DDR Memory Interference Optimization on Heterogeneous Multicore Platforms

CONCORDE PROJECT

Alfonso Mascareñas González 17/02/2022

DDR3 SDRAM Device: DDR3 Addressing

- Minimum division: Columns, rows, banks and ranks.
- Banks can treat commands independently from each other

8 banks for

 τ_0 τ_1 τ_2 τ_3 τ_4 τ_5

Task Set

Task Set

Task Set

Task and Memory Mapping Representation

The previous kind of maps can be represented as follows:

Bank	7	0	5	4	4	1	2	1	3	6	6	7
Core	0	7	4	5	5	1	3	1	2	6	6	0
Task	0	1	2	3	4	5	6	7	8	9	10	11

Alternatively, in one single row:

Task and Memory Mapping Representation

C = core $\tau = task$

Or even:

Multi-objective Optimization

How do we map tasks to cores and cores to banks? Is there a logic?

Objectives:

- <u>Increase Task Execution Parallelism</u> → *Minimize(Workload Variance)*
- <u>Decrease Maximum DDR Interference</u> → *Minimize(Maximum Interference Cost)*

 $\begin{aligned} &Minimize(Workload Variance) \Rightarrow \underline{Maximize}(Maximum Interference Cost) \\ &Minimize(Maximum Interference Cost) \Rightarrow \underline{Maximize}(Workload Variance) \end{aligned}$

Multi-objective Optimization

 $WCET_i$ = Worst Case Execution Time of τ_i in isolation IC(τ_i) = DDR memory interference cost for τ_i PE = Processing element = Core

• Cost functions:

Workload Variance =
$$\sqrt{\frac{\sum_{i=0}^{n-1} (WCET_i - avg(WCET))^2}{n}}$$

Maximum Interference Cost = $max([IC(\tau_0), ..., IC(\tau_{n-1})])$

• Constraints:

 $Deadline_i > WCET_i + IC(\tau_i) + (WCET_j | PE_j = PE_i)$

Meta-heuristics Multi-objective Optimization: Genetic algorithm

• Of all candidate offspring, the worst are discarded

Meta-heuristics Multi-objective Optimization: Genetic algorithm

• Of all candidate offspring, the worst are discarded

Task/Memory Pareto Front – Keystone II

At the end of the algorithms execution, we obtain different Pareto front

Task mapping on platform cores

The dominated solutions from all the algorithms are removed. Another Pareto front is obtained

Task mapping on platform cores

Task/Memory Map Evaluation – Keystone II

Some solutions are tagged for their evaluation

The maximum interference is measured for each solution

Task mapping on platform cores

Keystone II Task Mapping Validation

Task Mapping Solutions

Task/Memory Pareto Front – Sitara AM5728

At the end of the algorithms execution, we obtain different Pareto front

Task mapping on platform cores

The dominated solutions from all the algorithms are removed. Another Pareto front is obtained

Task mapping on platform cores

Task/Memory Map Evaluation – Sitara AM5728

Some solutions are tagged for their evaluation

Maximum Interference (Cycles) 10000 8000 7000 7000 0 0 **Best Solutions** >II III τv 0.5 1.5 2.0 2.5 0.0 1.0 3.0 1e9 Load Variance

Task mapping on platform cores

The maximum interference is measured for each solution

Sitara AM5728 Task Mapping Validation

Task Mapping Solutions

Task/Memory Mapping Logic

• Task-Core mapping:

- Stack most intensive tasks on the same core (sequential execution, i.e., no interference) → <u>Drawback</u> = Less parallelism
- Equally spread the tasks among the cores → <u>Drawback</u> = memory Interference
- Increase the number of active cores (more parallelism) → <u>Drawback</u>
 = Generally memory Interference
- Select the correct core type for the task (ARM,DSP): the execution time and interference vary → <u>Drawback</u> = None
- Core-bank mapping: Always try with a private bank and, when all of these are occupied (N°C > N°B), share bank

Why should we go for the private banks?

• For instance, let's compare the worst-case read transmission time cost, for the intra-bank and inter-bank case:

Why should we go for the private banks?

- Another example is the DDR memory PREcharge command worst-case interference cost (PRE):
 - $PRE^{intra} = t_{RP}$
 - $PRE^{inter} = 1$

where $t_{RP} \gg 1$

- And yet another example related to the DDR memory ACTive command worst-case interference cost (ACT):
 - $ACT^{intra} = t_{RCD}$ • $ACT^{inter} = t_{RRD}$

where $t_{RCD} > t_{RRD}$

Thank you for your attention