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Abstract

At Re = 5000, both experiments and two-dimensional simula-
tions of a NACAOO012 airfoil wake show that, as the angle-of-
attack is increased, there is a steep rise in lift beyond approxi-
mately 5° as vortex shedding begins to occur. Simulations show
that the unsteady flow displays different frequencies in its satu-
rated state between 7° and 8°, although periodic at higher and
lower Reynolds numbers. Indeed, within this range, the lift sig-
nal shows multiple states and period-doubling, as the wake un-
dergoes a substantial change in character from the standard von-
Karman vortex street. Direct simulations and resolvent analysis
are used to investigate the transitions further, with the latter well
predicting the observed wake frequencies and co-existing peri-
odic states.
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Introduction

Some recent studies that have investigated low-Reynolds-
number flows around airfoils include [1, 2, 3]. These have re-
ported a complex series of wake modes depending on Reynolds
number (Re) and angle-of-attack (o). Features of these modes
include pairing of vortices in the wake, quasi-periodic modes
and the transition to chaotic states via period-doubling. Those
studies have mostly focused on higher o and lower Re. In this
study, we focus on wake bifurcations at relatively low o at a
moderate Reynolds number of Re = 5000, where the wake un-
dergoes a series of transitions over a small o range. These tran-
sitions are analysed using resolvent analysis.

Experiments

The experiments were conducted in the free-surface recirculat-
ing water channel of the Fluids Laboratory for Aeronautical
and Industrial Research (FLAIR) at Monash University. A ma-
chined aluminium NACAOQ012 airfoil model had a chord length
of ¢ =30£0.010 mm and an immersed length of L = 300 mm,
giving an aspect ratio of L/c = 10. The airfoil was attached to a
micro-stepping motor, allowing the angle-of-attack to be set to
within £0.2°. The opposite free end of the foil was positioned
with a clearance of ~ 1 mm above a conditioning platform to
reduce end effects. The flow structure around the foil was mea-
sured using Particle Image Velocimetry (PIV). Figure 1 shows
two instantaneous PIV vorticity plots of the wake as o is in-
creased from 5° to 6°. Further details can be found in [4].

Direct numerical simulations

The incompressible flow is described through the non-
dimensional velocity # and kinematic pressure p fields that sat-
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Figure 1. Experimental results at Re = 5000. PIV snapshots (vorticity)
showing the change in the wake topology when increasing the angle-of-
attack from (a) a0 = 5° to (b) ou = 6°.

isfy the Navier-Stokes equations

%—l:+(u-V)u=pr+éAu, V-u=0, (1)
where Re = Usc/v is the Reynolds number based on the
chord ¢ of a NACAOO12 profile and the incoming uniform
velocity U.. The equations are discretised in space using a
finite-element method and marched in time with an implicit
temporal discretisation. A second-order extrapolation of the
convective velocity in the non-linear term yields a linear
Oseen problem [5] that is solved here using a direct sparse
LU solver. Denoting o as the angle-of-attack, the above
equations are solved subject to Dirichlet boundary conditions
(u,v) = (cos(ot),sin(o)) at the inlet and lateral boundaries
of the computational domain. The domain size is 10c¢ in
each direction. A free-stress boundary condition is imposed
at the outlet. Flow solutions have been computed for the
Reynolds number of Re = 5000. First, periodic solutions are
computed for several values of the angle-of-attack in the range
5° < a < 9° starting from a uniform velocity field as an initial
condition. After identifying different branches of solutions,
each branch is continued by increasing (or decreasing) the
angle-of-attack, using the previously computed solution as the
initial condition. The integration time is systematically adapted
s0 as to reach the asymptotic flow state.

The time-averaged < Cr, > and period T of the lift coefficient
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Figure 2. (a) Time-averaged < Cr > and (b) period T of the lift co-
efficient as a function of .. The four branches of numerical solutions
are identified by black, red, green and blue open circles. The experi-
mental results are shown with grey open circles. Filled circles identify
solutions displayed in subsequent figures. Here, Re = 5000.

are displayed as a function of angle-of-attack in figures 2(a) and
(b), respectively. Four branches of periodic solutions are iden-
tified in the range 6.5° < o < 9°. For the first branch of solu-
tions (black circles), the mean lift coefficient increases with the
angle-of-attack until o0 = 7.78° where it ceases to exist. It is
in very good agreement with the time-averaged lift coefficients
measured in the experiments (grey dots). A typical snapshot of
the vorticity field is displayed in figure 3(a) for o = 6.5°. A von-
Karman vortex street is observed in the wake of the foil, with
clockwise (blue) and anti-clockwise (red) vortices that are peri-
odically shed at the trailing edge. The period of this shedding
is equal to T = tU./c = 0.6 and barely changes with a.. The
temporal fluctuation of the aerodynamic coefficients induced
by vortex shedding is shown in figure 3(d), by displaying the
instantaneous lift Cy (¢) as a function of the instantaneous Cp(r)
drag. The trajectory approximates a straight line for the angle
o = 6.5° (black curve).

When increasing the angle-of-attack above oo = 8°, we obtain a
second branch of periodic solutions shown by the blue circles
in figure 2, characterised by a mean lift coefficient increasing
linearly with o.. The temporal evolution of the aerodynamic co-
efficients in figure 3(d) now resembles an ellipse and shows that
the fluctuations are of larger amplitude. The period of the oscil-
lation is also larger with T ~ 0.8. The vortex street displayed in
figure 3(c) has deviated upwards and the distance between two
vortex pairs (solid line) is larger than the distance between the
two counter-rotating vortices (dashed line), unlike the situation
for the classical vortex street in figure 3(a). This second pe-
riodic branch of the solution exists for large o, with the period
increasing to 7' = 0.9 for oo = 9°, but it ceases to exist for angles
below o = 8°.

A third branch of periodic solution (red circles in figure 2) is ob-
tained in the range 7.33° < o0 < 7.5°. The pattern of the vortex
street (figure 3(b) has now deviated downwards. The vortex-
shedding at period T = 0.75 is characterized by lower lift and
drag coefficients, as well as fluctuations of smaller amplitude
oscillation compared with the second branch (blue).

Finally, for intermediate values of angle-of-attack, 7.5° < a0 <
8°, we obtain a branch of solutions (green circles in figure 2)
characterized by much larger periods in the range 1.5 <7 < 1.6.
The maximal (resp. minimal) value of the period is twice the
period of the blue (resp. red) branch equal to 7 = 0.8 (resp.
T = 0.75). The instantaneous vorticity is shown in figure 3(f)
and 3(g) for two instants corresponding to the two maximal
values of the lift. The vortex pattern is clearly less organised
than for the other branches of solution, with clockwise vortices
(blue) of smaller amplitude than anti-clockwise vortices (red).
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Figure 3. Isocontours of the instantaneous vorticity for the periodic so-
lutions at (a) a0 = 6.5°, (b) o = 7.5°, (c) o = &°, and (f,g) @ = 7.75°
for times corresponding to the maximal lift. Their temporal evolution
in instantaneous lift-versus-drag coefficients diagrams is displayed with
solid curves in (d) for o = 6.5° (black,a), 7.5° (red,b) and 8° (blue,c),
and in (e) for o = 7.75°. In (e), the dashed curves correspond to trajec-
tories for o = 7.5 for the high-lift (black) and low-lift (red) solutions.

The trajectory of this solution in the lift-versus-drag diagram is
now displayed in figure 3(e) with the green curve. It looks like
two connected ellipses, as if the trajectories of the first (black
dashed line) and second (red dashed line) branches of periodic
solutions have merged, giving birth to a new periodic solution.
Clearly, the existence of that low-period solution is related to
the closeness of these red and black periodic solutions in phase
space.

Resolvent analysis of the time-averaged flow

The resolvent analysis, introduced to capture the growth of con-
vective instabilities developing on steady flow behaving as noise
amplifiers [7], has recently received much attention for the re-
construction of fluctuations in turbulent flows [6, 8, 9, 10, 11].



Here, we analyse the time-periodic flows previously described
by performing the resolvent analysis of their time-averaged
(mean) flows.

Decomposing the flow velocity and pressure as the sum of the
time-averaged flow fields (&, p) and their fluctuations (', p’),
and inserting this decomposition into the governing equation
(1), one obtains the quasi-linear equations,

ou' 1

a—':+(u'~V)ﬁ+(ﬁ~V)u'+Vp’—R—eAu':f' .V =0,
(2

where f' = — (' -V)u' + (' - V)u'. In the resolvent analy-

sis, this non-linear term is modelled as an external unknown
forcing, yielding a linear relationship between the velocity field
response and this nonlinearity [6]. The Fourier decomposi-
tion of the forcing and flow fluctuation ¢’ = (&', p’), defined

as (¢'.f') (x,1) = <€]7f‘) (x) exp(iot) +c.c., is injected into the

above quasi-linear equations, yielding, after spatial discretisa-
tion, the linear input-output harmonic equation,

(ioM — L(@t)) § = M P, 3)

where L denotes the discrete linearised Navier-Stokes equa-
tions, M is a mass matrix and P is a rectangular matrix intro-
duced to prolongate the momentum forcing vector onto a vector
of size g. The transpose of this matrix allows extracting the ve-
locity vector for the flow vector, i.e. it = PT§4. The resolvent
operator R(®) is often introduced as follows,

=P (ioM —L(@) 'MPf=R(0)f, 4

to express the linear relationship between the output harmonic
velocity # and the input harmonic forcing F. The resolvent
modes are the left (response) and right (forcing) modes in a sin-
gular value decomposition of the resolvent operator. The forc-
ing modes ]‘k may be obtained by computing the eigenmodes
for the following Hermitian eigenvalue problem

(R@)"R()) Fi =13 )

The response modes i, are then obtained as the solution of (3)
with f = f; Assuming that the forcing modes are normalised as

]’kHM}'k = 1, the kinetic energies of the response modes corre-
spond to the positive eigenvalues of the above eigenvalue prob-
lem, i.e. k,% = ﬁkH Miy,. Ranking the eigenmodes in decreasing
order of kinetic energy (7% > 7»% > --.), the leading modes (of
largest energy gain) have been used to reconstruct the flow fluc-
tuations (see for instance [8]).

The resolvent analysis is first performed for the mean-flow of
the periodic solution at o = 6.5° displayed in figure 3(a). Fig-
ure 4(a) shows the energy gain of the leading modes as a func-
tion of the forcing period 2m/®. A peak is clearly observed
around the forcing period 0.62, close to the flow period of 0.6.
The real part of the resolvent mode corresponding to that forc-
ing period is displayed in figure 5(a) with isocontours of vortic-
ity. The oscillating pattern in the streamwise direction is typical
of vortex shedding. However, a comparison with the pattern of
the fundamental harmonic of the periodic solution, shown in fig-
ure 5(b), reveals different shapes in the cross-stream direction,
the latter being more spread. For that angle-of-attack, the re-
solvent analysis well identifies the oscillating frequency of the
periodic solution, but it does not perfectly capture the spatial
structure of the fundamental harmonic.

‘We now turn to results of the resolvent analysis performed for
the angle-of-attack oo = 7.5°, for which we recall that two pe-
riodic solutions co-exist, a high-lift solution (black circles in
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Figure 4. Resolvent analysis of the time-averaged flow solutions for (a)
o =6.5° (b) oo = 7.5° (high-lift branch), (c) oo = 7.5° (low-lift branch,
red) and o = 7.75° (low-lift branch, green), and (d) o = 8°. The ener-
getic gain ké of the leading resolvent modes is displayed as a function
of the forcing period 27/ ®.
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Figure 5. (a) Resolvent mode, and (b) fundamental harmonic of the
periodic flow at o = 6.5°. The resolvent mode corresponds to the energy
peak in figure 4(a) for the forcing period 21t/® = 0.61. The fundamental
harmonic oscillates at period 7' = 0.6.

figure 2) and a low-lift solution (red circles). The energy gains
are displayed in figure 4(b) and (c), respectively, identified by
the same colors. Although both solutions are periodic (and thus
characterised by one fundamental frequency), we observe two
peaks in the resolvent analysis (in both cases). The first one is
obtained for the forcing period 21t/®m = 0.6 — 0.65 is close to
the period of the high-lift periodic solution. The second peak
obtained for the forcing period 27/w = 0.76 — 0.78 is close to
the period of the low-lift periodic solution. These two peaks are
also obtained for the resolvent analysis of the doubling-period
solution (green) and the sum of the forcing period is now close
to the flow period T = 1.6. No peak of energy is obtained at this
forcing period.

These two peaks clearly indicate the existence of two mech-
anisms of linear amplification, similarly to [10] for the flow
around an airfoil at higher Reynolds number Re = 10000 and
angle-of-attack oo = 10.5°. However, in the present case, the
two peaks are associated with similar frequencies and related to
the amplification of wake instabilities, not to Kelvin-Helmholtz
instabilities in the shear layer. Clearly, when the two periodic



solutions are getting close in the phase space (see Figure 3(e),
the resolvent analysis of the mean flow reveals the existence of
both linear mechanisms characterising each periodic solution.
As noted for oo = 6.5°, the resolvent response shown in figure
6(a) does not perfectly compare to the fundamental harmonic
shown in figure 6(b). Finally, when increasing the angle-of-
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Figure 6. (a) Resolvent mode of the high-lift periodic solution, and (b)
fundamental harmonics of the high-lift (top) and low-lift (bottom) pe-
riodic solutions at oo = 7.5°. The resolvent modes in (a) corresponds
to the two energy peaks in figure 4(b) for the forcing period (top)
21/ = 0.61 and (bottom) 21/ = 0.76. The fundamental harmonics
in (b) oscillate at the periods (top) 7 = 0.61 and (bottom) 7" = 0.76.

attack to oo = 8°, only the high-frequency peak of energy re-
mains in figure 4(d), corresponding to the flow period. The re-
sponse mode displayed in figure 7(a) does not so well approxi-
mate the fundamental harmonic shown in figure 7(b). This dis-
crepancy is probably due to the higher-harmonics terms (some-
how neglected in the resolvent analysis since embedded in the
linear forcing f), that play a role in transferring the energy be-
tween different flow harmonics [12].
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