

Robotic System Specification Methodology Based on Hierarchical Petri Nets

Maksym Figat

Warsaw University of Technology, Poland Institute of Control and Computation Engineering

 $\begin{array}{c} Office \ national \ d'études \ et \ de \ recherches \ aérospatiales \ (ONERA), \ France \\ 02.12.2021 \end{array}$

European Union European Social Fund

Introduction	RSSM	RSHPN	Analysis	Experiments	Conclusions

PLAN OF PRESENTATION

Introduction

RSSM

RSHPN

Analysis

Experiments

Conclusions

Introduction $\bullet 000$	RSSM	RSHPN	Analysis	Translation	Experiments	Conclusions
Motivation						

MOTIVATION

- International Federation of Robotics (IFR) anticipates that number of service robots will triple in 2023 compared to 2019 [1],
- significant increase in the number of new robotic system implementations,
- development of software of a robotic system is a **challenge**,
- tools facilitating the design of such systems are in high demand,
- ▶ so far, neither a **universal method** for designing robotic systems nor a **universal architecture** for robotic systems has been developed [2].

Introduction 0000	RSSM	RSHPN	Analysis	Translation	Experiments	Conclusions
Motivation						

MOTIVATION II

Approaches to system development usually provide:

- ► freedom of choice,
- software modules supplemented with communication mechanisms [3],

However, they do not provide:

- ▶ guidelines,
- ► rules,

on **how to develop** a system that has to execute the required task, which is **evident** for Robot Operating System (ROS) or Open RObot COntrol Software (OROCOS).

The quality of the resulting systems depends primarily on:

skills,

experience of the designer.

Introduction 0000	RSSM	RSHPN	Analysis	Translation	Experiments	Conclusions
Motivation						

MOTIVATION III

European SPARC project [4] indicates that the model-based approach (i.e. Model Driven Engineering (MDE)) has the potential to become popular and play an important role in the design of robotic systems.

MDE:

- ▶ Introduces a **meta-model** and **design patterns**,
- Gives appropriate **balance** between guidance and flexibility ensuring appropriate system structure and operation [4].

Introduction 000•	RSSM	RSHPN	Analysis	Translation	Experiments	Conclusions
Objective of the w	vork					

Our objective is to develop a **methodology** for designing robotic systems based on **concepts from the field of robotics** and based on the **MDE approach**.

Introduction	RSSM •00000000	RSHPN	Analysis	Translation	Experiments	Conclusions

ROBOTIC SYSTEM SPECIFICATION METHODOLOGY

ROBOTIC SYSTEM SPECIFICATION METHODOLOGY

- ▶ A article in preparation,
- ▶ B Access 2020 [5], ICRA 2019 [6],
- ▶ C Automation 2019 [7],
- ▶ D RoMoCo 2017 [8], JINT 2019 [9], Automation 2018 [10].

Introduction	RSSM 00 00 00000	RSHPN	Analysis	Translation	Experiments	Conclusions
Structure						

STRUCTURE - SYSTEM DECOMPOSITION INTO AGENTS

B)

Introduction	RSSM ○○○○●○○○○	RSHPN	Analysis	Translation	Experiments	Conclusions
Structure						

STRUCTURE - SYSTEM DECOMPOSITION INTO COOPERATING AGENTS

Introduction	RSSM 00000●000	RSHPN	Analysis	Translation	Experiments	Conclusions
Activity						

Activity of robotic system \mathcal{RS}

- $\blacktriangleright \mathcal{RS} \text{ performs a task } \mathcal{T},$
- \mathcal{T} is composed of tasks \mathcal{T}_j performed by a_j ,
- T_j is composed of tasks $T_{j,v}$ performed by $s_{j,v}$,
- ► the execution of task $\mathcal{T}_{j,v}$ involves performing and switching between behaviours ${}^{s}\mathcal{B}_{j,v,\omega}$,
- ► subsystem $s_{j,v}$ switches between behaviours based on initial condition ${}^{s}f_{j,v,\alpha}^{\sigma}$.

Introduction	RSSM ○○○○○○ ○●○	RSHPN	Analysis	Translation	Experiments	Conclusions
Activity						

TRANSITION FUNCTION - DECOMPOSITION

$$[{}^{s}s_{j,v}^{i+1}, \; {}^{s'}y_{j,v,v'}^{i+1}] := \; {}^{s}f_{j,v,\gamma}\left({}^{s}s_{j,v}^{i}, {}^{s'}x_{j,v,v'}^{i}, {}^{s''}x_{j,v,v''}^{i}\right)$$

Canonical decomposition

Decomposition of ${}^{s}f_{j,v,\gamma}$ with respect to the **destination of** the calculated data: i.e. output buffer or internal memory buffer, a partial transition functions are created:

Decomposition by data access

Partial transition function $s,s' f_{j,v,\gamma,\psi}$ is decomposed due to the **availability of input data**, an overloaded transition function is created accepting **various combinations** of input buffers.

COMMUNICATION

- Inter-agent communication (using transmission buffer, and using environment),
- ▶ Intra-agent communication

Communication occurs always between a pair of subsystems, e.g. $s_{j,v}$ and $s'_{j',h}$:

$$(s_{j,v}) \rightarrow (s'_{j',h})$$

Sender acting in mode:

▶ blocking \equiv B,

- blocking with timeout \equiv BT,
- ▶ non-blocking \equiv NB

Receiver acting in mode:

- ► blocking,
- ▶ blocking with timeout,
- non-blocking

For a pair of subsystems 9 different combinations of communication models are possible!

Introduction	RSSM	RSHPN ●0000000	Analysis	Translation	Experiments	Conclusions
HPN						

HPN

Transition associated with:

- ▶ condition -C,
- ▶ priority $\mathcal{P}r$,
- ▶ timeout

Place associated with:

- ▶ operation \mathcal{O} ,
- number of tokens

Page associated with: Petri net (HPN)

Introduction	RSSM	RSHPN 0000000	Analysis	Translation	Experiments	Conclusions
HPN						

PLACE FUSION

Introduction

RSHPN ○○●000000

RSSM

Analysis

Translation

Experiments

Conclusions

RSHPN

ROBOTIC SYSTEM HPN (RSHPN) META-MODEL

Introduction RSSM RSHPN Analysis Translation Experiments Conclusions RSHPN

RSHPN MODELLING A ROBOTIC SYSTEM

RSSM RSHPN 00000000

Analysis

Translation

Experiments

RSHPN

RSHPN - ACTION LAYER

RSHPN 000000000

Analysis

Translation

Experiments

Conclusions

General communication model

COMMUNICATION MODEL

GENERAL COMMUNICATION MODEL

Introduction	RSSM	RSHPN 0000000	Analysis	Translation	Experiments	Conclusions
General communi	ication mod	el				

Communication model depends on timeouts

COMMUNICATION		Receive				
MODEL		timeout ₂ = 0	timeout ₂ = ∞	$0 < timeout_2 < \infty$		
	$timeout_1 = 0$	NB-NB	NB-B	NB-BT		
EN	$timeout_1 = \infty$	B-NB	B-B	B-BT		
∞	$0 < timeout_1 < \infty$	BT-NB	BT-B	BT-BT		

where:

- ▶ NB non-blocking mode,
- ▶ B blocking mode,
- ▶ BT blocking mode with timeout.

Introduction	RSSM	RSHPN	Analysis ●○○○	Translation	Experiments	Conclusions

RSHPN ANALYSIS

RSHPN properties analysis

RSHPN complexity analysis

Introduction	RSSM	RSHPN	Analysis $0 \bullet 00$	Translation	Experiments	Conclusions
RSHPN propertie	s analysis					

RSHPN properties analysis - Idea

- ▶ decomposition of RSHPN into layers, and panels,
- analysis of Petri nets from panels (reduction methods used),
- analysis of Petri nets associated with communication and nets composed of multiple layers,
- ▶ three types of PN: trivial, unchangeable, user defined,

Properties verification:

- ▶ 1-boundedness, safety,
- ▶ lack of deadlocks,

Analysis methods:

- ▶ graphical (for trivial nets),
- ▶ reachability graph,
- ▶ methods based on place and transition invariants

Introduction	RSSM	RSHPN	Analysis ○○●0	Translation	Experiments	Conclusions
RSHPN complexit	У					

RSHPN COMPLEXITY ANALYSIS

Complexity depends on number of places/transitions/edges The higher the complexity, the more difficult/longer it is to develop a Petri net. Also, the greater the error prone.

Number of places/pages in
$$\mathcal{H}$$
:

$$places(\mathcal{H}) = \sum_{a_j \in \hat{a}} \left(\sum_{s_{j,v} \in \hat{s}_j} |{}^s \hat{\mathcal{B}}_{j,v}| \cdot \left(2^{|_x \hat{s}_{j,v}|} \cdot \left(|_x \hat{s}_{j,v}| + 1 \right) + 8 \cdot |_x \hat{s}_{j,v}| + 10 \cdot |_y \hat{s}_{j,v}| + 16 \right) + 3 \cdot |\hat{s}_j| \right) + 3 \cdot |\hat{a}| + 1$$
(1)

Number of transitions in \mathcal{H} : transitions(\mathcal{H}) = $\sum_{a_j \in \hat{a}} \left(\sum_{s_{j,v} \in \hat{s}_j} \left(|{}^s \hat{\mathcal{B}}_{j,v}| \cdot \left(\left(|y \hat{s}_{j,v}| + 1 \right) \left(2^{|x \hat{s}_{j,v}| + 1} \right) + 4 \cdot |y \hat{s}_{j,v}| + 3 \cdot |x \hat{s}_{j,v}| + 10 \right) + |{}^s \hat{f}_{j,v}^{\sigma}| \right) + 2 \cdot |\hat{s}_j| + 2 \cdot |\hat{a}| + 2$ (2)

Number of edges in \mathcal{H} : $\operatorname{edges}(\mathcal{H}) = \sum_{a_j \in \hat{a}} \left(\sum_{s_{j,v} \in \hat{s}_j} \left(|{}^s \hat{\mathcal{B}}_{j,v}| \cdot \left(2^{|_x \hat{s}_{j,v}|+2} \cdot \left(|_y \hat{s}_{j,v}|+1 \right) + 21 \cdot |_y \hat{s}_{j,v}| + 16 \cdot |_x \hat{s}_{j,v}| + 20 \right) + 2 \cdot |{}^s \hat{f}_{j,v}^{\sigma}| \right) + 6 \cdot |\hat{s}_j| + 4 \cdot |\hat{a}| + 1$ (3)

Introduction	RSSM	RSHPN	Analysis ○○0●	Translation	Experiments	Conclusio
RSHPN comple	xitv					

RSHPN COMPLEXITY ANALYSIS

Nr	$ \hat{a} $	$ \hat{s}_j $	$ {}^s\hat{\mathcal{B}}_{j,v} $	$ x\hat{s}_{j,v} $	$ y\hat{s}_{j,v} $	$\operatorname{places}(\mathcal{H})$	$\operatorname{transitions}(\mathcal{H})$	$\operatorname{edges}(\mathcal{H})$	Total
1	1	1	1	1	1	45	32	86	163
2	1	1	1	5	5	125	76	266	467
3	5	1	1	1	1	221	152	426	799
4	5	1	1	5	5	621	372	1326	2319
5	5	5	1	1	1	1041	712	2046	3799
6	5	5	5	1	1	4841	3312	9546	17699
7	5	5	5	5	5	14841	8812	32046	55699

Note:

For system no. 7, 55699 elements must be created!

Conclusion:

RSHPN \mathcal{H} must be generated **automatically**! \Rightarrow RSSL

ROBOTIC SYSTEM SPECIFICATION LANGUAGE

- a domain language for specifying multi-agent robotic systems,
- based on concepts derived from robotics, in particular the embodied agent,
- RSSL specifies both the structure and the activity of a robotic system,
- RSSL is specified using a context-free grammar expressed in BNF form.

Introduction	RSSM	RSHPN	Analysis	Translation $0 \bullet 0$	Experiments	Conclusions
Robotic System	Specificatio	n Language				

RSSL ENABLES RSHPN META-MODEL PARAMETERIZATION

Layer/Sublayer	Parameters
Multi-agent robotic	â
system	
Agent	for each $a_j \in \hat{a}$: \hat{s}_j
Subsystem	for each $s_{j,v} \in \hat{s}_j$: ${}^s\hat{\mathcal{B}}_{j,v}$, ${}^s\hat{f}_{j,v}^{\sigma}$, ${}_y\hat{s}_{j,v}$, ${}_x\hat{s}_{j,v}$ and ${}^s\mathcal{T}_{j,v}$
Behaviour	for each ${}^{s}\mathcal{B}_{j,v,\omega} \in {}^{s}\hat{\mathcal{B}}_{j,v}$: ${}^{s}f_{j,v,\gamma}, {}^{s}f_{j,v,\xi}^{\tau}, {}^{s}f_{j,v,\beta}^{\epsilon}$
Canonical decompo-	for each ${}^{s}f_{j,v,\gamma}$: ${}^{s}\hat{f}_{j,v,\gamma}$
sition	
Data availability	for each ${}^{s}f_{j,v,\gamma,\psi} \in {}^{s}\hat{f}_{j,v,\gamma} : {}^{s}\hat{f}_{j,v,\gamma,\psi}$
Send arrangement	for each ${}^{s}\mathcal{B}_{j,v,\omega} \in {}^{s}\hat{\mathcal{B}}_{j,v}$: sending_order
Send mode	for each ${}^{s}_{y}s_{j,v,v'} \in {}^{s}_{j,v}$ while executing ${}^{s}\mathcal{B}_{j,v,\omega} \in {}^{s}\hat{\mathcal{B}}_{j,v}$:
	$timeout_1$
Receive arrangement	for each ${}^{s}\mathcal{B}_{j,v,\omega} \in {}^{s}\hat{\mathcal{B}}_{j,v}$: receiving_order
Receive mode	for each ${}^{s}_{x}s_{j,v,v'} \in {}^{s}\hat{s}_{j,v}$ while executing ${}^{s}\mathcal{B}_{j,v,\omega} \in {}^{s}\hat{\mathcal{B}}_{j,v}$:
	$timeout_2$

Introduction	RSSM	RSHPN	Analysis	Translation $\circ \circ \bullet$	Experiments	Conclusions
Translation						

TRANSLATION

Introduction	RSSM	RSHPN	Analysis	Experiments $\bullet \circ \circ \circ \circ \circ \circ \circ$	Conclusions

EXPERIMENTS

- ▶ LWR4+ manipulator (specified from scratch),
- ▶ Table-tennis ball collecting robot (developed from scratch),
- Velma robot transferring balls (extended based on existing controller)

Introduction	RSSM	RSHPN	Analysis	Experiments $0 \bullet 00000$	Conclusions
LWR4+ manipulator					

LWR4+ MANIPULATOR

Simulated LWR4+ manipulator with 7 degrees of freedom controlled using impedance control. Its end-effector moves along a circular trajectory (only its Cartesian position is controlled).

Introduction RSSM RSHPN Analysis Ex.

Experiments

Conclusions

Table-tennis ball collecting robot

TABLE-TENNIS BALL COLLECTING ROBOT

Ball collecting robot and the environment; camera images: (c) Raspberry Pi, (d) Intel Realsense D435; detected balls (in rectangles), closest ball (in circle).

Introduction	RSSM	RSHPN	Analysis	Experiments 0000000	Conclusions
Table-tennis ball coll	ecting robot				

BALL-COLLECTING ROBOT - STRUCTURE

BALL-COLLECTING ROBOT – ACTIVITY

Introduction RSSM RSHPN Analysis Experiments Conclusions

VELMA ROBOT TRANSFERRING BALLS

Transfer of a ball from the cup located in the cabinet to the cup initially relocated from one table to the other.

BALLS TRANSFER – STRUCTURE AND ACTIVITY

Introduction	RSSM	RSHPN	Analysis	Experiments	Conclusions ●00

CONCLUSIONS

- ▶ RSSM methodology based on MDE has been proposed,
- ▶ a parameterized RSHPN meta-model was proposed,
- ▶ RSHPN Tool for RSHPN creation was developed,
- ▶ RSHPN network analysis was performed,
- RSSL domain language was developed for the specification of robotic systems,
- ▶ RSHPN meta-model and RSSL approaches were verified

PERSPECTIVES ON CONTINUING RESEARCH

- RSHPN extension of the meta-model (e.g., time considerations),
- ▶ time-related analysis,
- generation of controller code for OROCOS,
- verification of the approach on a real Velma robot

Introduction	RSSM	RSHPN	Analysis	Experiments	Conclusions 00●

Thank you for your attention!

The program is co-financed from the European Social Fund under the Operational Program Knowledge Education Development, a non-competition project entitled "International scholarship exchange of doctoral students and academic staff" implemented as part of the Activity specified in the application for co-financing of the project no. POWR.03.03.00-00-PN13 / 18.

ANG. REFERENCES I

- IFR International Federation of Robotics, Executive Summary World Robotics 2020 Service Robots, [Online], Available: https://ifr.org/img/worldrobotics/Executive_Summary_WR_2020_ (2020).
- D. Kortenkamp, R. Simmons, D. Brugali, Robotic systems architectures and programming, in: B. Siciliano, O. Khatib (Eds.), Springer Handbook of Robotics, 2nd Edition, Springer, 2016, pp. 283–306.
 doi:10.1007/978-3-540-30301-5_9.

ANG. REFERENCES II

- M. Reichardt, T. Föhst, K. Berns, An overview on framework design for autonomous robots, it - Information Technology 57 (2) (2015) 75-84.
 doi:10.1515/itit-2014-1065.
- Robotics 2020 Multi-Annual Roadmap For Robotics in Europe - Horizon 2020 Call ICT-2017, SPARC The Partnership for Robotics in Europe: European Commision and euRobotics AISBL (2016).
 - URL https:
 - //www.eu-robotics.net/cms/upload/topic_groups/ H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf

ANG. REFERENCES III

- M. Figat, C. Zieliński, Robotic system specification methodology based on hierarchical petri nets, IEEE Access 8 (2020) 71617–71627.
- M. Figat, C. Zieliński, Methodology of designing multi-agent robot control systems utilising Hierarchical Petri Nets, in: 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 3363–3369. doi:10.1109/ICRA.2019.8794201.
- M. Figat, C. Zieliński, "hierarchical petri net representation of robot systems", in: R. Szewczyk, C. Zieliński, M. Kaliczyńska (Eds.), Automation 2019, "Springer International Publishing", Cham, 2019, pp. 492–501. doi:10.1007/978-3-030-13273-6_46.

ANG. REFERENCES IV

- M. Figat, C. Zieliński, R. Hexel, Fsm based specification of robot control system activities, in: 2017 11th International Workshop on Robot Motion and Control (RoMoCo), 2017, pp. 193–198. doi:10.1109/RoMoCo.2017.8003912.
- C. Zieliński, M. Figat, R. Hexel, Communication within multi-fsm based robotic systems, Journal of Intelligent & Robotic Systems 93 (3) (2019) 787-805. doi:10.1007/s10846-018-0869-6.

ANG. REFERENCES V

 C. Zieliński, M. Figat, R. Hexel, Robotic systems implementation based on fsms, in: R. Szewczyk,
 C. Zieliński, M. Kaliczyńska (Eds.), Automation 2018: Advances in Automation, Robotics and Measurement Techniques, Springer, 2018, pp. 441–452. doi:10.1007/978-3-319-77179-3_41.