5.4.5), except that the forcing is now not known. The amplification gain
in now defined as

Gilw) = max [ul® with [l = [ |a’as. (5.5.2)
, f

where u = 225 ¢q; is the fluid velocity response. Introducing the fluid-solid resolvent operator

Prsi(w) = {iw <§(§)7S 9%f> - (ZZ chfsé?)) }_1 and T <L;f>

and following the same path as in §5.4.1, the optimal forcing is now solution of the eigenvalue
problem

(@fz‘i%fsi(w)'r@fsi @fz‘if%fsi(w)@fsi) f - 0'2fc (553)

5.5.2 Results

For the viscoelastic case & = 1, Dy = 0.2, the gain curve obtained by solving (5.5.3) is reported in
Fig.5.32, showing two large peaks of amplification (orange solid line), wile the sub-harmonic gain
reaches only a very much lower amplitude (orange dashed line). In this case, the instabilities in
the TWF region are more amplified than the TSW’s. In the TSW region, the fully coupled gain is
almost superimposed to that of the response to the optimal fluid-rigid forcing (see Fig.5.23). In
the TWF region, the fully coupled gain has its peak centred around the different peaks previously
obtained previously as a response to the fluid optimal and sub-optimum forcings.

The mode corresponding to the peak of amplification of the TSW’s shows similar features
(and in particular comes with the same amplification, and the same forcing/response structures)
as what was previously shows, and is thus not presented here. The mode corresponding to the
peak of amplification of the TWF instabilities is reported in Fig.5.33, and shows actually only
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Figure 5.32 — Fully coupled gain curve for the viscoelastic configuration. Plot of the optimal (—)
and sub-optimal (——) amplification gains determined in the fully coupled case, for the case with
Es =1and Ds =0.2.
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Figure 5.33 — Fully coupled optimal TWF forcing and response. Plot of the optimal forcing (blue-
red gradient, bottom) and response (contour lines, dashed negative, top) corresponding to the peak
of amplification for the TWF instabilities (point O in Fig.5.32).

little differences with the modes displayed in Fig.5.27. The main discrepancy is a larger space
separation between the region having a large forcing (located upstream) and the region having a
large response (located more downstream). A comparison of the forcings computed in the fluid-
rigid case and the forcing obtained in the fully coupled case is displayed in Fig.5.34. The fully
coupled case is displayed on top, while the forcings corresponding to the peaks of response to the
optimal fluid forcing is displayed below.

Finally, the structure of the wave propagation in the solid, for the peak of response in the
TWF range, is again visualised by taking snapshots of the solid deformation at different instants
regularly spaced in one period of oscillation. This is displayed in Fig. 5.35. In the region away from
the edges, we clearly see the downstream wave propagation with a constant phase speed. Edge
effects are visible in the vicinity of the right clamped end, on the form of a reflected wave that is
quickly damped.

5.6 Conclusion

Using an eigenvalue analysis and a resolvent analysis, the instabilities developing in a boundary-
layer flow over a viscolelastic coating have been characterized. The effect of the compliance of
the wall to the optimal forcing computed in a rigid-wall configuration was further investigated,
showing a different behaviour between the Tollmien-Schlichting waves and travelling-flutter waves.
In particular, it has been shown that the resolvent analysis should be performed in a fully coupled
way if one wants to characterize properly the latter instabilities.

It remains now to investigate how to effectively attenuate the TSW/TWTF instabilities. This is
the object of the last chapter.
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Figure 5.34 — Forcings. Plot of the forcing fields for (a) the fully coupled case, and (b) the case
corresponding to the peak of response to the optimal (b) fluid forcings. The streamwise component
is displayed in the left side and the transverse component in the right side.
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Figure 5.35 — Solid response to fluid-solid optimal forcing. Snapshots of the solid during an oscil-
lation period. The interface deformation is shown, while arrows indicate the displacement field,
coloured by the solid perturbation velocity magnitude (darker is higher)






COMPLIANT COATING STRUCTURE
OPTIMIZATION FOR BOUNDARY-LAYER
INSTABILITIES MITIGATION

Instabilities developing in a boundary-layer flow over a wviscoelasic compliant coating were
described in the previous chapter. We have seen that while decreasing the stiffness has a
stabilizing effect on the growth of the Tollmien-Schlichting waves, this also triggers solid-
based travelling-flutter instabilities. We use here an adjoint-based approach so as to design a
compliant material that damps the Tollmien-Schlichting waves and at the same time mitigates
the development of the travelling-flutter waves.
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170 6. Compliant coating structure optimization for boundary-layer instabilities mitigation

6.1 Introduction

We have seen in the previous chapter that Tollmien-Schlichting waves (TSW) are damped when
the stiffness of the coating is decreased. However, a solid-based instability, the travelling-wave
flutter (TWF), develops if the coating becomes too soft. This tradeoff calls for an optimization
approach.

Following the early attempts by Kramer (1960), many experimental approaches have tried
to reduce the drag with compliant surfaces, both in the context of turbulent (Choi et al., 1997;
Bandyopadhyay et al., 2005) and laminar (Gaster, 1988; Gad-El-Hak et al., 1984) boundary-layer
flows. Theses studies highlighted the need for highly compliant coatings (stiffness on the order of
1000 Pa to 10 MPa), often made practically as a combination of polymeric materials.

As early as in the work by Benjamin (1960), suggestions have been made so as to design
appropriate coatings for delaying the boundary-layer transition. Based on theoretical computations
relying on a modelling of the flow disturbances with the Orr-Sommerfeld equation, coupled to a
one-dimensional spring-backed plate model through normal loads, Carpenter (1993) estimated with
the eV method (Smith & Gamberoni, 1956; van Ingen, 1956) the potential benefits, in terms of
transitional Reynolds number, that could be retrieved from the use of soft walls. Using N = 7,
his best-performing compliant panel gave an increase of the transitional Reynolds number by a
factor 4.6. Considering two panels mounted in series, the gain reached a factor 6. Based on
this observation, he suggested that using a multi-panel wall, each tailored for a specific range of
Reynolds numbers, would probably produce the largest transition delay. Furthermore, it has been
observed by Lucey & Carpenter (1993); Davies & Carpenter (1997) that shorter panels are more
resistant to divergence and TWF instabilities. Carpenter & Morris (1990) investigated the effect of
material anisotropy, by adding a term that breaks the isotropy of the plate response with respect to
a flow reversal. This approach was intended for mimicking a fibre-composite anisotropic compliant
wall. They observed an almost ten-fold rise in transitional Reynolds number with the same value of
N = 7 than that used by Carpenter (1993). Furthermore, it is found that the optimal properties of
anisotropic compliant walls appear to be much less sensitive to the Reynolds number (the analysis
was local, though) than those corresponding to isotropic walls.

There have also been a few approaches considering a 2d model (but homogeneous in the stream-
wise direction) for the coating. Coupling an infinite-length multi-layer coating described by the
Navier equations with a pressure wave modelling the action of the fluid, Duncan (1988) showed
that a stiff upper layer delays the appearance of class A, B and C instabilities (see Fig.5.6). Al-
though his framework could have described an arbitrary number of layers, the study focused on
the two-layer case. Using the same type of solid model but an Orr-Sommerfeld equation for de-
scribing the fluid disturbances about a Blasius profile, Yeo (1988) studied the two-layer case but
also a four-layer case akin to the coatings from Kramer (same relative thickness for each layer).
He observed that using a thin and stiff top layer tends to stabilize the TWF but to destabilize
the solid-based instabilities. Furthermore, he noted that placing the stiff layer at a short distance
below the surface of a softer layer helped in obtaining an overall gain in stability. Damping in the
internal layer also appeared to be critical for the inhibition of TWEF. Also using a 2d Navier model
for the coating and applying the e/ method (N = 7), Dixon et al. (1994) observed an increase of
the transition Reynolds number by a factor 2.5 for a single-layer coating and by a factor 5 for a
two-layer panel.

The optimization approaches performed in the aforementioned papers all relied on an assump-
tion of homogeneity in at least one direction: homogeneity in the transverse direction for 1d
coatings models, or homogeneity in the streamwise direction for models using the Navier equation.
For both cases, layering (in streamwise or transverse direction) showed an increase in the tran-
sition Reynolds number. From these observations, one can expect that a fully non-homogeneous
optimized coating would show even greater transition-delaying properties.

We investigate here the transition-delaying properties of 2d, finite-length compliant walls, de-
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signed through an adjoint-based optimization process, in the framework of the resolvent analysis
presented in the previous chapter. After having briefly recalled the fully coupled resolvent anal-
ysis in section 6.2, in section 6.3 the method for computing the sensitivity of the instabilities
amplification gain with respect to the solid properties is presented. This allows to compute and
describe the structural gradients that indicate how to modify the solid properties so as to lower
the amplification gains. Finally, a gradient-based optimization is carried out.

6.2 Fully coupled resolvent analysis for the fluid-structure
problem

As mentioned above, it is reasonable to assume that the stationary flow does not deform the solid.
For that reason and like in the previous chapter, it will also be assumed here that a modification of
the structural parameters does not influence the stationary boundary-layer flow. This assumption
is valid as long as the real material does not undergo a static divergence instability that lead to a
strong static reconfiguration. We therefore consider here as a base state the boundary-layer flow
over a rigid plate, and study how a modification of the structural coefficients affects the dynamic
instabilities that develop in the fluid-elastic configuration over the fluid-rigid base state. More
precisely, we seek for local variations, i.e. from now on it is assumed that & = Es(x), Ds = Ds(x),
Mg = Mg(x). The forced fluid-structure problem is written under the form already described

previously,
@\ _f. (% 0O o Ce \\ [ 0
=<iw —
q5 0 % s Q) Py f°

Risi(w)

where Zpi(w) = (Iw%Bgi — i)' is the fluid-structure resolvent operator. In this formulation,
q° = (g5, q7) is the state vector gathering all the unknowns of the problem (fluid velocity w°, fluid
pressure p°, solid displacement £° and displacement velocity ug, solid pressure pg, plus extra ALE
variables). The momentum forcing f° is taken here as distributed in the whole fluid domain, since
we have seen that this provides a worst-case scenario in terms of perturbation amplification. Recall
that a prolongation operator & is introduced, that maps the forcing space to the full problem
space. By the same way, the response of the system is measured as the energy norm of the fluid
velocity perturbations, u°, which is deduced from the state variables by means of the extraction
operator 2T, that is,
u® = 25q;.

The optimal amplification gain G at a forcing frequency w is defined as the maximal ratio between
the norm of the response over the norm of the forcing in the forcing space (which in the present
case coincides with the response space), i.e.

G(w)? = max [[u°|?, with Hqsz/ |q|*d. (6.2.1)
If° =1 O

We have seen in §5.5.1 that the solution to (6.2.1) can be obtained by solving the eigenvalue
problem

(PR AL(w) P P8 Ralw) Prs) £7 = G2 £ (62.2)

that admits a set of real positive eigenvalues, since the left-hand side operator is hermitian. The
eigenvectors f7, normalized by || f7||; = 1, form an orthonormal basis of the forcing space. The

optimal gain is then the eigenvalue of largest magnitude, i.e. G = maxG;.

In all what follows, we take as a reference case the viscoelastic configuration with £ = 1 and
Ds = 0.2, described into details in the previous chapter. Recall that compared to the case with
a rigid wall, the amplification peak for the Tollmien-Schlichting waves (marked with a O symbol
in Fig.6.1) is reduced by 22.3%. However, very large amplifications have appeared at higher
frequencies, as a result of the development of travelling-wave flutter instabilities (the corresponding
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Figure 6.1 — Fully coupled gain curve for the reference viscoelastic configuration. Plot of the am-
plification gain G for the case with & = 1 and Ds = 0.2.

gain peak being marked with a O symbol). Because of the very general definition adopted for the
forcing (distributed in the whole fluid region), this case is very likely to constitute the worst-case
scenario for the amplification of the instabilities through perturbations in the fluid, and sets an
upper bound to them.

6.3 Gradient of the energy gain with respect to structural
parameters

6.3.1 Lagrangian formulation

The influence of the structural parameters (stiffness, damping,...) on the perturbation amplifica-
tion gain can be determined by computing the gradient of the gain G(w) with respect to these
parameters. The optimization problem is build by introducing the cost-function

F(E,.Ds, ) = (G(SS,DS,...) - Gt)2

where G; is some target value for the gain. We derive in this section analytical expressions for the
gradients, by using a Lagrangian technique first presented in the paper by Brandt et al. (2011) in
a pure hydrodynamics context. The amplification G is taken as the objective while the constraint
is given by the eigenvalue problem (6.2.2). It is then possible to apply the classical optimality
results from optimisation theory (Allaire, 2012). Since no explicit expression for % is available
(the resolvent operator is defined as an inverse operator), a direct differentiation of (6.2.2) is not
possible, therefore the problem is split between three sub-problems,

R () P ° = 0° Piaf® — (1w — ) a° =0
A Puia=a" = puolq - (—iwsl - off)e =0 - (631
Pia® =G f° Pra°—G2f°=0

Wy
(3

We have omitted here the subscripts “i”, it being understood that we consider only the largest
amplification mode. The adjoint variables q', a' and fT are introduced so as to construct the
Lagrangian function

X(quovao7foaqT7aT7fTagvaS7Ds) = (G - Gt)2
fT7 @g} ao _ G2f0>
(6.3.2)

+ <q*, P — (1w - msi)q°>

al, @fsi@gi q° — ( — iw%;rsi — sszli)a°>.
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In this definition, each (-,-) is the standard £? scalar product on the space where the arguments
are defined. Similarly to what was done in the chapter 4, the optimality conditions are obtained
by setting the derivatives of the Lagrangian function .Z to zero. Differentiating . with respect
to the adjoint variables q', a and fT give the state equations. Differentiating £ with respect to
the direct variables ¢°, a® and f° yields to the adjoint problems

P f - (iwe%’fsi - ﬂffsi)aT =0
P P al — ( —iwA, — gfle) g =0
@T

fsi

¢ -Gl =0

from which obvious solutions for the adjoint fields are obtained. Provided that ( ViR oy =1, the
adjoint variables are deduced from the direct variables as follows:

f=(1-%)r

a’ = (1 - cg) q° . (6.3.3)

6.3.2 Structural gradients

The derivatives of the Lagrangian function (6.3.2) give the gradients with respect to the parameters
of interest. For this computation, we shall only retain the terms that effectively depend on the solid
structural parameters, i.e. we focus on the sub-part of £ that depends on % and its adjoint.
Using (6.3.3) and the properties of the adjoint, we finally arrive to

7 = <qT,$27fsiqo> + <qO»'Q{fliqT> = 29%e<qT,=£fosiqo>-

The gradients are given by differentiating 2. The stiffness and damping coefficients only appear in
the solid stress tensor whereas the mass ratio is involved in the inertia term. We therefore obtain
the simple expressions

Ve G = 2%e[D(€°) : D ‘)], (6.3.4)

.
(ug)} : (6.3.5)
.

.fu/s:|’

where we recall that D(u) = 1/2(Vu + Vu®'). The expression of the gradients with respect to
the stiffness (6.3.4) and damping (6.3.5) is related to the gradients of the displacement response
£° and adjoint solid velocity response ul, while the gradient with respect to the density ratio (i.e.
the solid density since the fluid density is constant) depends directly on ul and £€°. The spatial
structure of the above gradients depends on the forcing frequency w, because the fields u} and £°
have spatial structures that evolve with the forcing frequency.

w
iw (6.3.6)

D(¢°) : D(u
VDSG:me[i D(¢°): D
VMSG:Me[( )2 ¢°

Remark. The derivation of the formula for the gradients is considerably simpler here compared to
the case of shape optimization considered in the chapter 4. The control parameters (stiffness, mass
ratio and damping) appear indeed explicitly as coefficients in the equations and differentiating
with respect to them is thus straightforward. In particular, there is no need for having to
determine the structure of the adjoint problem. It is therefore computed here at the discrete
level, using a matrix hermitian transpose operation.
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Figure 6.2 — Gradients at the TSW amplification peak (w = 0.055). The two graphs at the top
display the two components of the real parts of the solid displacement response (£°), with 30
contours (dashed negative). The two graphs in the middle display the real parts for the adjoint
solid velocity response (ul) with 30 contours (dashed negative). The opposite of the gradients are

shown at the bottom, scaled by their spatial 2-norm.

Gradients at the TSW peak

The streamwise and transverse components for the solid displacement response and adjoint solid
velocity response are reported in Fig. 6.2. For each of these components, the real part is represented.
The imaginary parts look similar, but out of phase. As already mentioned above, the components
for the displacement response show an amplification in the downstream direction, unlike the adjoint
response mode that displays an upstream amplification.

At the bottom of Fig. 6.2, the gradients with respect to a stiffness, damping and density vari-
ations are represented. Each field is normalized by its spatial 2-norm. The visualisation actually
displays the opposite of the gradient, that is practically more relevant, since it shows how to modify
the solid properties in order to lower the amplification gain. For instance, —V¢ G is negative al-
most everywhere, in accordance with the well-known stabilizing effect of a decrease of the stiffness
on the Tollmien-Schlichting waves (Carpenter & Garrad, 1985). By the same way, —Vp_ G is also
negative. This also makes sense, because damping is found to have a slight destabilizing effect
on Tollmien-Schlichting waves (Carpenter & Garrad, 1985). On the other hand, it is observed
that the density of the solid should be globally increased for stabilizing the Tollmien-Schlichting
instabilities, since —V x4, G is positive everywhere in the coating.

Looking at the spatial distribution of the gradients, a highly non-trivial structure is observed,
that displays a strong anisotropy both in the streamwise and transverse directions. In particular,
no clear evolution in the streamwise direction is observed, probably because the coating extends
only over a few wavelengths of the TSW’s. The gradients with respect to the stiffness and damping
show similar structures. In particular, the largest values are reached at the bottom of the coating,
between x ~ 90 and x ~ 120. The structure for the gradient with respect to the density looks
quite different. The largest values are reached in regions along a line y ~ —0.5, with a maxima in
x ~ 107.

Gradients at the TWE peak

Let us now analyse the gradients obtained at the peak of amplification for the travelling-flutter
waves. The streamwise and transverse components for the solid displacement response and adjoint
solid velocity response are reported in Fig.6.3. The antagonism between the direct and adjoint
modes appears even more clearly than before, showing the large amplification in the downstream
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Figure 6.3 — Gradients at the TWF amplification peak (w = 0.4). The two graphs at the top
display the two components of the real parts of the solid displacement response (£°), with 30
contours (dashed negative). The two graphs in the middle display the real parts for the adjoint
solid velocity response (ul) with 30 contours (dahsed negative). The opposite of the gradients are

shown at the bottom, scaled by their spatial 2-norm.

direction of the direct mode, and a large amplification of the adjoint mode in the upstream direction.

The opposite of the gradients are displayed at the bottom in Fig.6.3. In contrast to what was
seen before, the situation is reversed: the gradient prescribes an increase of the stiffness/damping in
order to achieve a stabilization of the travelling-flutter waves, in accordance to what is reported in
the literature (Carpenter & Garrad, 1985). Conversely, the density in the solid should be reduced.
Like previously, important edge effects are observed, while a more regular pattern is observed
between = =~ 60 and = ~ 90, probably because the characteristic length of the spatial structures
of the direct/adjoint response in the streamwise direction is smaller than before. Because of the
effect of flow advection, the structures are not exactly symmetric with respect to the mid-plane of
the coating at = 75.

Looking at the spatial structure for the gradient with respect to a stiffness variation, in addition
to the global trend towards an increase of the stiffness, a structure organized in layers is observed,
all the more marked as one is closer to the middle of the coating. The greatest variation of stiffness
is prescribed along a line at y ~ —2.2, then decreases above and below. Note also that the gradient
changes its sign close to the fluid-solid boundary (y ~ —0.3) but does not reach significantly high
values in this thin layer. This is in accordance with the results obtained by Yeo (1988): using a 2d
solid model composed of four layers of different stiffnesses (with homongeneity in the streamwise
direction) and the Orr-Sommerfeld equation for describing the fluid disturbances about a Blasius
profile, he showed that an overall stability gain for TWF instabilities can be achieved by placing
a stiff layer below a softer, thinner layer, placed in the direct vicinity of the interface.

6.4 Optimization of the stiffness distribution

We focus in this section on the stiffness distribution &s(x), keeping the other parameters Dy and
My constant, with Dy = 0.2 and Mg = 1. In a first part, an optimization that considers only
the travelling-wave flutter peak of amplification is performed. Then, a two-points optimization for
both the Tollmien-Schlichting and travelling-wave flutter peaks of amplification is considered.
The approach consists in a gradient-based optimization: at each step of the algorithm, the
three problems that form the system (6.3.1) are solved sequentially for each considered value of
the forcing frequency, allowing to compute the gradients with respect to the stiffness distribution
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using (6.3.4). Then, this distribution is updated, using a combination of the gradients computed
at the different frequencies.

6.4.1 Optimisation for TWF instabilities attenuation

In this section, we focus on the optimization for damping the TWF instabilites. The maximal gain
in the initial (non optimized) case reaches indeed G;(w = 0.4) = 2540, which is greater than the
maximal amplification for the TSW’s, while the gain for the rigid case is only Gyigia(w = 0.4) = 209.

Numerical settings

The goal of the optimization naturally consists here in reaching amplifications G(w = 0.4) that are
as close as possible to the amplification in the rigid case. We use the cost-function

F (&) = (G(Es,w = 0.4) — Gy)? (6.4.1)

where G is the target amplification gain. Note that here we kind of “optimize an optimization”,
since the gain G itself is found as being the optimal energetic amplification at a given forcing
frequency. In the present case, the optimization problem could then also be written as

2
min ¢ max |[u°|| -G, .
Es(@) | lIfel=1

w=0.4

The update rule for the stiffness distribution at iteration (k) of the algorithm is then defined as
follows:

(6.4.2)

Ss(k"‘l)(m) _ 5§k)(w) _ am(x) (1 Gt )B (VgSG(a:))(k)

S GW) (Ve &)@

The parameters o and (8 set the convergence properties of the optimisation procedure. Considering
the curve that expresses the gain as a function of the number of iterations, « basically sets the
slope at the origin (the greater «, the largest the decrease at the first iteration), while 8 sets the
asymptotic behaviour when G gets close to the target value G;. A mask m is applied in such
a way that the stiffness remains unchanged in the top right and left corners, namely m(z) =
1 —exp(—1.5(x — Ly)? — 0.59%) — exp(—=1.5(x — L, — Le)? — 0.59?%). The optimization loop is
stopped when the deviation between G and Gy is below 0.1 %.

Remark. An other relevant definition for the optimization problem could have been

min  max [u°|,
E (@) fell=t
Eg>EsMIN w=0.4

meaning that we simply want to find the smallest possible energy amplification under the con-
straint that the stiffness should be greater than some threshold £™™. Since both cases involve
in any case a tuning parameter, choosing between one or another formulation is essentially a
matter of taste. We have adopted the definition with the target gain because it allows to set
targets that can be easily compared to the rigid case (i.e. set G to % of the amplification in
the rigid case).

The convergence of the algorithm is presented in Fig.6.4.1, for o = 1, 8 = 1, and some values
of G;. The convergence speed is primarily affected by the distance of the target G; from the
amplification Gyigia(w = 0.4) = 209 in the rigid case. As represented in the plot in Fig.6.4.1,
9 iterations are required to converge to Gy = 2000 at a tolerance of 0.1 %, while it takes 180
iterations to converge to Gy = 250 (not represented for readability reasons). For the case G}y = 220
(amplification less than 5 % greater than in the rigid case) with same descent direction parameters,
it takes more than 6000 iterations.
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Figure 6.5 — Optimal stiffness distribution for damping the TWF peak. Plot of the stiffness distri-
bution & (x) inside the coating, for optimization target gains G; = 220 (top), G¢ = 275 (middle)
and Gy = 375 (bottom). The contour level marks the line & = 1.

Optimized coatings for damping the travelling-flutter waves

Maps of the stiffness E;(x) are reported in Fig.6.5 for three values of the target gain G;. In
accordance with what was inferred from the gradients, it is observed that a decrease of the target
gain is associated with a global increase of the stiffness in the coating: the variations of the
stiffness with respect to the initial case never go below —5 %, but reach more that +400 % for the
case Gy = 220. For cases Gy = 375 and G; = 275, the structure of the stiffness actually follows
what was already prescribed by the gradient Vg, G. In particular, we still observe the structure in
layers (as already mentioned, the favourable effect of a structure in layers was already observed for
instance by Duncan (1988) or Yeo (1988) on infinite-length coatings) as well as the more complex
edge effects.

We can now evaluate a posteriori how the coating optimized for the TWF instabilities at w = 0.4
behaves for waves at other frequencies, and especially in the frequency range of the TSW’s. To that
aim, we compute again the energy gain over the whole frequency range. The results are summarized
in Fig. 6.6, where the amplification in the range w € [0,0.8] is represented. The orange dashed
line represents the initial (non-optimized) case, while the blue dashed line corresponds to the rigid
case. The different circles represent the target optimal gain G; at frequency w = 0.4 reached after
the optimization loop (five target values are displayed, G; = 250, 500, 1000, 1500 and 2000), while
the solid lines of different colors represent the evolution of the gain in the frequency range.

In the TWF frequency region, one observes that the peak of maximum response is shifted at
higher frequency. This can be interpreted as a consequence of the increased average stiffness, that
also shifts the vibration frequencies to higher values. For instance, in the case G; = 500, the TWF
gain peak is shifted from G(w = 0.4) = 2540 to G(w = 0.445) = 759, i.e. a frequency shift by 11 %.
This higher-frequency peak is however in any case all the more damped as the target value G, is
low.

In the frequency range of the TSW instabilities, we observe an increase of the gain, as seen
in the insert on the left side in Fig. 6.6. The effect is all the more marked than G; is low. This
antagonist behaviour between TSW and TWF makes sense (and is emphasized by the arrows):
since the stiffness of the coating globally increases when G is reduced, one could have expected
an increase of the gain associated to the TSW’s. From G = 2390 in the initial case, the optimized
case for Gy = 250 yields to a peak of amplification for the TSW’s that is increased to Gopy = 2518.
However, the gain in the optimized case never reach the higher gain corresponding to the rigid
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Figure 6.6 — Single-frequency TWEF optimization, amplification in the frequency range. Plot of
the amplification curve as a function of the forcing frequency w, for a stiffness distribution &s(x)
obtained with a single-frequency optimization at w = 0.4. The thick solid line curve refers to the
non-optimized case (Ms =1, Ds = 0.2, & = 1), while the thin lines correspond to different target
amplifications at w = 0.4, varied between 250 and 2000. The left insert is focused on the TSW
region.

case. It is thus possible to almost completely kill the travelling-wave flutter instabilities and still
reduce the growth of the Tollmien-Schlichting waves compared to the rigid-wall configuration.

Comparison with an homogeneous variation of the stiffness

A natural concern is to know whether the optimized coating offers better performance than those
obtained by simply varying the rigidity of a homogeneous one. This is evaluated by looking,
for a given value of the peak of amplitude for the travelling-wave flutter instabilities, what is
the corresponding value of the peak of amplification for the Tollmien-Schlichting waves, for both
(homogeneous/optimized) cases.

We proceed here by computing the optimal forcing/responses in the whole frequency range
and reporting the peaks of amplification for both instabilities, first using the optimized coatings
described above, and secondly by considering homogeneous coatings having a uniform stiffness
varying between & = 0.8 and & = 2.

These results are reported in Fig.6.7. For both cases, the trade-off between TWF and TSW'’s
is observed: the lower the peak of amplification for the TSW’s, the higher that of the TWF
instabilities. These effects are furthermore not acting in a symmetric way, as seen by the decreasing
slopes of the curve as G(wrwr) is increased. Let us for instance consider the reference case where
Es = 1. A (homogeneous) decrease by 20% of the stiffness yields to a decrease by 4.7% of
the maximal amplification gain for the TSW’s, while in the same time the maximal gain for
TWF instabilities undergoes an dramatic increase by more than 1000 %. In that case, we have
observed that the configuration becomes actually globally unstable, and the presence of an unstable
eigenvalue close to the real axis induces a very strong response peak in the gain curve (Trefethen &
Embree, 2005). On the other hand, a decrease by 20 % of the stiffness (still homogeneous) yields to
an increase by 3.5 % of the TSW’s, while the TWF instabilities are damped by 72 %. This shows
how much more stiffness-sensitive are the TWF instabilities compared to the TS instabilities.

Evaluating the gain peaks for the non-homogeneous coatings obtained after optimization result
in a curve that is below that corresponding to the homogeneous coatings. This means that for a
given damping of the travelling-flutter waves, the non-homogeneous coating offers a slightly smaller
amplification of the Tollmien-Schlichting waves. The improvement is however rather small. This
quite marginal gain pushes for a more evolved optimization in which both the TWF and TSW
peaks are optimized.

FEvaluation of the layering effect

Before going further, we evaluate the influence of the “layering effect”, i.e. the tendency for the
optimization algorithm to generate, far from the side edges, a structure in layers aligned with
the streamwise direction. Namely, we investigate here whether edge effects are relevant or not
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Figure 6.8 — Single-frequency TWF optimization & post-processing streamwise homogenization. For
four target gains 250, 500, 1000, 1500 and 2000, (a) transverse cuts across the homogenized coatings
and (b) gain curve, where solid lines indicate the results obtained with a fully non-homogeneous
coating while dashed lines indicate the results for the homogenized coatings in the streamwise
direction.

in the process of wave attenuation. Considering the optimized stiffness £;(x) with respect to a
given target gain, an homogenized (in the streamwise direction) repartition &(y) = (Es(x)), is
computed, as a solution of the diffusion equation

208, (x))s )
7% = &(z) — (E(x))s in O
d(€s(@))e _

= 0 on 0§

where v > 1 is a large diffusion parameter. The average value of the homogenized stiffness matches
the average value of the initial stiffness distribution, but the minimum and maximal values are not
necessarily the same.

Cuts along the y directions for homogenized materials are displayed in Fig.6.8a. This one-
dimensional view of the stiffness allows to see more clearly the evolution of the stiffness when the
target amplification is decreased. Directly below the surface at y ~ —0.2 the minimal stiffness is
reached. It then increases monotonically until about half of the coating thickness, then globally
decreases, but not as low as the minimal value at the top layer (rather at about half of the maximal
stiffness). For cases with a low target gain, an slight increase of the stiffness is again found close
to the bottom edge of the coating.

The effect of the streamwise homogenization on the gain curve is represented in Fig.6.8b.
While the fully anisotropic cases are displayed with solid lines, homogenized cases are displayed
with dashed lines. In this latter case, the main features observed in the fully anisotropic stiff-
ness distribution are still present. The homogenized materials perform less good than the fully
anisotropic ones for the mitigation of TWF instabilities. In the insert that focuses on the TSW
region, one sees that the homogenized materials performs however surprisingly slightly better. The
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overall differences remain however small, and we can conclude that the damping of the travelling-
flutter waves is mainly achieved by modifying the stiffness in the transverse direction. In any case,
stronger streamwise effects would certainly be observed for longer coatings.

As a conclusion for this part, it is observed that an optimization run for damping the TWF
amplification peak is able to eliminate completely this peak, at the price of a slight increase of
the amplification of the TSW’s — that remains however still below that of the rigid-wall case.
The stiffness distribution that kills the travelling-wave flutter instability has essentially a structure
organized in longitudinal layers. The optimized coatings are all the more stiff than the peak should
be damped. The overall gain obtained with the non-homogeneous coatings is however rather small.
In the next section, we will therefore go a step further and perform a two-point optimization, so
as to try to damp the TWF instabilities without increasing the TSW amplification compared to
the initial case.

6.4.2 Combined optimization for TSW/TWF attenuation

We now consider the case where the coating is optimized for both TSW and TWF gain peaks (recall
that the maxima are found on the initial configuration with homogeneous & = 1 at frequencies
w = 0.055 and w = 0.4 respectively). The cost-function is then defined as

(&) = (G(gw —0.4) — GEWF)Q + (G(ﬁs, w = 0.055) — GESW)2 (6.4.3)

where the G;’s are target amplification gains for the peaks of response in TSW and TWF regions.
The update rule for the stiffness distribution at iteration (k) of the algorithm is defined here as a
weighted sum of the two individual gradients:

Gt B (VESGTWF>(I<) (VESGTSW)(k)
‘G<k>> { (Ve GTVE)®)| MQ(WSGTSW)(’“)II}’

EFHD (z) = £ () — m(x) (1

where the ratio between « and as allows to favour one or the other component. We took a1 = 1
and as = 50. A limiter is set on the values of the stiffness so as to prevent from reaching too
low values of the rigidity: the threshold is set to min&; = 0.1. During the update step in the
optimization loop, the updated stiffness distribution is rescaled in such a way that the values
below 0.1 lie between 0.09 and 0.1, where the actual value is determined by the departure from
the threshold £ = 0.1.

Optimization with G = 250

In a first time, we set GFfWY = 250, i.e. at an amplification 13 % higher than the rigid case at
the forcing frequency w = 0.4, or equivalently, 90 % lower than the amplification reached with
the initial configuration. Then, the target GFSW at the forcing frequency peak for the Tollmien-
Schlichting waves is decreased from 2500 (approximately the best-case scenario obtained with
the one-point optimization) down to 2390 (approximately the maximal gain of amplification for
the Tollmien-Schlichting waves in the initial case with an homogeneous stiffness distribution with
Es=1).

The gain curves obtained after optimization are presented in Fig. 6.9 for (a) GF5W = 2450, (b)
GTSW = 2410 and (c) GFSW = 2390. Like previously, for comparison the initial and rigid cases
are drawn with the dashed lines, while the insert in the left focuses on the TSW’s region. It is
observed there that it is possible to decrease the Tollmien-Schlichting amplification curve down to
its initial position when GFSW is set to 2390. The higher-frequency region however displays a less
regular behaviour. As GT5W is decreased, secondary peaks appear in the gain curve at frequencies
between 0.1 and 0.3. In addition to the very damped TWF peak that is still observed at higher
frequencies like in §6.4.1 (see in Fig.6.6), three secondary amplification peaks emerge from the
curve, particularly in (c). For values of GF'WF greater than about 2420, these secondary peaks are
almost not visible in the gain curve. Interestingly, the shifted TWF peak at higher frequency is
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Figure 6.9 — Two-points optimization with GfF = 250, gain curves. Plot of the amplification
curves as a function of the forcing frequency w, for a stiffness distribution &£;(x) obtained with
a two-frequency optimization with GfWF = 250 and (a) GF5W = 2450, (b) GF®W = 2410 and
GTSW = 2390. The thick dashed orange line curve refers to the non-optimized case Ms =1,
Ds = 0.2, & = 1) and the thick blue line corresponds to the rigid case, while circles indicate the
target gains.

even more damped than in the one-point optimization. For instance, let us consider the case (a)
with GFWF = 2450. The one-point optimization yields to a shifted peak for the TWF instabilities
with G(w ~ 0.5) = 361, while the two-point optimization yields to G(w ~ 0.5) = 300.

The stiffness distribution associated to the cases (a,b,c) is reported in Fig.6.10. In addition
to the layering effect already observed previously, we also observe reminiscences from the gradient
computed at the peak of amplification for the TSW’s (see in Fig.6.2), namely, zones of very
low stiffness in the lower left side of the coating, especially for the cases G5V = 2410 and
GTSW = 2390. For each case, we also notice the softer region in the direct vicinity of the fluid/solid
interface. When the value for the gain target is decreased, while the highest stiffness in the
optimized coating remains approximately constant, larger low-stiffness regions are found, which
are “thresholded” at & = 0.1 — otherwise the algorithm eventually generates negative stiffness
areas. Note that for these cases the convergence of the algorithm is altered, since we no longer
follow a true gradient descent.

Optimization with GF'" = 400

It turns out that allowing a slightly larger growth in the TWF region also allows a further decrease
in the TSW’s region. Namely, we consider here the case with GIWF = 400. The corresponding
results are displayed in Fig.6.11, for (a) GFSW = 2390, (b) GFSW = 2350. and GF5W = 2310. In
the present case, decreasing the target gain is followed by the emergence of one single secondary
peak located at frequencies between 0.2 and 0.3. If the target gain were to be further decreased, this
peak would dramatically grow. For instance with GFSW = 2260 the peak reaches an amplification
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Figure 6.10 — Two-points optimization with Gf V¥ = 250, stiffness distribution. Plot of the stiffness
distribution &;(z) obtained with a two-frequency optimization with GF VT = 250.
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Figure 6.11 — Two-points optimization with = 250, gain curves. Plot of the amplification
curve as a function of the forcing frequency w, for a stiffness distribution £(x) obtained with a
two-frequency optimization with Gf V¥ = 400 and (a) G7°W = 2390, (b) GF*W = 2350. and
GISW = 2310. The thick dashed orange line curve refers to the non-optimized case Ms =1,
Ds = 0.2, & = 1) and the thick blue line corresponds to the rigid case, while circles indicate the
target gains.
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Figure 6.12 — Two-points optimization with Gf V¥ = 400, stiffness distribution. Plot of the stiffness
distribution &;(x) obtained with a two-frequency optimization with GF"F = 400.
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Figure 6.13 — Response field after optimization. Plot of the real part of the transverse velocity
response field (lines) and of the stiffness distribution in the coating in the initial (top) and optimized
case (bottom) with GF5W = 2390 and GfW¥ = 400. The same contour levels are used in both
cases.

by more than 2500.

The overall aspect of the stiffness distribution still looks similar as before, as reported in
Fig.6.12. The maximal stiffness is however reduced and does not exceed 1.5. This makes sense,
since we have seen before that the TWF instabilities are all the more damped that the layering
effect is stronger. As the target is decreased, the low-stiffness area is found to extend more and
more upstream, like what could already be observed from the gradient with respect to the stiffness
in the TSW’s region.

Let us finally focus more specifically on the case (a) that offers the most interesting overall
performances : the amplification of the TSW’s does not exceed that of the initial case, while no
significant amplifications are found in the TWF region. After optimization, the structure of the
Tollmien-Schlichting waves are similar to those observed in the initial case, except that the spatial
growth in the streamwise direction is reduced. Let us focus on the travelling-flutter waves at the
forcing frequency w = 0.4. The real part of the transverse velocity response field in this case is
displayed in Fig.6.13. The initial (non-optimized) case is shown at the top, while the optimized
case is represented at the bottom. Note that a direct comparison for the two response fields is
not possible, since the corresponding forcing fields are not the same. Compared to the initial
case where the forcing is located upstream, in the optimized case it reaches high amplitudes over
the whole length of the coating. As already evoked before, the non-optimized case displays a
monotonic amplification in the streamwise direction. On the other hand, the optimized case comes
with unstable waves having a noticeable amplitude as soon as the beginning of the coating is
reached, but these waves are not amplified monotonically. A decrease of the amplitude is observed
between x ~ 50 and = ~ 90, then again an increase until the end of the coating is reached, where
the waves again fade out. There is actually a local growth in regions where the stiffness is reduced,
and conversely a local decrease of the waves amplitude in regions where the stiffness is increased.

6.5 Conclusion

In this shorter, last chapter, we have performed an optimization of the structural parameters of
the coating. In a first step we have presented the gradients of the energy gain for the Tollmien-
Schlichting and travelling-flutter waves, with respect to the stiffness, damping and density. Then
an optimization has been performed, focused on the distribution of stiffness in the coating.

The results obtained in the optimization part are summarized in Tab.6.1. In every case, a
balance has to be found between the damping of the TSW and the amplification of the TWF. In
all cases presented in the table, the TWF peak could be damped by at least 80 % compared to the
initial case. Equivalently, this corresponds to a TWF peak gain that is never increased more than a
factor two compared to the rigid case at the same frequency, where there is no TWF instability at
all. Focusing on the TSW maximal amplification, an homogeneous coating with £ = 1.42 allows
for a reduction by 17.1%. A small improvement is obtained by considering a non-homogeneous
coating optimized for the TWF peak only. Finally, the best compromise between a damping of
the TSW gain peak and a TWF “not-too-large” amplification results in a reduction by 22 % of the
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Stiffness TSW maz. gain TWF maz. gain(s)
Es = +oo (rigid) 3066 no peak

Es = 1 (homogeneous, reference) 2386 (—22.2%) 2543

&s = 1.42 (homogeneous) 2541 (-171%)  361(—85.8%)
GTWF = 250 2518 (—17.8%) 361 (—85.8%)
GTWF = 400, GT5W = 2390 2401 (—22.0%) 526 (—79.3%)

Table 6.1 — Summary of the optimization processes. For the Tollmien-Schlichting waves, the maxi-
mal gain reduction is compared to the rigid case. For the travelling-wave flutter waves, the maximal
gain reduction is compared with the initial case & = 1. The best-case scenario allows to obtain
the same damping of the TSW’s as that provided by the homogeneous material, without incresing
too much the TWF instabilities.

TSW peak, i.e. almost as good as in the initial, non optimized case that performed well for the
TSW damping but went with a dramatic amplification of the TWF instabilities.



CONCLUSION & PERSPECTIVES

7.1 Summary and main results

This thesis represents a step towards a very high fidelity modelling and control of the linear
dynamics of fluid-structure instabilities developing over stationary non-linear states.

Depending on the instability mechanisms involved, different methodologies are appropriate to
characterize this fluid-solid linear dynamics. Two numerical methods have thus been developed,
making it possible to investigate the long-term development of linear disturbances of a stationary
state (eigenvalue analysis) as well as the frequency response to external forcings (resolvent analysis).
Eigenvalue analyses are suitable for systems with an oscillator behaviour (typically, vortex-induced
vibrations). On the other hand, the stability of some other systems is rather driven by the way
they amplify external noise, in which case the resolvent analysis is adapted (typically, boundary
layers on flexible walls). These two approaches, commonly used for the study of hydrodynamic
instabilities, have been extended here to the fluid-structure case in order to be able to deal with
fluid-elastic instabilities.

After the presentation and validation of the numerical methods (chapters 1 and 2), two con-
figurations representative of the mechanisms evoked above were studied more specifically: the
vortex-induced vibrations of an elastic splitter plate clamped behind a cylinder (chapter 3), and
the boundary-layer instabilities developing on a finite-length compliant coating (chapter 5). For
both cases, adjoint-based optimization strategies were proposed so as to control the instabilities
(chapters 4 and 6).

Numerical methods

A first part of the thesis is dedicated to the development of a general approach for determining
non-linear stationary equilibrium states (chapter 1) and then investigating the linear dynamics of
fluid-solid perturbations developing around these steady states (chapter 2). The chosen modelling
consists in the monolithic coupling between the Navier-Stokes equations and hyperelastic solid
models. This approach, made without a priori approximations, makes it possible to determine
steady fluid-solid configurations where the flow is highly heterogeneous (separation and recircu-
lation zones, boundary layers) and the solid is possibly very deformed. The integration of all
couplings in the formulation then make it possible to accurately determine the linear stability of
these equilibriums, even in cases involving large added mass and strong viscous effects.

Both for eigenvalue and resolvent analyses, the key point is the derivation of an exact lineari-
sation of the fluid-structure operator. The method used (section 2.1) consisted in rewriting the
equations in a fixed reference domain, then linearising there, following a so-called “Lagrangian-
based approach”. The linearised problem then includes an arbitrary extension operator whose role
is to propagate the deformation of the interface into the fluid domain (non-local couplings). This
approach has already been used in the past in implicit fluid-structure time solvers, where it is nec-
essary to determine the Jacobian of the non-linear system to be solved. In these cases, however, an
approximate linearisation is often sufficient, since the prevailing criterion is above all the decrease
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in the non-linear residue. In the present case, a truly exact linearisation is necessary for the results
of the eigenvalue or resolvent analysis to be representative.

The eigenvalue analysis derived from this formulation was tested on three test cases representa-
tive of various fluid-solid interaction phenomena: the vortex-induced vibrations of an elastic plate
attached to the rear of a cylinder, the flag flutter instability, and finally the impact of the static
reconfiguration of a plate on the downstream vortex shedding (section 2.3). First, it was shown
that the eigenvalue analysis can robustly characterize instabilities: it reproduces the instability
thresholds observed in non-linear simulations, gives the correct linear growth rate of instabilities,
and makes it possible to estimate the frequency of vibration in the vicinity of the instability onset.
The practical interest of the approach is that instead of having to use time-marching simulations,
stability can be characterized by one single calculation of the eigenvalues of the linearised operator.
Based on the data in the literature, it has been estimated that a time saving of about a factor of
10 can be achieved.

In a second step, the Lagrangian-based approach mentioned above was compared to another
approach initially proposed by Fernindez & Le Tallec (2003a), referred to as an “Eulerian-based
approach” (section 2.4). This second approach is based on another way of linearising the fluid-
structure problem, which leads to an equivalent perturbation problem — at the continuous level
— to that obtained using the Lagrangian-based approach. This second formulation couples the
linearised Navier-Stokes equations to the elasticity equations via interface terms such as a velocity
transpiration and added stiffness terms: local couplings, but involving higher-order derivatives
of the stationary field. The equivalence between the two formulations was tested at the discrete
level in the simplified case of a Poiseuille flow between two flexible walls, for which the stationary
solution can be determined analytically. On the more complex case of the flag flutter instability,
it has been shown that the Eulerian-based approach poses numerical problems when a standard
discretisation using Lagrange finite elements is used. More precisely, we have shown the extreme
sensitivity of the results to the spatial discretization of the interface. These observations lead us to
express scepticism about the practical use of the Eulerian approach in its current state: although
being an a priori simpler formulation (that in particular does not rely on the non-local couplings
via the extension operator), for some cases it gives unreliable results. On the other hand, the
Lagrangian-based approach proved to be reliable in all cases considered.

Physical analysis and shape optimization of a cylinder-splitter plate configuration

A second part of the thesis deals with the physical analysis and control of a model problem
consisting of a flexible splitter plate attached downstream of a cylinder. It has been shown that
this configuration involves vortex-induced vibrations but also divergence instabilities, that interact
non-linearly to give rise to limit cycles of different natures depending on the rigidity of the plate.
The study of this problem is of interest for the understanding of some locomotion mechanisms found
in nature (Lacis et al., 2014), and is also a prototype for the passive control of wake instabilities
(Kwon & Choi, 1996) or, conversely, of energy-harvesting devices trying to exploit the energy
carried by these instabilities (Abdelkefi, 2016).

The chapter 3 focuses on the physical analysis of the system. First (section 3.3), non-linear
simulations are performed. At high rigidity, the system is stable and a stationary equilibrium is
observed. When the rigidity is reduced, a first unsteady regime is observed: the plate vibrates
at one single characteristic frequency around an average position aligned with the incident flow,
while an unsteady vortex wake develops downstream. For lower stiffness values within a certain
range, much lower amplitude vibrations are observed, around a deviated mean position that comes
with a non-zero mean lift. This regime ceases to exist at lower rigidities, where there are again
undeflected mean oscillations. Eventually, quasi-periodic oscillations are observed for the lowest
rigidity values investigated.

These non-linear results are then interpreted using the eigenvalue analysis, which allows to
determine the modes that develop during the initial, linear growth of instabilities (section 3.4).
First, it is shown that the rigidity threshold for which the first unsteady regime appears is perfectly
identified using this analysis, which also gives an excellent estimate of the observed non-linear
vibration frequency. The identification of thresholds between the different regimes with lower
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rigidities is more qualitative, because several unstable modes participate in the initial growth of
disturbances and give rise to different non-linear scenarios when they interact. The mechanism that
leads to a deviation from the mean position of the plate with lower stiffness could be associated
with unstable modes of static divergence (zero frequency modes). These bifurcations are associated
with two non-linear branches of deviated stationary equilibriums. These branches are determined
and the associated secondary instability is investigated. Finally, quasi-periodic oscillations are
associated with the presence of two unstable, unsteady modes, at distinct frequencies.

The chapter 4 discusses the control of unstable modes by optimizing the shape of the rigid
cylinder downstream of which the elastic plate is attached. The originality of the approach lies in
the fact that the cost function to be minimized includes the growth rate as well as the frequency of
the unstable fluid-solid mode. An analytic formula for the shape gradient of this objective function
is determined using an adjoint approach, based on the derivation of the continuous fluid-structure
adjoint equations. Two types of unstable modes are then studied. A first mode (F) is related to
wake instabilities, while a second mode (S) is more related to the fluid-solid coupled dynamics. For
these two types of modes, the shape gradients are detailed. Integrated into a descent algorithm,
the successive shape gradients first allow to determine optimal shapes that suppress instabilities
for modes (F) and (S). The optimal shapes are relatively similar in both cases — a flattening
of the cylinder in the transverse direction, which reduces both the apparent Reynolds number
(smaller section) and moderates the detachment leading to vortex shedding. More unexpected
results are obtained when trying to determine shapes giving rise to unstable modes beating at a
control frequency (thus designing kind of a fluid-structure oscillator): it is first shown that the
structure of the mode (F), even modified by the shape of the cylinder, does not allow to obtain a
mode having a frequency independent of its growth rate. On the other hand, it is possible to vary
the frequency of the mode (S) within a certain range, while setting the growth rate at a slightly
positive, fixed value. “D-shaped” cylinders are obtained when trying to increase the frequency,
while a “C-shaped” cylinder decreases it.

Physical analysis and structure optimization of compliant coatings for
laminar-turbulent transition delay

The last part of the thesis is dedicated to delaying the laminar/turbulent transition by Tollmien-
Schlichting waves in a two-dimensional boundary layer by means of a viscoelastic, finite-length
compliant coating, a quest that has been the subject of constant research since the 1960’s and the
surprising experimental observations by Kramer (1960). Delaying the transition is definitely of
practical interest, in that it reduces the overall drag and thus the energy spent for locomotion.

Chapter 5 deals with the physical analysis of instabilities. First, the complex dynamics of
the viscoelastic patch alone, modelled as a linearised neo-Hookean incompressible material, is
analysed, making it possible to identify which vibration modes are likely to interact with the
waves in the flow. In particular, the dispersion relation in the case of a patch of infinite length is
related to the vibration modes of a patch of finite length. The fluid-solid coupled modes are then
determined for different patch stiffness and viscoelastic damping parameters. In addition to the
stable low-frequency modes, traditionally associated with Tollmien-Schlichting waves, the fluid-
solid interaction modifies the growth rate and frequency of the solid vibration modes located at
higher frequencies in the form of the so-called travelling-flutter waves. In particular, in absence of
viscoelastic damping, these modes can become globally unstable. If sufficient damping is provided,
all modes are stable. Nevertheless, the noise amplifier behaviour of the boundary layer means that
waves can be amplified even in absence of an unstable global mode, and the resolvent analysis is
then adapted.

For the first time, this analysis is applied to the case of a 2d boundary layer flow developing
over a viscoelastic patch of finite length and modelled by elasticity equations. The optimal forcings
— representative of the worst-case scenario in terms of external disturbances such as noise or gusts
— that lead to maximum amplification of the energy of the disturbances are first determined, in
the case of a rigid configuration, that is, in the classical case of a boundary layer on a rigid wall.
The fluid-elastic response to these optimal perturbations is then calculated, and highlights the
extent to which the presence of the patch modifies the growth of instability waves. In the case
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of Tollmien-Schlichting waves, the optimal forcing in the rigid case is also the forcing that gives
the greatest response in the fluid-elastic case, while suboptimal fluid-rigid forcings also result in
suboptimal responses in the fluid-elastic case. In addition, amplification in the fluid-elastic case
is reduced, compared to the rigid case. On the other hand, both optimal and suboptimal forcings
give high responses in the frequency range of travelling-wave flutter instabilities. This observation
therefore pushes for determining both the optimal forcing and responses in the fluid-elastic case.
In this latter case, the resolvent analysis clearly shows two marked response peaks, one at low
frequency, related to Tollmien-Schlichting waves, and the second in the frequency range of the
travelling flutter waves. The antagonist effects of the stiffness on the two types of instabilities can
then be analysed quantitatively. It is shown in what extent decreasing the rigidity of the patch
effectively reduces the growth of Tollmien-Schlichting waves. Large amplifications unfortunately
appear in the frequency range of travelling-flutter instabilities, cancelling in practice the expected
beneficial effects.

In view of these antagonistic results, it is tempting to determine an optimal material that would
make it possible on the one hand to dampen Tollmien-Schliching waves, while on the other hand
preventing the development of travelling-wave flutter waves. The purpose of the last chapter is on
how to do it. Again based on the adjoint formalism, the gradients of the local properties of the
material (density, damping, stiffness) with respect to the energy amplification rate of the waves
are determined. After having presented the different gradients, the focus is on studying the effects
of a change in the distribution of rigidity. First, optimal materials are determined with respect
to the growth of travelling flutter waves only. A relatively marginal gain compared to using an
homogeneous material is observed. A combined optimization is then carried out, which takes into
account both Tollmien-Schlichting and travelling flutter waves. In this latter case, it was possible
to reduce by 22 % the growth of the Tollmien-Schlichting waves while keeping in the same time
the amplification of the travelling-flutter waves at low values.

7.2 Perspectives

In order to definitely conclude this work, let us finally give some ideas of further developments.
Four main topics are given, that could provide a basis for future works.

Development of an appropriate numerical discretization for the Eulerian-based
linear stability approach

The Eulerian-based linearised approach initially proposed by Fernédndez & Le Tallec (2003a) was
disappointing from a numerical point of view: on the benchmark cases presented in section 2.4, we
have highlighted its extreme sensitivity with respect to the spatial discretization in the vicinity of
the interface, and the resulting poor mesh convergence properties. Although simpler from the point
of view of the formulation, its practical implementation therefore remains delicate and uncertain.
However, there are situations where the Eulerian-based approach gives very satisfactory results;
for example, on the case of the boundary layer developing over a flexible coating, treated in the
chapters 5 and 6, we have observed that the Lagrangian-based and FEulerian-based approaches
give very similar results. It would therefore be fruitful to investigate further the numerical and
mathematical aspects related to this latter method (which seems actually to be an ongoing process,
see Bociu et al. (2015)), in order to determine to what extent (e.g. through specific finite elements,
or a particular spatial discretization) and at what computational cost a convergence could be
guaranteed in all situations.

Compared to the Lagrangian-based method, which requires non-local couplings via the exten-
sion operator, the Eulerian method offers indeed a more natural alternative from the point of view
of the physical description of the couplings. Their action at the interface via the transpiration
velocity and the added stiffness terms makes them easier to interpret, and avoids having to use an
extension operator. In addition, one can hope that the corresponding adjoint problems would also
be of a simpler form than that derived in the Lagrangian-based framework.
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Application of the linearised fluid-elastic formulation to the design of reduced
state-space aeroelastic models

An alternative formulation of the linear stability problem was briefly mentioned in §2.1.3. It
takes the form of a solid vibration problem with a second member that represents the fluid forces
modified by the fluid-solid interaction, i.e. the feedback of the solid on itself, via the fluid. From a
linear problem of fluid-solid stability, this results in a non-linear solid vibration problem that can
be further reduced to a very small dimension by means of modal projection.

In the context of aeroelasticity, the special form of this feedback loop is often unknown, since
the modelling relies a priori on simplifed models. The aerodynamic forces are often determined by
means of semi-empirical approaches: the fluid effect is modelled using, for instance, added mass,
stiffness and damping coefficients, as well as non-linear time-delay terms (Karpel, 1982). In these
models, the coefficients are unknown and must be estimated by means of fitting approaches based
on time-marching simulations, or by comparison with experimental results.

The presently developed approach enables in some sense to reverse the direction of the mod-
elling: since the exact form of the non-linear feedback loop is known, an appropriate asymptotic
development of this loop allows indeed to recover the simple aeroelastic models evoked above. This
approach was for instance adopted in §3.6.2 for the study of the divergence instability that devel-
ops in the cylinder-splitter plate configuration. Preliminary tests conducted on the occasion of a
Master’s internship (Lambrechts, 2018) have shown that this analysis can be successfully extended
for analysing flutter instabilities. The practical interest of this approach appears clearly: instead
of having to estimate parameters, they could be computed directly from an appropriate expansion
at the desired order of the non-linear solid-to-fluid-to-solid feedback loop.

Shape optimization of deformable fluid-solid interfaces, application to the
mitigation of flutter modes or to the maximization of energy transfer in energy
harvesters

The most interesting and straightforward extension of the work on shape optimization would be to
consider the optimization not only of the rigid part, but also of the elastic part of the object. From
a practical point of view, this extension only requires to evaluate an a priori more complex gradient
formula. Provided that the deformations remain small, it would probably not be too much of an
inconvenience to rely on the approximate adjoint problem. It could even be sufficient to use the
formula derived for an optimization of the rigid part, if such approximate gradient were to be a good
enough approximation. For example, one can imagine an optimization case where the objective
function focuses on unstable wing flutter modes. Thanks to the fully coupled approach, complex
instabilities (i.e. with large detached areas) can be addressed. In an aeroelastic context where
the structural displacements are usually small, the approximate-adjoint method would probably
be applicable to a wide range of problems.

Finally, in the context of energy harvesting devices, shape optimization could also be used
to “tune” resonance frequencies so as to maximize the energy transfer, using the same kind of
approach than what was presented for the design of the “fluid-structure oscillator”. In this latter
case, it should be borne in mind, however, that if non-linearities are predominant, then the linear
analysis will result in unrepresentative results. In that case, one could eventually try to combine
the present framework of shape optimization with non-linear approaches such as harmonic balance
or time-spectral methods.

Study of the non-linear regime of the boundary-layer instabilities above the
compliant coating & further optimization insights

While the optimization presented in the chapter 6 was found to be able to mitigate the development
of the instabilities in the boundary-layer flow over the compliant patch, there are still many things
that can be improved. First, better performances would certainly be attained by considering an
optimization with more than only two frequency points. This might hopefully prevent from the
emergence of secondary amplification peaks at other frequencies. In addition, the optimization
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problem could also be formulated more simply as finding the minumum of amplification, with
some inequality constraint on the stiffness indicating that is should remain inside some realistic
range. Finally, choosing a solid model that is more representative of a real viscoelastic material
would certainly add constraints between density, damping and stiffness. Since we were not aware
of the precise nature of these relations that strongly depend on the material characteristics, the
simplest possible case was considered, but more realistic cases would certainly be more relevant.

In addition, the analyses carried out here have only focused on the linear regime of instability.
However, it is well known that the non-linear transition begins as soon as the velocity of the
disturbance waves reaches on the order of a few percent of the free-stream velocity. While it is
clear that the damping of Tollmien-Schlichting waves conferred by the presence of the patch can
only be beneficial with regard to the non-linear transition; the effect of travelling-flutter waves
is less clear: indeed, although they can give rise to very high amplification rates or even become
globally unstable, these waves do not survive downstream to the patch. Therefore, one can wonder
in what extent these unstable waves impact the flow more downstream. It would also be interesting
to find an estimate of the transition Reynolds number corresponding to the optimized coatings,
for it would give a more practical measure of the benefits that can be actually obtained.



RESOLVENT vs EIGENVALUES

Despite the apparent complexity of fluid-structure instabilities, some typical features can be ob-
served in systems as simple as two coupled one degree of freedom oscillators. This simplicity is
exploited here to present the resolvent and eigenvalue analyses, without having to cope with all
the technical difficulties that come with models having many degrees of freedom. Namely, we use
here a simple model inspired by the one used for instance by Facchinetti et al. (2004) for studying
vortex-induced vibrations, or Schmid & de Langre (2002) for modelling transient energy growth in
coupled-mode flutter instabilities. The “fluid” is reduced to a forced Van der Pol equation

d?qs dgr

dgs
Frol +2npwe (1 — agf) n + wiq(t) = Ags+ B at + f(%) (A.0.1)

where ¢r would be representative of an integrated lift coefficient (Facchinetti et al., 2004). The
real constants A and B represent respectively displacement and velocity couplings with the solid
variable gs, while the forcing f(¢) represents an external source of disturbance (akin to turbulence,
gusts, etc.). Finally, a is a parameter that controls the non-linear effects. When the vibration
amplitude is low, (A.0.1) behaves as a simple damped oscillator. When the amplitude is increased,
the damping is reduced and can eventually lead to a self-sustained non-linear amplification. The
“solid” is a simple harmonic oscillator
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that is forced by the fluid with an amplitude M whose value would be akin to the solid-to-fluid
density ratio. Note that using modal projections (de Langre, 2002), the linearised solid equation
derived in the section 2.1 can be turned into this very simple form.

Linear equations describing small-amplitude perturbations (gf,q.) about the obvious steady
equilibrium position (0, 0) are obtained here by simply neglecting the non-linear term in the “fluid”
equation (A.0.1). Introducing the state vector ¢’ = [ds, gs, dt, gs] *, the linearised problem writes on
the form of a first-order differential problem

+wigs(t) = Mai(t) (A.0.2)

{ dd%' =Aq +Pf(t) for t>0 (A.0.3)

q'(0) = qq

where gf, is the initial state, and the system matrix A and the prolongation matrix P write as

0 —w? 0 M 0
1 0 0 0 0

A= B A —2puwr —w? and P = 1 (A.0.4)
0 0 1 0 0

The matrix A can be decomposed in an upper left 2 x 2 block describing the solid dynamics,
a lower right 2 x 2 block describing the fluid dynamics, plus off diagonal blocks that represent
the couplings. As a measure of the perturbations, we will consider the “energy” of our simplified
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fluid-structure system. Following Schmid & de Langre (2002), for sake of simplicity we define this
energy as the 2-norm of the state vector. We shall then try to elucidate the behaviour of the energy
gain

g’ ()13
g(ty? = 12Ol (A.05)
lg’(0)113
where || - ||2 is the standard 2-norm for vectors, as a function of the fluid parameters wy and 7y,

the solid parameter wg and the coupling parameters A, B and M, but also investigate the effect of
the external forcing f. This ratio is physically relevant, because it indicates if, for a given energy
input, the system amplifies or dissipates the initial energy release — an energy amplification being
associated to the growth of an instability (Schmid, 2007).

Since the perturbation problem (A.0.3) is a simple first-order ordinary differential equation, its
solution can be computed explicitly, as

t
qt)=e"q)+ / DA P f(r)dr. (A.0.6)
0
This general solution is composed of two terms. The first one is the response to the initial condition
— and is also the only one when f = 0. The second part is the forced response that encloses all
receptivity effects, i.e. how the system reacts to external disturbances. The linearity of the problem

allows to study the two effects separately.

Remark. In problems involving incompressible flows, after space discretization of the problem
the time derivative writes rather like B dq’/dt, where B is a singular operator (no temporal
dynamics is associated with the incompressibility constraint, which results in as many zero lines
in B as there are degrees of freedom to represent the continuity equation). In that case, (A.0.3)
becomes a differential-algebraic equation (Brenan et al., 1996) and the formula (A.0.6) no longer
holds directly because it would require to compute the inverse of B, which is singular. However,
the problem is not fundamentally different (at least in a conceptual point of view, the story is
much different when it comes to solve practically the problem), since it is possible to eliminate
the pressure from the system by solving a Poisson equation. For simplicity, this case is not
considered here.

A.1 Temporal, modal stability analysis

We first address the case where f = 0, and investigate the behaviour of the linearised system.
From (A.0.6), the maximal energy gain that can be reached by the system write as

lexp(tA) q'(0)[3 o
7o+  [q(0)[3

In the next two subsections, we analyse the time-asymptotic behaviour of this energy gain, then
emphasize the transient non-normal effects that might occur at finite-time.

G(t)? = | exp(tA)]2. (A.1.1)

Asymptotic behaviour at large time

An upper bound to energy amplification can be derived by introducing the eigenvalue problem
associated to (A.0.1) and (A.0.2), that is obtained by seeking for so-called normal modes q' =
Re{q° exp(At)} in (A.0.3) with f = 0. We obtain an eigenvalue problem

Aqj=);q5, (A.1.2)

where the (complex) eigenvalues \; determine the temporal amplification and frequency of the
modes g;. Noting V = [q%, ..-q5], where n = 4 is the size of the problem, it holds that A = VDV!
where D is a diagonal matrix containing the eigenvalues of A, i.e.! D = Diag(\1,..., \n). The

Hor simplicity, we have assumed here that there are n eigenvalues with geometric multiplicity 1. When it is not
the case, D can only be reduced to a block-diagonal matrix where each block is a so-called Jordan block containing
the degenerate eigenvalue on the diagonal and 1 in each entry of the superdiagonal. We refer the reader to the book
by Trefethen & Embree (2005) for the specific treatments required in this case.
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Figure A.1 — Spectrum. Eigenvalues of the fluid equation (A.0.1), of the solid equation (A.0.2) and
of the coupled problem, for ws = 1, wf = 0.8, nr = 0.02, M = 3, A = 0.2 and B = 0.001. All
eigenvalues lie here in the stable region A" < 0.

energy gain can then be written as G(t)? = ||V exp(tD)V™!||?, and noting A the eigenvalue with
the largest growth-rate (i.e. the largest real part), we obtain (Trefethen & Embree, 2005)

G2 < |[VI2IV 2 exp(2Re(\)t) Vi 0. (A.1.3)

From this bound, we immediately notice that if Sie(A\) < 0, than an exponential decay to zero
is expected for the perturbations when ¢ — 400, whatever the initial condition is. When on the
contrary fe(A) > 0, another bound obtained by the same kind of arguments show that the energy
gain grows exponentially to infinity.

Let us give an example with our simplified fluid-structure model. A typical spectrum with only
stable eigenvalues is represented in Fig. A.1. The solid problem (A.0.2) has two pure imaginary
eigenvalues +iwg: there is no attenuation nor amplification mechanism in the solid, which yields
to marginally stables modes oscillating at frequency ws. In absence of viscoelastic damping, these
features are recovered in more complicated solid models — the only fundamental difference being
that instead of having one single mode, elastic solids usually display a discrete set of vibration
modes. The homogeneous fluid problem obtained from (A.0.1) has complex eigenvalues we(—nf +
i(1— nfz )1/ %) with a negative real part when 7 > 0: a decay to zero of the perturbations is expected
when ¢t — oco. More realistic fluid models present a much more complicated spectra, that is
composed of branches of modes as well as continuous regions when boundary conditions are set on
an infinite interval (Luchini & Bottaro, 2014b). Nevertheless, for bounded wake flows for instance,
the least stable mode often appear as an isolated mode. The coupled modes have a much less
simple expression, and depend on the different coupling parameters. In Fig. A.1 the spectrum for
orws =1, wr =08, nr =0.02, M =3, A= 0.2 and B = 0.001 is represented. Four complex-
conjugate, stable eigenvalues —0.0071 4 1.27i and —0.0088 + 0.157i are obtained, indicating that
the linear response should decay to zero as time goes on. Note that a stable fluid and a marginally
stable solid can also result in an unstable coupled system for values of other coupling parameters.

Non-normality and transient growth

The eigenvalue analysis overshadows an important effect. Even if the energy gain decays down
to zero when ¢t — oo, in (A.1.3) the term ||V|||[V ™| can still be large, thus allowing for a large
linear amplification of the energy at finite time horizon even if PRe(\) < 0. Since large-amplitude
perturbations might trigger non-linearities present in the non-linear model, in some cases the eigen-
value analysis completely fails to predict the observed behaviour, because a non-linear transition
occurred through a linear energy amplification at finite time horizon. The value that this latter
term can reach depends on the normality of the evolution operator, i.e. whether it commutes or
not with its adjoint operator. For finite-dimension problems and with the Euclidian scalar product,
the adjoint L of an operator L is defined by the identity

(@)" (Lay) = (L'q})" (¢4) Vdi.ah eR™,

that is to say, L' = L where H is the hermitian transpose operator (transpose-conjugate). When
the system is self-adjoint, i.e. when LLY = LYL, then the eigenvalues of L form an orthonormal
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Figure A.2 — Response to initial conditions. For ws = 1, wf = 0.8, nr = 0.02, M = 3, A = 0.2
and B = 0.001, linear response (black line) and non-linear response (gray lines, with non-linear
constant a = 0.5) to initial conditions (a) ¢(0) = [0,1,0,0]T and (b) ¢(0) = [0.6,0,—0.8,0]T. The
bound given by (A.1.3) is represented with the dashed line.

basis: V can be taken unitary and so |[V|||[V™|| = 1. In that case, knowing the eigenvalues is
sufficient to describe the linear dynamics of the system (Trefethen & Embree, 2005). When it is
not the case however, ||[V||[[V™!|| > 1 and transient growth might occur.

Remark. The normality of a problem depends on the space on which it is defined and on the scalar
product used. In particular, Farrell & Ioannou (1993) showed that any problem can be turned
into a normal problem, provided that the scalar product is changed accordingly. However, for
practical applications, the scalar product has better to be defined as a physically relevant measure
of the system (typically, the corresponding norm gives the energy).

Let us now come back to our simplified model. With the Euclidian inner product chosen, the
adjoint operator is simply the transpose matrix, i.e. AT = AT, Looking at (A.0.4), we are easily
convinced that the problem is non-normal, and thus transient growth might occur. An example
of non-normal energy amplification is given in Fig. A.2. The plot on the left shows a case where
an initial condition of norm unity q(0) = [0,1,0,0]T does not yield to any energy amplification,
even if the energy upper bound (represented in dashed line) allows for an amplification up to by
a factor 225. As a consequence of this decrease of energy, no instabilities are triggered in the
non-linear problem and the curves corresponding to the linear and non-linear problems almost
overlap. On the contrary, Fig. A.2b displays a case with another norm unity initial condition
q(0) = [0.6,0,—-0.8,0]T, that results in an appreciable transient growth (note the scale of the
y axis). Shortly after ¢ = 0, an energy amplification by a factor 80 is observed, that triggers
the non-linearities: if the linear signal decreases down to zero as expected from the eigenvalues,
the non-linear response is amplified with time. We are here in a typical case were eigenvalues
completely fail to predict what is going to happen non-linearly.

A.2 Frequency response analysis

We now focus on the second term in the linear response (A.0.6). Although the formula (A.0.6) is
valid whatever the temporal forcing f (time-harmonic, impulsive, stochastic, etc.), we will consider
here only the case of a time-harmonic forcing. A Fourier transform for f and q’,

—+oo +oo

fo(w) = / f(t)etdt, q°(w) = / q (t)etdt

oo — 00

yields to a formulation of (A.0.3) in the frequency space. Introducing the resolvent operator
R(w) = (iwI — A)~1, it can be written as an input-output problem,

q° = (iwl — A)"'P f°. (A.2.1)
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Figure A.3 — Frequency response & pseudospectra. (a) Plot of the gain curve for an harmonic forcing
at frequency w, for the fluid-alone (dashed blue), solid-alone (dashed red), and coupled operators
(solid line). (b) Pseudospectra of the system in the complex plane. The isocontour R = 10 is
represented in dashed red and blue lines for the solid and fluid-alone operators respectively. Iso-
contours with levels 10, 100, 1000 and 10000 are represented for the coupled system, and the solid
(red triangles), fluid (blue squares) and coupled (black cross) eigenvalues are also represented.

The receptivity processes can be quantified by evaluating the response-to-forcing gain

lg°llz _ -1
H(w) = %3&% ol [(iwI — A)""P|. (A.2.2)
On the contrary to the energy gain G(t) defined in (A.1.1), H(w) is not a ratio of root-squared
energies but the ratio between response and forcing norms. Like before, computing H amounts to
compute an operator norm (which is here actually the 2-norm of the vector (iwl — A)~'P because
P is a n x 1 matrix).

Several effects can contribute to an amplification in the frequency space. The most obvious
effect comes from the resonance with eigenvalues: H(w) is all the more large that iwI— A is close to
be singular. This can be observed in Fig. A.3a, where the amplification for the solid operator alone
is represented in red dashed line. When the forcing frequency approaches ws = 1, R(w) — +00
because iws is an eigenvalue of the block of A that corresponds to the solid problem. A resonance is
also observed for the fluid operator at frequency close to wy = 0.8, but the amplitude remains finite
because of the damping that shifts the eigenvalues of the fluid operator towards the left side of the
complex plane. Without non-normality effects, the amplitude of the response is entirely dictated
by the distance of the eigenvalues from the imaginary axis: the response should be all the more
damped that they are far from it. This is not what is observed for the coupled case. Although
in Fig. A.1 the low-frequency complex-conjugate eigenvalue has a smaller growth-rate than the
high-frequency eigenvalue, in Fig. A.3a the response is more amplified at lower frequencies. Again,
this is an effect of the non-normality of the coupled operator.

A more general overview of non-normality effects can be appreciated by looking at the pseu-
dospectra of the system, i.e. the contour lines |[(A — oI)7!|| = cst. It is represented in Fig. A.3b.
Dashed lines indicate the contours for the solid-only and fluid-only problems. These contours are
almost perfect circles, indicating that the system behaves as an almost perfect normal system (Tre-
fethen & Embree, 2005). On the contrary, the fluid-structure pseudospectra exhibits a protrusion
along the real axis, that is the signature for an over-amplified response. Note that the curve in
Fig. A.3a is a cut along the imaginary axis of the contour plot presented in Fig. A.3b.






F1LUID-SOLID BLOCK OPERATORS
EXPRESSION

B.1 Non-linear fluid-solid equations

Three-field formulation: for ¢, = (£,4.), ¢, = (£.,Ac) and §; = (@, p, \), the three-fields

formulation of the ALE fluid-structure problem reads

s 0 0 ) 4 A(q)+Itdr \ [ 4
0 0 & de = —JZ{e ‘je + jes ‘is (je )
0 —c?Afe(Qf, ﬁe) ‘7}([1\9) qf jfs ‘fs + </Vf‘(df7(je) df

T () Msi (@)

and without the solid velocity augmentation (only the solid displacement variable),

M, 00 . £ 0 0 ) 3 — (&) + I 4
0 0 O @ ({e + (3 . 0 . 0 a ‘Ze = _%Aqe + Ie§ 5
0 0 0 qf _Ifﬁ_‘%e(quv qe)%((if) qf ‘/%(q\fa ﬁe)

(T ) s (B e () e (o)
with
(e, 4.8) = [ &9rad for (4, €) € U° x I,
(e, @) = [ P@): 9 a for (4, €) € ° x I,
(#.2.6) = [ 9*-&ar for (4%,€) € Ul x 1

Extension operators expression:

- g 1T R 0 R 0 0
v% - (:Ze 0 ) ) Ie{ - (:zs> ) Ies - (j—s 0) )
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with
(9l98) = [ $u6): 9ila0 for (0", €,) € U° x U°
Q¢
(92 2.8y = [ &-d2al for (2,€,) € Uy x U°
T
Fluid operators expression:
) FE) 0 0 A N (€e,) 0
‘%(Qf) = 0 0 0 ) fc(Qfa dc) = 0 0 )
0 0 0 0 0
A ~ N (e t)a+ BE)D— FDE)a—IF A
‘/Vf(qfﬂ qc) = %(Ae)ﬁ y
—7Ii
with
b T a) = [ JE)a it for (4, £,,) € U < 11° x ",
Q

bu, N ( e,a)m> = | CadE)w PudQ  for (PU, €, a,b) € U x U x Ut x U,

B.2 Linearised fluid-solid equations

A

Three-field formulation: for §, = (é’,ug), 4. = (Aé,j\é) and §; = ('&’,ﬁ’,j\’), the three-fields
formulation of the linearised ALE fluid-structure problem reads

70 0 d. g0 Iy \[d
ol ., . . "
0 0 0 & 9de | = Tes *'Qfe 0 qde | -
0 ~%e dr Trs M Mg J\ Gt
Z1(Q) HL(Q)

where all operators are evaluated on the steady variables. Without the solid velocity augmentation
(only the solid displacement variable), we obtain

My 00 52 4 0 0 0 ) é -2 0 Iy \[€&

Al Al _ 5 e Al
00 0 |53 q? oo oo lg q? = | Zee ffi{e 0 q?
0 0 O g —Tte — e T gy 0 74 q;

Linearised solid operator expression:



Linearised fluid-solid equations

with

(o @&) - [ ®

P (é,f’) : Vzﬁg‘ d

Linearised fluid operator expression:

where the linearised bilinear advection operator reads N (éc, Ij)
The shape derivative operator ;. writes

W =N (B, U) &+ (B, 0)U.
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Qf
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TECHNICAL FORMULAS

C.1 Transport formulas between the different configurations

We consider here two geometrical domains, a fixed (i.e. that does not evolve with time) domain Q
and a time-dependant domain ;. They are assumed to be linked by a smooth mapping defined
by the same way as in (1.1.16): for any & € €,

& = Ai(2,1) = (1d+€)(2,1).

Given an operator acting on variables and functions § defined in ), one want to express this
operator with respect to the transported variables g = § o A{ 1in the actual configuration ;. We
use the following convention of notation: scalars are noted in lowercase roman style (¢q), vectors
are noted in bold (q) while second-order tensors are noted with uppercase bold style (Q). We
furthermore consider a cartesian coordinate system, so that

_ q _ 0q;
Vgl = Oz and \% Q]z] = 9
_ 0q; _0Qqj

Volume and area change measures

The Nanson’s formula (Chadwick, 1999) is an identity that relates areas in the actual configuration
to areas in the reference configuration. For an infinitesimal area dS of normal 7 in the reference
configuration, their counterparts in the actual configuration are obtained with

n,dS = ®(6)ThdS, (C.1.1)
where we recall that &(€) = J(€)F(€)! is the deformation operator!, F = VA, = I + V£ is the

deformation gradient and J = det F is the Jacobian of the transformation. For 2d geometries, the
deformation operator writes as follows for & = [£;,&,]:

1+ % %

@~ %
%, 0%

0z oz

In the general 3d case the expression is unfortunately much less compact. While it is does not
mix components in 2d, the transformation operator does in the 3d case. Geometrically, this comes
from the difference between rotations in 2d and in 3d. While 2d rotations involve only one axis

Lthe transpose of this operator is sometimes referred to as the Piola transformation
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of rotation, a general 3d rotation is the composition of two 2d rotations about different axes. The
Piola identity (Chadwick, 1999) states that the divergence of the deformation operator is zero:

vV-eéT=o0. (C.1.2)

From the Piola identity, an identity holding on the divergence is easily deduced,
' (@’(é)a) =& @": Va. (C.1.3)

Another useful formula, referred to as the Euler expansion formula (Chadwick, 1999), relates the
rate of change of the deformation Jacobian with the rate of change of the deformation field:

o _ TV (gf) : (C.1.4)

An identity for the viscous dissipation in the reference configuration
The following “cosmetic” relation allows to rewrite the viscous dissipation terms of the fluid mo-
mentum equation with the following expression,

D(a,§,)®(€.)": va' = J(€)D(a,{.) : D@ &) (C.1.5)

A A A A

Proof. A direct computation gives, with D = 1/(2J(€.))(Va ®(£,) + ®(£,)TvaT),

J(€.) D@ €, D@’ E,)
_L1 (Vad@E,) + &) vaT): (Vo' d(E,) + &) V")
4J(E)
1 1 A N ~ A A A A A A
BEEYS Vﬁ@( e) +(I)( e)TVﬁT Vﬁ, (I)( e)
s ) (varie)
1 A A A A A A A A A
= 57,2 Vﬁ@( e) +q)( e)TVﬁ‘T @( e)T Vﬁ’l
2 (€. ( )
=D(a.€,)$(E.)7: Va’

This identity is the equivalent, in the reference domain, of the identity D(u) : D(u) = D(u) :
Vu for D(u) = 1/2(Vu + VuT).

Variable change in volume and surface integrals

Let us recall two change of variable formulas (Henrot & Pierre, 2006), that are useful for writing

variational formulations in one or another configuration. For sufficiently smooth fields f and f ,
with f = f o A; and Q; = A;(2), it holds that

 fay = [ J(€)fdQ, (C.1.6)
Q4
fdly = [ J() f|F(€)n|radl, (C.1.7)

where J(€) = det(V.A,(€)) = det(I+VE£) = det F(£) accounts for the variations of volume between
the two configurations
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Chain rule formulas for gradient and divergence operators

We present here the technical manipulations for transporting gradient, divergence and Laplace
operators from the actual to the fixed reference configuration. All these formulas are basically
obtained by applying the chain rule. The following identities hold for the gradient of a scalar and
of a vector field respectively:

ViR (Vi) = 58O (%) (C.18)
Va= (Vo FE@ " = j(}) (V) &(é) (C.19)

Proof. Using index notations and the chain rule, we have, noting Fz-j = [0&,/0%);;

o8 0G0 04 ., 10
V=55 = garom — oar i =T g

from which we deduce the first identity, that can eventually be written using the deformation
operator ® = JF . The same path is followed to obtain the second identity,
_0q;  0g; 0%, 0G; £

Jij = 0l 0&F 0zl Ozk ki

\%

W

O

By the same way, using the chain rule and the same type of indices manipulations, similar formulas
are obtained for the divergence operator, namely

V.o % 8T ¢. &) q), C.1.10

i= 55 V#0557V (207) (C.1.10)

-~ 1 A 4 A 1 4 A A a

V- Q==-5VQ:2)"=—-—FV-(Q2("). C.1.11
Q=55 YQ: 8@ = 557 (Q2E)") (C.111)

The passage between the equivalent forms of the above relations are obtained using the Piola
identity (C.1.2).

Linearised deformation operators

We derive here the expressions for the linearised deformation operator in the reference and steady
deformed configuration. For that purpose, we use the two following properties (Chadwick, 1999):
for a second-order tensor A and real number ¢, it holds that

det(I+eA)=1+¢etr(A)+o(e), (C.1.12)

where tr(A) = A;; is the trace of A. If ¢ is furthermore chosen in such a way that I+ ¢ A is non
singular, then the inverse writes as

(I+cA) ' =T—cA +o(e). (C.1.13)

FExpressions in the reference configuration

We give here the derivations of the so-called shape derivative terms for the transformation Jacobian,
the deformation operator, the viscous dissipation and the fluid stress tensor, respectively, written
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for a perturbation éé about éo, taken in the reference configuration:

Proof. Using (C.1.12) and (C.1.13), the Taylor expansion for the Jacobian of the domain deforma-
tion gradient writes

J(Be +c€) =

where we have used the property tr(ATB) = A : B. The linear-order term is the tangent operator
J'(Ze; €). We use then this identity to expand the deformation operator as follows:

)-
& (2. +gé')

where again the tangent, shape derivative operator &’ (.ée; f,’e) is identified at order . Let us finally
consider the viscous stress tensor

A A A a4 A 1 1 PN N PN A AT PN
S(U,P,E.)={ —PI+ ———— {VU (Be) + @(2.)'VU } o(=)"
Re J(Z.)
The shape derivative of the pressure term being now clear, we focus on the viscous dissipation
term,
A A A 1 INIPNPNSIN N A T 2T
2J(E,)

Using the rules for differentiating a product and using the previously established formulas, we
obtain

A

D'(U

=€) == — Af”e VU= ENVT | ---
&) 2{ JERE (Bo)+ &(E)T
1 L aF X 2,2 AT AL
+ j('ﬁ‘ ) VU(P (:e;ge) + (P (:‘e;ge) VU .
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This expression can be further simplified. Noting that

A

CJ(EGED) s g 1

and from that, the shape derivative for the complete stress tensor is easily deduced

Transport in the steady deformed configuration

The shape derivative operators can be recasted in the steady deformed configuration defined by
Q= (Id+Z,)(?) write as follows

T(E)=V ¢

()= V€1 VE,

D'(Us€l) = —5 (VU Vel + (ve)" (vO)"),
(U, P€) = o(U, P)#'(€)" + = D'(U;£0),

where o(U,P) = —PI1+ 1/R(VU + VU?"), and are deduced from their counterparts in the
stress-free reference configuration by

e

«€) =D'(U; &)

[I]>

Ee; €l) = B(Be) ¥(&)),
= )"
T, P8 &) =3 (U, P €l) $(E.)".

Proof. Each gradient is transformed through the chain rule formula (C.1.9), i.e. through a mul-
tiplication by F(&,). It therefore holds that V£, = V¢, F, Va/ = Vu'F, and VU = VUF.
Replacing first in the expression of the deformation operator yields to

S108r & 1 2 S (& & A\ LA
€8 = 5| (PR VE) BE) - $E)Y ;<1><=e>}

- (&) (v-&1-v¢)

which is the desired relation. By the same way, still using (C.1.9) the linearised Jacobian writes as

[I]>

=f(ée><i><ée)T VeELD(E) !

which is the expected formula, since I: V&, = V - £/, The procedure is in any point the same for
changing the variables in the viscous stress tensor

O
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The linearised deformation operator is again significantly different whether the geometry is 2d
or 3d, namely, in a cartesian frame,

. 06, | 06 0k _ 9

3 0¢, ERNGE a4 9z

&7 (£)2d _ oy T8y &7 (£)\3d _ ¢ ¢, o€, 3
&(¢) 98y s and - &7(¢) _(T; 03 "’A BE A_(sz A
~od 0% _9& _9¢ %o 98y
i 09 oz o9

Transport of the fluid-structure equations

Using the transport formulas derived above, it is possible to write the fluid-structure equations in
one or the other configuration, either by applying the chain-rule formulas to the local equations
or by changing the variables in the variational formulations. We present here the two approaches,
applied to the linearised continuity equation — the way of reasoning being the same for the other
equations. Namely, we have

V- [BE) @+ () 0] =0 i QO
V-u' -V (®EHU)=0 in Q= (Id+Z.) ().

The local point of view

We use the chain rule formula for the divergence and the transport formula for the deformation
operator to get in the first equation

from which the second equation is deduced.

The variational point of view

Using (C.1.3), the variational equivalent of the continuity equation in the reference configuration
writes as follows,

J, (#

Changing the variables in the above formula with 1) = 1 o (Id +ée)*1, U=Uo (Id +E )~ and
uw =U o (Id+Z.)~! yields to

/Qf {«i‘»T : (jvu’é_l) + (c‘i» @’(gg))T :
_ /Qf {@T: (Vu’cifl) + (@’(5§)T¢>T) :
/Q{ (é”@) LV + (@'(gg)%%”) L (VU) }¢dQ

= / {1 cVu + @) VU} ¥ dQ
Q¢

[
[

DT A+ d(E €T @U‘) DA =0 Ve L)

Eventually using that I : Vu’ = V - «’ and again (C.1.3), we have arrived to a variational
formulation for the continuity equation in the steady deformed configuration.
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C.2 From Lagrangian-based to Eulerian-based perturbation
equations

We show here the equivalence between the two formulations of the stability equations, provided
sufficiently smooth velocity, pressure and displacement fields. More precisely, using the variable
decomposition (2.1.28), we derive the Eulerian-based momentum equation (2.1.29) and continuity
equation (2.1.30) from the momentum and continuity equations of the Lagrangian-based linearised
equations in the problem (2.1.2).

Fluid mass conservation equation

Let us consider first the continuity equation. In index notations, introducing the decomposition
(2.1.28) into the linearised, Lagrangian-based continuity equation, and using the continuity equa-
tion for the stationary solution, V- U = 0, we have for i = {1, 2, 3}:

V(@ +VUE,) + VU : &' (¢1)T
. ) ’ o€’ .
_ a (ﬂ,z+ 8Ul£éj> + aUz <a€ek~6” £e])

oxt oxd oxi \ dzF Y Ox
ow; U, ¢ ouU,; 0&; dU; o, ou,;  0&
e - - - .+ - = + - — -
Oxt  Qx'0xI ~%7  Oxd Oxt  Oxt Oxk  OxVilup3T4j Oxt
=0 =0
ow,
©oxt

This last line corresponds to the Eulerian-based linearised continuity equation (2.1.30).

Fluid momentum conservation equation

We now consider the Lagrangian-based momentum equation. Injecting the Eulerian-based decom-
position (2.1.28), we notice that the fluid domain velocity cancels and we obtain

~
aait+VUﬁ'+va'U—V~U(ﬁ',ﬁ’)+1°(U,P,€é) =0

which is the momentum stability equation written with the Eulerian decomposition, plus extra
terms (U, P, £}) that write as
r(U, P, ¢)) = VUVUE, + V(VUE)U + VU ' (£)U
~ V- [o(VUE, VP &)+ 3'(U, P.€))] .-
We can show that these terms are actually identically zero. We first note that o(VUEL, VP -£L) =
Vo(U,P)¢E, — 1/R.(VUVE, + Vé;TVUT), where Vo (U, P) is the third-order tensor already
obtained in the interface condition in the Eulerian stability formulation. Using (2.1.21) to express
>'(U, P,¢’), we obtain
r(U, P, ¢)) = VUVUE, + V(VUE)U + VU’ (£)U
-V |Vo(U, P+ o(U, P)RT ()] -
Then, we use the relations VU VU = V(VUU) -V (VU)U and V(VUEL) = V(VU)EL+VUVE!L
obtained by the rule of derivation of a product, and ®’(£.) = V- £.1— VE., to transform the first

line above in VUVU¢! + V(VUE)U + VU P’ (E)U = V(VUU) + (V - €L) VUU, noting that
V(VU)UE, = V(VU)ELU. We use the stationary equation

YUU-V-o(U,P)=0
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to express the advecion term VU U. Finally an expression involving only the stress tensor and
the extension displacement field is obtained,

r=V(V-0)€ +(V-€)(V-0) - V- [Voel+ (V- &) o - Ve,

where we did not precise r = r(U, P,£.) and o = o (U, P) for conciseness. Using now index
notations, we have for i = {1, 2, 3}

o (oo, o¢, 0oy 0 [Ooi; o’ &
Ti:<axkk>£, + Ek J |:8xkj ék—"_ai]fo-”_a-zkaxkj}

Oz

ek T 9xk dxd Ol

Expanding all the derivatives involved in the expression above, we observe that the terms cancel
two-by-two. As a result, we obtain

r(U,PE) =0.

By the same type of operations, it is possible to show that the interface conditions are equivalent
as well.

C.3 Lagrange identities for adjoint ALE equations

In this section, the formulas used to derive the adjoint linearised fluid-structure problem are derived.
All the derivations are performed for convenience in the steady deformed configuration. The
formulas derived in section C.1 allow to express these identities in other configurations.

Self-adjointness of the linearised STVK stress

We establish in this section a Lagrange identity for the linearised stress in the perturbation elastic-
ity equation written in the steady deformed configuration. In the steady deformed configuration,
integrating twice by parts the linearised Saint-Venant Kirchhoff stress (2.1.6), it holds that what-
ever ul and &’ that

/Qs (v-P(=:¢)) .uldﬁz/ﬂs (V-P(=ul) a0 - .
Jr/aQ (P/(E§€I) ngui fP/(E;u;r)ns é”) dr. v

Proof. The formula written above holds provided that the algebraic identity (used after integration
by parts)
P'(E;¢'): Vul = P'(E;ul): V¢

holds, that we shall prove now. From (2.1.16) the linearised first Piola-Kirchhoff stress is split
between its two components, namely

. 1

P'(2:¢): Vul = ﬁ{Vg'F(E) S(E) + F() S ’;E)}F(E)T .Vl
For the first term, using the symmetry of the tensor (F S FT)(&), it is easy to show that V& FSF' :
Vul = VulFS F' : V¢ — for conciseness of the notations, we will omit in the following to sys-
tematically write the dependency of the different tensors on the steady deformation . For the
second term, we further decompose S’ using (2.1.7) and (2.1.8). Then, still using manipulations
on the trace operator (recall that A : B = A;;B;;), we get

FS'(¢)F': Vul
- F{/\s tr (B'(¢)) T+ QMSE’(é')} FT v
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_ F{/\— tr (FT (vg' + vg'T) F) I+ pFT (vg’ + vg'T) F} F' . vl
St (FT (¢’ + ve™) F) (FFT : Va') + i, FFT (V€' + V¢'" ) FFT : Vuf
=\ (FFT : v¢') (FFT : Vi) + g, [FFT (vg' + vg'T)} : [FFT (Vug + VulT)} .

From the symmetry in the last line, we are easily convinced that the positions of &’ and ] can be
switched, i.e. that FS'(&)F' : Vu! = FS' (ul) F' : V¢’ O

The above relation shows in particular that the linearised solid stress operator is self-adjoint,
for ul and &’ can be switched without changing the structure of the operator.

Self-adjointness of the Stokes operator

Using integration by parts, one can easily show (Luchini & Bottaro, 2014a) that the Stokes operator
is self-adjoint. Whatever (u/,p’) and (u', p'), the following relation holds, with o (u,p) = —pI+
1/Re (Vu + Vu™):

/{V-a(u’,p’)-uT—FV-u’pT}dQ-~-

Qs

:/ (V- ol ph) w + V- ulp }dn (C.3.2)
Qf

+ / (o, p)n;-ul —a(ul,phng- u') dQ.
09

Note that the self-adjointness property is obtained only when the term V-’ in the above relation,
coming from the continuity equation, is taken with a positive sign. Otherwise, the adjoint Stokes
operator has an opposite sign in the adjoint continuity equation.

Adjoint of the linearized Navier-Stokes advection

It is well-known that the linearised Navier-Stokes equations are not self-adjoint (Luchini & Bottaro,
2014a), because of the advection term: if the diffusion/pressure terms can be transposed by still
keeping the same structure (see §C.3), it is not the case of the advection terms. Namely, considering
a smooth, divergence-free velocity field U in the steady deformed configuration, for sufficiently
smooth fields u’ and u' we have the relation

/ {VUu'+Vu'U} cutd -
o (C.3.3)

:/ {VUTuT—VuT U}-u’dQ—i—/ (U -ng)(u’ - ul)dr.
o 09

Tts derivation can be found for instance in the Appendix of the paper by Luchini & Bottaro (2014a),
and relies on an integration by parts and indices manipulation.

Adjoint for the shape derivatives terms

In the linearised ALE framework, non-standard adjoint terms arise from the presence of the shape
derivatives terms. In the following, we establish the formulas used to derive these terms of sensi-
tivity with respect to a variation of the domain.
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Advection term

A first formula is related to the shape derivative term that appears in the advection term of the
linearised Navier-Stokes equations. Considering a smooth velocity field u such that V - U = 0 in
€, it holds that, whatever &/ and ',

VU (U -w'dQ= | VUIU (& ng) — €U -ng)]-uldl -
Qf 6Qf

—/ {VUT (VUTuT - VuTU) +(vuh) VU U} -€1d0 .
Q¢ ¢ .

Proof. Using (2.1.19), the deformation operator is written explicitly. Then using index notations
and, since there is no ambiguity, omitting the subscript identifying the domain, we get

VU @' (HU -ufdQ -
Qf

_ [ oU; (04 9, t

a /Qf dxk (EM Okj — D ) Ui sy

_ Wiy, i\ 96 (U, i\ 9

o /Qf {<3xj UJUk) oz’ oz’ Uy oI de

— 8Uk ) aUk . ot e
i.b.p. /é)Qf <awjnl B n]) Uju, &dl' -

T T
[ (oo ooy v, oo,
o | 027 O0x! oxJ Ox? ox* Oxd ox* OxI

Using the incompressibility condition 9;U; = 0 to simplify this expression, we arrive to the expected
formula by identifying back the operators. O

Diffusion-pressure term

Let us now consider the identity used for handling the shape derivative terms of the viscous stress
tensor and incompressibility condition in the linearised ALE equations. Considering a smooth
velocity field U and a pressure field P, it holds that, whatever &/, uf and pf,

/Q {V.EI(U’P;‘%)'UT"_@,(E;)TZVUpT}dQ:

V. ET(UaPauTapT) £édQ_/ ET(UaPauTapT)nfgédF e

Q 9

+/ ¥'(U, P; €)ng - ul dT, with (C.3.5)
o0Q
{0, Pul,p) = - (P@' ()" + Ple'(@)T) -

! 73{ - ((vul) ' D) + (VU)™D @) + (D) : D(w)l}

Proof. The formula is obtained by integration by parts and then algebraic manipulations. Recall
that we have X' (U, P; ¢!) = o(U, P)®'(£/)T —1/R. (VU Ve 4 (Ve (VU)T). Integrating by parts,
we obtain

/ {V-E’(U,P;gg).uT+@’(gg)T;VUpT}dQZ/ (U, P; € )ng-uldl -
Q¢ 0

+/ { —-X(U,P;¢): Vul + @' (&)T: VUpT} dQ.
Qs
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Three algebraic identities are then used to exchange the position of the direct and adjoint variables,
namely

(VUVE+(VEOT(VU)T) : Vu = VU (Vu+ Vu') : V¢,
&)Y Vu=®"(u)": V¢,
A® (&) Vu = [(A V)T — (Vu)TA} L VE.

“.n

The first and second identities are derived by simple manipulations on the operator. The last
one (where A is an arbitrary second-order tensor) is less straightforward to figure out but can be
checked by term-by-term identification. These identities gives allows in particular to write

~-¥'(U,P;¢g): Vul + @' (&))" : VU p! = -1 (U, P,ul,p') : VEL

Replacing in the above expression and integrating again by parts gives the expected result.






DERIVATION OF THE FLUID-ELASTIC
SHAPE GRADIENT

We give here a sketch of the proof for the formula (4.3.19) that give the shape gradient, as well as
the related equations. The derivation presented here gives hopefully also some keys for computing
the shape gradient on a flexible surface.

D.1 Lagrangian formulation with Céa’s method

We use the Lagrangian approach proposed by Céa (1986) to derive the fluid-elastic shape gradient.
Two groups of adjoint variables Q and ¢1 are introduced. These additional variables are Lagrange
multipliers used to enforce the state equations (4.2.3) and (4.2.4). Using the expressions for the
variational formulations (1.1.35), (2.1.4) and (1.1.36), the following Lagrangian function for the
shape optimization problem is introduced — Eq. (4.3.3),

20,0,Q1,4%, ¢, A", A = A
— (@1, - A4(@)
—(al, (A (@) — @)@ )-
The real-valued state and adjoint variables corresponding to the stationary part are

Q=[U,=0228,A.,U,P,A]" and QI =[U S,H ,He,A o' ptA ]
where [ﬁs, é] is the solid variable (velocity and displacement), [ée,fxe] is the extension variable
and [U, P, A] is the fluid variable. Recall that following Babugka (19]13), A, and A are additional
variables associated to the interface Lagrange multipliers A, and A introduced to enforce the
Dirichlet interface conditions. Note that by “interface” we mean here I';gq Uf‘7 that is, the interface
with the rigid cylinder plus the flexible, fluid-elastic interface.

Remark. In Céa’s approach, this weak formulation of Dirichlet boundary conditions is actually
mandatory for the variables in the Lagrangian function to be truly independent (Allaire & Schoe-
nauer, 2007). If Dirichlet boundary conditions on I',gq were to be embedded into some functional
space defined on Q then by construction they would depend on the domain Q) that itself is a
variable of the problem. In this case, the variables are no longer independent.

By the same way, the complex-valued direct and adjoint eigenmodes corresponding to the unsteady
part are written as

[e]

3 =l €°,€0, 80, a0, p°, A1 and gt =[af, € & Al af pt AT

where the same sub-decomposition as above between the solid, extension and fluid parts holds.
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Figure D.1 — Physical domain and extension domain. All extension displacements as well as their
derivatives are assumed to be zero ouside from the hatched region.

In the above notation, the problem is written in the reference domain, but for convenience we
will sometimes recast it (or parts of it) in the steady deformed domain. Noting Q¢ = (Id +Z)(€2)
the steady deformed domain, we introduce for that purpose the transported variables

Q=Qo(1d+E)™"
Q' =QfTo(1a+5)!
q"=4¢°o(ld+2)""
q" =gt o(1d+&)!

The introduction of these transported variables is convenient, for it allows to write the volume
integrals arising from the fluid momentum and continuity equations with a simpler expression (an
expression in the stress-free reference configuration would have involved the stationary displacement
E. in each gradient, see §2.1.2).

We assume here that the extension displacements (both steady, unsteady, adjoint steady and
adjoint unsteady) are non-zero only in some sub-region of €2 that encloses the solid, as represented
(hatched region) in the Fig.D.1. Outside from this region, the displacements are assumed to be
zero, as well as the displacement derivatives. The extension region can indeed be defined only in
the region where the solid actually deforms. This allows to obtain a simpler expression for the
gradient computed on the rigid boundary I'.gq, because all the terms related to the ALE geometric
transformation then vanish. For conciseness of the presentation, we do not distinguish between
these two regions, but the reader should keep in mind that the displacement fields as well as their
gradients are identically zero outside from the hatched region.

As detailed in §4.3.1, once the Lagrangian is formed with independent variables, its variations
with the different variables give the different equations needed for computing the shape gradient,
namely:

é* (5QT) =0 voQt (non-linear stationary equation),
é(dQ) =0 V60 (linear stationary adjoint equation),
féw (6¢T) =0 vogt (direct eigenvalue problem),
Lo (0G°) =0 vV 64° (adjoint eigenvalue problem),
L (6N) =0 VA (direct/adjoint modes normalization),
Z (60) = N(Q)(6) (shape sensitivity of \).
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Non-linear stationary problem

Varying the Lagrangian function with respect to the adjoint stationary variable and looking for
zero solutions gives the variational problem <6QT, —Jl/fsi(QJf)> = 0 whatever the variation 6QT.
From (1.1.36), we have

<5QT7 —J@si(Q)> = /

Qs

Using integration by parts in the above relation and requiring that the resulting integral vanish gives
the steady fluid-structure equilibrium equations already introduced in §2.1.1, and the associated
boundary conditions. This non-linear problem, once solved, gives an expression for the steady flow
Q, and writes as follows (Eq. (4.3.4)):

-V-P(E)=0 in Q,
~V-2(8) =0 in O,
(VOO -V -3(U,P,E.) =0 in €,
-V (@(ée)ﬁ) =0 in Q,

U=0 onTU Iiga,
2 ée =0 on f‘,
P(E)a - 32U, P,E)A =0 onT.

These equations are completed with fluid-solid interface conditions on f‘, namely U=o0 (no-slip
velocity), & — B, = 0 (displacement continuity) and P(E)a = 3(U, P, E.)# (stress continuity).
The (fixed) farfield boundary I', is composed of an inflow boundary T'y,, an outflow boundary T'oys
and lateral boundaries I'j,;. We take the inflow condition U= U on [y, the outflow condition
ﬁ](f], P B, = 0)7v = 0 on T'yyt, the zero extension displacement E. =0 on aﬁf\ (f UT,eq) and
solid displacement & = 0 on 9 \ I, and a zero normal velocity condition on the lateral boundary
I'at. On the rigid boundary I'yeq, the no-slip velocity condition U = 0 is enforced. Recall that the
interface Lagrange multipliers on I' take the following expression,

N

O and A= S.(B)A,

A

)i =30, P,

A

A=P(

(1>
(1)

these relations being also deduced from the variations of the Lagrangian function. On the rigid
boundary I''gq, A = A and reduces to

A=0o(U,P)n. (D.1.1)

Since the boundary I'\gq is rigid, there is indeed no solid stress term to consider there.
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Direct eigenvalue problem

Computing the variations of the Lagrangian function (4.3.3) with respect to the adjoint mode and
looking for zero solutions gives the condition

(861, (A Fa(Q) - AL(Q)a") =0 vadl,

while the normalization (4.3.6) is set for the amplitude of the modes. Like in §2.1.2, it is convenient
to change the variables in the above formulation, so as to transport it in the steady deformed domain
Q deduced from (2 through a deformation by the steady displacement fields =, and = previously

determined. From (2.1.14) and (2.1.15), the developed expression for this problem then writes as
follows in the steady deformed configuration:

(04", (A 72i(@) = HH@) ") = - (D.1.2)

°o.5¢t” M o, T*} o o) . +*
/\l/ss{ﬁ 08" + 70=) ug - oul > dfQ2 +/Qf(u (VU)€e> sut™do
7/ {US'(;ET*P/(E?5°)¢V5UI*}dQ+/ {29(52):V5£Z*}d9
Qg o,

- /g {(VU)UO +(Vui)U + (VU)'I”(£Z)U} Csul™ Ao

2 *

s [ D) pwreen + pw.en vsuran
e JQ¢

—/ {pOV-éuT*+5pT*V~u°+<I>'(Ee,£Z)T: (PvauT*+5pT*VU) }dQ
Qs

+ / {X’ (Oul = oul) A6l 4 (€0 —€°) Al + (ue — A £°) - w*} dr
T

)

Since this relation should be satisfied whatever the variations of the §’s functions, using integration
by parts, one finally arrive to the local equations for the state modal problem (Eq. (4.3.7)):

{X’ Ssul” 4wl 5AT*} dr = 0.

rgd

X (M./I(8)) € - V- P(E,€°) =0 n 0,
—V -2 (€)=0 in Q,
A+ (VU) (w® = A€ ) + (Vu) U + (VU)@'(€)U -
~V - (o(u®p°) +X(U,P;£)) =0 in Q,
VU -V (B(E)U) =0 i Q
u® — A€ =0 on T,
u® =0 on Iigd,
& —€°=0 on T,
(o(u®,p°) +X'(U,P,&))n —P'(E;€°)n=0 on T.

These equations are completed by zero extension displacement farfield conditions, €2 = 0 on 9Q\T,
zero solid displacement £° = 0 on 90\, and the outflow condition (o (u®, p°)+X' (U, P,£2))n =0
on I'oys. A zero condition holds for the velocity on I'vgq, I'in and I', and the slip condition on I'iat.
The Lagrange multipliers on I' write as

A =P(E,£)n = (o’ p’)+ X (U, P;£))n and Ao =3.(€)n,

e

and on the rigid boundary I',gq, the interface stress A° reduces to the fluid component

A’ =o(u®,p°)n. (D.1.3)
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Adjoint eigenvalue problem

Computing the variations of the Lagrangian function (4.3.3) with respect to the direct mode and
looking for zero solutions gives the condition

(4t (A (@) = A @)3q°) =0 ¥oq°

Like previously, it is also convenient to change the variables in the above formulation, so as to
transport it in the steady deformed domain €2 deduced from €2 through a deformation by the steady
displacement fields E, and Z. Then, adjoint identities are used so as to isolate the variation dq°,

(a". (A 7(Q) ~ A:(@)0g°) = (N 7@ ~ A4 (@) 6q%) =0 Vo,

The above operation is practically achieved using integration by parts and the technical formulas
reported in Appendix C.3, that allow to identify the adjoint operators (marked with the T symbol).
Using the developed forms (2.1.14) and (2.1.15), we have

(4", (A 70i(@) = #(@))0g° ) = -

o ¢t M o P o o *
)\[ {55 €+ gy dul - ul }dQ—i—/Qf(éu —(VU)age)-uT o
_l’_

P

s

{5u 51‘* P'(E;6¢°) : Vul*} dQ +/ {Ee(éﬁz) : Vﬁl*} dQ
Qs

s

(VU)u® + (Vou)U + (VU)®’ (5¢° )U}-uT*dQ

f

{ U
t o [ PGy + D@ T D006 b vutan

g
A
o)

. se0 H=e i - o M T*}. °
/QS{)\ﬁ 06° +P'(B;u!l ) : Vog }dQSJF/QS{J(E) —-& dug dQ2

+/ { </\ o+ vU Tl — Vuf*U) 5wl +o(ul ph)  Vou® — 6p° v - uf*}dQ
Q¢

mb\@\

[e]

{5]9 Va4 p Vw4 #(B., 0¢0)T: (PVuT*+pT*V5U)}dQ

)

f

{w.( N I X A —5&°)~A1*+(6u0—M&")-A**}dr

—~

{5>\° .uT*+5u°-,\T*}dF:o.

rgd

+/{m {(U.nf) Su® +VU[U(55;’ ) — O (U.nf)}} uttar
‘
- /Q {VUT ()\ u + vU L - vuT*U) + (VuT*)T} - 6£2 dQ2
:
+/Q {26(52*) + zg(U,P;uT*,pT*)} L V6£° dQ
‘
+ /F {5A° (ul = uf") = age - (AT AATT) - agg AL+ s AT 4 oA2 gz*}dr

b

A last integration by parts allow to identify the local adjoint equations. The expression for
EZ(U,P7 u’ p') is given by (C.3.5). In particular, cancelling the interface terms on I' results

{M" " oul ,\**}dr =0,

red
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in the relations

P'(Zul)n, — Al - AT =0 onT,
AL+ (Bo(eh) + LU, Pt ")) e = 0 onT,
o(ul,pHhni+ At =0 onT.

Eventually, eliminating the solid adjoint velocity with the relation &' = (M,/J(Z)) u}, the adjoint
eigenvalue problem writes, in the steady deformed configuration, as follows (Eq. 4.3.9):

(A2 (MS/J(E))ug V. P(Eul)=0 in Q,

_vu" ()\*uJUr (VU) "l — (VuT)U) —(vuh'VUU -

V- (Ze(€) + S, Pulph)) = 0 in Q,
Ml +(VU) ul = (Vul) U = V- o(ul pf) =0 in €,
~V-ul =0 in Q,
ul — uI =0 onl,
ul =0 on I'.eq,
¢l=o0 onT,
N o(ul,phn + (Ec(ﬁl) +3l(U, P, uT,pT)> n— P/ (E;ul)n=0 onT.

The other boundary conditions are the zero extension displacement farfield conditions, El =0
on 90 \ T, the zero solid displacement é’T = 0 on 09 \ T, and finally the outflow condition
o(ul,p")n+ (U -n)u’ = 0 on Iy A zero condition holds for the velocity on I'ygq, ', and T', and
the slip condition on I'l;¢. On the rigid interface, the Lagrange multiplier for the velocity Dirichlet

boundary condition writes as
A =o(ul phn. (D.1.4)

The normalization condition (4.3.11) — obtained from the variation with respect to the eigenvalue
— is used to set the amplitude for the adjoint modes.

Adjoint stationary problem

It remains to differentiate the Lagrangian function with respect to the steady solution so as to
obtain the adjoint stationary problem. In the most general case both the steady and unsteady
parts, in the Lagrangian function (4.3.3), depend on the steady flow, especially from the steady
displacement fields. The weak form of the equation reads (Eq. (4.3.12))

Ot 41060 ) = (qt, (2 278] so- 22| 564 vio.
0Q |, 2 |,

We treat separately the left-hand (i) and right-hand (ii) sides of the above equation.

The (i) left-hand side of (4.3.13) is obtained by the very same approach as the one used to derive
the adjoint eigenvalue problem: after having differentiated with respect to the steady variables,
the habitual variable change allows to express the problem in the steady deformed domain. Then,
adjoint identities result in the transposed variational formulation, from which local equations are
deduced. Namely, in the steady deformed configuration,

<QT, fs'i(Q)§Q> :/Q {ws 2 - P(g;sE) VUg*}dQ —/Q {26(556) : Vag*}dg
S f

7/ {(VU)6U+(VéU)U+(VU)<I>’(5EC)U}~UT*dQ
Qg
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2 *
- {D(éU) +DU)® (38,)T + D'(U; 556)} VU A
+ / {5PV U+ PPV 65U + 8/ (55" (PVUT* + Pt VU) }dQ
Qg
d

- / {5A (Ut —UD +6U - AT + A, - El” 4 (6B, — 0E) - Ag*}
T

—/ {5A-UT*+5U-AT*}dF.
Crga

Using the adjoint identities in Appendix C.3 and taking into account the boundary conditions for
the stationary flow, this expression is rewritten as

<QT fSI(Q)5Q> / {—* §U, —P’(E;Ug*):vaa}dg_/ {ze(ag*):vaae}dg
Q¢

i { VUTUT* VUT*U)-5U+a(UT,PT)*:V&U—éPV-UT*}dQ

‘
(U -n)(U" -5U)dT

+/Q {VUT VUTUT* VUT*U) +(VUT*)T(VU)U} - 6E, dQ

‘

{ze )+ i, pUt” PT*)} . V62, dQ

—/ {6A Ut —UD) 46U - AT 4 5A. B + (5. —55)-AT*}dF
I

7/ {5A-UT*+6U.AT*}dr.
T'iga

If we further make the assumption that the steady deformed and stress-free reference configurations
coincide, the variations with respect to the displacements are zero. An integration by parts then
allows to recover the local equations corresponding to the left-hand side of (4.3.16), Eq. (4.3.16).

Let us now (ii) consider the second term in (4.3.12), from which the right-hand side of (4.3.13)
is deduced. The complete expression — before differentiating with respect to the steady fields —
writes as follows:
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| I

+/{>\ @t —al)+ @ =2 A+ A, €T+ (€0 £°). ‘T}df. (D.1.5)
I

The terms related to the steady displacements are emphasized by the red color. Their variations
should be considered as well as those for P and U in order to obtain an exact adjoint equation, but
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in the present case we rely on an approximate version where all these displacements are neglected,
which amounts to consider in this expression that Q ~ €);. Taking then the variations with respect
to the velocity and the pressure, we get in the steady deformed configuration

fsi

0T A
A—i- <)\ fsi Ao) 5Q> ~
q', A q
< 0Q o 00 o

—/\/ (VoU) € - ul™ dQ
Qs

o 0N
6o — L 8

+/ {(V(SU) +(Vu® )5U+(VdU)tI)’(gg)U+(VU)‘I)/@S)(;U} ot do
/Q { (6U)®'(€)" +D'(oU. & )}:VUT*dQ
—/Q {@’(ﬁi)T: (5PVuT +pT*V5U)}dQ.

This expression is again transformed so as to switch the position of the variations U, § P and that
of the adjoint perturbation variables. Using integrations by parts, the continuity equation of the
direct eigenvalue problem and Piola’s identity, we have first the identity

/ VaU(u° — N+ <I>’(£;’)U> wtfdo= [ (U -u) (u — N+ <I>’(5g)U) -mpdl
Qs Qs

+/ {A (Vuf*sg +(V- 5g)uf*) —vul u - VuT*@’(gz)U} -6U dQ
Qg

Using then the properties of the double contraction, the diffusion-pressure term can also be rewrit-
ten as E/(uf*, pT*;ﬁ,];). Taking eventually into account the boundary conditions for the steady
variables, the direct and adjoint modes, and integrating again by parts, ones finally arrives to
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+A

We identify there the sensitivities V(M) and Vp(A) that constitute the right-hand side of the
adjoint equation:

out
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Combining (i) and (ii), we arrive to the adjoint stationary equation with the approximate right-
hand side, that writes as follows:

-V-P(UlLE)=0 in Q,
(vU)" ((VUT)U - (VU)TUT) —(vuhvuyu -
V. (ze(ag) + =i, P U, PT)) —0 in Oy,
(vo)'Ut —(VvUNU - v - o(UT, PY) = V(N in Qf,
—V-U =Vp(\) in Q,
U'-Ul = onT,
U'=o0 on I'ygq,
El =0 onT,
(EC(ED +siU, U, PT)) n—P U En=0 onT,

completed by a zero velocity and extension displacement farfield condition Ut = EZ = 0on OQ\T,
a zero solid displacement condition £ = 0 on 8 \ T, and the outflow condition (U - ng)U' +
a’(UT, PHng — of(ul,pt,€2)n = 0 on Tyy. Furthermore, the interface Lagrange multipliers for
the velocity and displacement continuity write as follows,

A =P(E)A =S(U,P)n and  Af= (E(UT, P — aT(uT,pT,gg)) n,
Ae = B (Bo)P and Al = (2. +Z)n=P'(E.,U))n.

The equation (4.3.16) corresponds to the above equations where the displacements have been
neglected also in the left-hand side.

D.2 Explicit formula for the shape gradient

Differentiation of integrals with respect to the domain

The path for obtaining the identity (4.3.17) might be useful to be recalled. We give here the
intuitive idea, the reader is referred to Henrot & Pierre (2006) where the proofs are given together
with more precise regularity hypotheses.

Volume integral

Given f an arbitrary smooth function, let us first consider the case of an arbitrary surface integral

L= f(@)d.
Q(0)

The variations of .Z when the domain is modified by the Lagrangian mapping (4.3.1) write as

L0+ 260) — £,(6) = / F@a0— [ f@)a
Q(0+<50) Q(6)

:/ A (fo(1d+asé)|det(1+sﬁé)|_f) (2)d0
a(6)

after changing the variables. We recover in particular the Jacobian of the transformation det(I +
5@@) Expanding the terms inside the integral yields to

fo(Id+80)|det(I + V)| = f+ ¢ (W 0+ Y- 59) dQ + o(e)
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4 ¥ (féé) A0 + o(e)

so that the variations of the integral write as

Zy(0 +260) — 2,(0) = 5/
Q(6)

V. (faé) A0+ o(e),
and finally using the divergence theorem (Chadwick, 1999) one arrives to an expression that allows
to identify the derivative in the first-order term, that writes

2(Q)(56) = » f (66 -7)dl (D.2.1)

Surface integral

Let us now consider some function g defined on a border 9. The case of the surface integral is
treated by coming back to the case of a volume integral. From the divergence theorem,

%= / g(&)dl" = / 9@ ndi = [ ¥ (g(&)n)dP.
a0(6) a0(6) Q(6)
Note that special requirements are required for the expression in the right side to make sense
(Henrot & Pierre, 2006), since, for instance, the normal has to be extended by any means onto the
domain. This last formula allows to use the result for volume integrals, that gives

Z(Q)(50) = / V.- (g(&)n) (60 -n)dl  and V- (g(&@)n) = 5 +gV -7,
o0

where we note H = V - A the interface mean curvature. Finally, the following formula is obtained,

L) (60) = /{m (;ﬁ’b + Hg) (60 - ) dl. (D.2.2)

Shape gradient computation

Shape gradient for the steady part

We can now differentiate the Lagrangian function with respect to the domain. The fact that the
derivative is taken on a rigid boundary considerably simplifies the result, since all the terms related
to the displacements (as well as their derivatives, see the Fig. D.1) vanish. Using (4.3.17), we obtain

_2
Re Jp

“
r
0 {A o 1o A }( §.7)dl
e me
where we have already simplified the fluid advection term which is zero thanks to the no-slip
condition, and all the terms in factor of the interface curvature H that are also zero (but not their
derivatives). The integrals are zero on f, Tin, Tas and T'oyy because we have enforced & =0on
this boundary. Finally, recall that the normal 7 is pointing in the fluid domain (FigD.1) — for
which reason we find the —# in the above formula — and D(U) = 1/2(VU + VUT) on the
rigid boundary f‘rgd. We can now replace the expression for the Lagrange multipliers at the rigid
interface, namely from (D.1.3) and (D.1.4) we have

(@1 Au(@) @(0) = {90

(zsv (O v f]) (= A)dl

rgd

A=60,P)a  and A =6@©' PhHa,
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~” A . AaA A AT .

where (U, P) = —PI+2/R. (VU + VU ) on I';gq and the same for the adjoint stresses. Then,
using the fact that the tangential gradient of a vanishing field on the interface is zero (Gao & Ma,
2008) and tensor indices manipulations, we have

" AF*
0 (x wt*\ _OA 1+ 90 .
B (A'(U)>_aﬁ W)+ 4
_p oY L2 a0 (D))
N on Re On
—_— —
=v.O"" (VO
NN T 2 A AT * A A
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Putting all these pieces together, we obtain the following expression for the shape gradient of the
steady part,

A A AN A A 2 A AT K A A A
(@1 A(Q) @6) = - [ DO DO) (-6 7).
e JI
Remark —stationary part of the gradient on a deformable interface. Let us use (4.3.17) for the

case where 8 # 0 on I' and is zero everywhere else. A formula for the shape gradient on the
deformable (by the fluid-structure interaction) interface I' would then be given by the expression
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o}
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[ gp) (A @ -0 0 A A @D 4@ -2 A) 6wy,
I

but in this case the further simplifications of the expression are less straightforward. For instance,
the “cosmetic” results used above does not hold anymore for terms involving the displacement
fields, that do not vanish anymore on the interface. We see again the need for the continuous

approach, since the expression for the adjoint interface stresses AZ appear in this expression.

Shape gradient for the unsteady part

We use again the identity (4.3.17) to compute the unsteady part of the gradient. The procedure is
exactly the same as previously. Using the vanishing displacement/displacement gradients property
on I'ygq, as well as the no-slip velocity condition, we obtain an expression that involves the Lagrange
multipliers on I'ygq (Eq.(D.1.3) and Eq.(D.1.4))

N A0 AO)A of

=&(@°,p°)h  and X =é&(al,phHn,

and replacing in the obtained expression and using the same “cosmetic” properties as before, we
finally obtain the unsteady part of the gradient,

(4. 0\ Fha(@) — AH(Q)E") @)0) = - [ @) Di(al)) (-6 -4 ar.

regd
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Titre: Instabilités et optimisation de structures élastiques en interaction avec des écoulements laminaires

Mots clés: interaction fluide-structure ; analyse de stabilité linéaire ; optimisation de forme et de structure

Résumé: L’interaction entre solides élastiques et écoule-
ments visqueux peut conduire a de grandes déformations.
Outre les simulations non linéaires instationnaires, des
approches modales linéarisées sont utiles pour identifier
les instabilités hydro-élastiques a l'origine de ces vibra-
tions, et peuvent également étre utilisés pour concevoir
des stratégies de contrdle. Les objectifs de cette these
sont de développer et d’appliquer des méthodes, d’abord
pour décrire la dynamique linéaire fluide-solide, puis la
contrbler en optimisant la forme ou les propriétés élas-
tiques du solide.

La premiere partie présente les méthodes développées
pour étudier la dynamique linéaire des perturbations
fluide-solide fortement couplées. La dynamique des flu-
ides est régie par les équations de Navier-Stokes incom-
pressibles, tandis que le solide est décrit par des modéles
hyperélastiques. Un couplage Arbitrairement Lagrang-
ien Eulérien est choisi. Une linéarisation exacte de cette
formulation est dérivée, et ’analyse modale qui en résulte
est validée.

La deuxiéme partie est consacrée a ’analyse et au con-
trole des vibrations de plaques élastiques fixées en aval
d’un cylindre circulaire rigide, et immergées dans un

écoulement entrant uniforme. Des modes propres fluide-
solide sont identifiés au moyen d’une analyse aux valeurs
propres de l'opérateur linéarisé, et des simulations tem-
porelles sont effectuées pour expliciter les interactions
non linéaires. En second lieu, une optimisation de forme
par état adjoint est proposée pour contrdler les modes
instables. La stabilisation des modes est réalisée, ainsi
qu’une modification des fréquences instables.

La derniere partie est consacrée au délai de la transition
laminaire/turbulent de couche limite grace & des revéte-
ments visco-élastiques. Une analyse de résolvant de
Iopérateur fluide-solide est utilisée pour quantifier I'at-
ténuation des ondes de Tollmien-Schlichting lorsque la
rigidité du revétement est réduite. D’autre part, I’anal-
yse aux valeurs propres montre que des modes a haute
fréquence, liés a la dynamique du solide, sont déstabilisés
lorsque I’amortissement visqueux solide est trop faible.
Une stratégie pour optimiser la répartition de la rigid-
ité du revétement vis-a-vis de amplification énergétique
des deux instabilités est finalement proposée. Les revéte-
ments optimisés permettent a la fois d’atténuer les ondes
de Tollmien-Schlichting et de limiter le développement
des instabilités a plus haute fréquence.

Title: Instabilities and optimization of elastic structures interacting with laminar flows

Keywords: fluid-structure interaction; linear stability analysis; adjoint-based structure and shape optimization

Abstract: The interaction between elastic solids and
viscous flows can lead to large deformations. In addition
to unsteady non-linear simulations, linearised modal ap-
proaches are useful to identify the hydro-elastic instabili-
ties at the origin of these vibrations, and can also be used
to design control strategies. The objectives of this thesis
are to develop and apply methods, first to describe fluid-
solid linear dynamics, then to control it by optimizing
the shape or elastic properties of the solid.

The first part presents the methods developed to study
the linear dynamics of strongly coupled fluid-solid dis-
turbances. Fluid dynamics is governed by incompressible
Navier-Stokes equations, while the solid is described by
hyperelastic models. An Arbitrary Lagrangian-Eulerian
coupling is chosen. An exact linearization of this for-
mulation is derived, and the resulting modal analysis is
validated.

The second part is devoted to the analysis and control
of the vibrations of elastic plates fixed downstream of a
rigid circular cylinder, and immersed in a uniform incom-
ing flow. Fluid-solid eigenmodes are identified by means

of an eigenvalue analysis of the linearised operator, and
time-marching simulations are performed to clarify non-
linear interactions. Secondly, an adjoint-based shape op-
timization is proposed to control unstable modes. A sta-
bilization of the modes is achieved, as well as a modifi-
cation of unstable frequencies.

The last part is devoted to the delay of the laminar/tur-
bulent transition of a boundary-layer flow thanks to vis-
coelastic coatings. A resolvent analysis of the linearised
fluid-solid operator is used to quantify the attenuation
of unstable Tollmien-Schlichting waves when the stiffness
of the coating is reduced. On the other hand, the eigen-
value analysis shows that high-frequency modes, linked
to the dynamics of the solid, are destabilised when the
solid viscous damping is too low. A strategy to optimize
the distribution of the coating’s rigidity with respect to
the energetic amplification of both instabilities is finally
proposed. Optimized coatings both reduce the growth of
Tollmien-Schlichting waves and limit the development of
higher frequency instabilities.
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