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Numerical simulations while applicable in predicting reactive flows occurring in combustion chambers 
of aerospace engines are extremely costly due to high-resolution grids, numerous species, and 
detailed models necessary to capture the existing chemical reactions and their interaction with the 
underlying flow. Solutions to reduce the cost of these models while maintaining their accuracy and 
predictability would hence constitute a great contribution to the combustion and chemical propulsion 
communities.   

Techniques based on machine learning, and in particular, deep Learning, can offer an alternative to 
classical physics-based approaches. In particular, machine learning has proven to be very efficient in 
predicting combustion-based quantities of interest (temperature, chemical product concentrations, 
pressure, reaction rate, etc.) with much lower cost. According to Lapeyre et al. [1], the convolutional 
neural network is able to predict the transient behavior of detailed simulations better than algebraic 
(physics-based) models. AI tools also have the ability to clarify links and establish correlation between 
quantities involved in complex physical phenomena, such as, for instance, the MILD combustion for 
which the PDF shape is found substantially different from that of a conventional flame [2]. The AI 
approach can also bypass very difficult mathematical optimization problems for choosing the most 
adapted numerical model for a particular region of the flow field while reducing the computation cost 
[3]. Furthermore, using unsupervised learning strategies (such as clustering algorithms), it is possible 
to identify different regions of the flow (dynamically or reactively) for which separate and dedicated 
modeling approached can be employed [4]. 

However, most of studies, involving AI algorithms in combustion modeling, use a single geometry 
and/or operational condition to build the necessary training data [5]. Consequently, they lack of 
generalizability and interpretability [6]. This is not just a problem faced in combustion modelling but 
pertains to most AI-driven approaches applied in scientific domains dealing with non-linear or 
unsteady systems. The infusion of physical insight into the training has shown to improve 
generalizability in some scientific application [6, 7]. Nevertheless, the ability to transpose the obtained 
results to another flow configuration is yet to be demonstrated, and remains an open question. Such 
a statement prevents the regular use of AI-based CFD simulations since the confidence in the trained 
model is a critical aspect [6]. 
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The underlying unsteady flow, the mixing efficiency, the chemical power distribution and resulting 
instabilities are intimately related to the geometry of the chamber. However, the current 
methodologies do not warrant the extrapolation of the models from one geometry to the other. One 
way of integrating the geometry in the model is to use data obtained in multiple geometrical 
configurations [8]. However, this approach is too expensive to be feasible in practice, since it requires 
the generations of a large amount of data, and compromises the advantage of using AI. In order to 
avoid generating expensive and time-consuming data, some studies use Transfer Learning 
approaches [9] so as to integrate the change in the geometry with limited data. This technique 
consists in transferring the knowledge obtained by a training realized in one domain to another one 
using minimal data from the new configuration. This transfer is however only possible when the two 
domains are sufficiently similar and can thereby significantly reduce the amount of data required for 
training the model on the target domain. However, in the case of industrial combustion chambers, 
whereby geometries are very different from one to the other, the results are not warranted which 
justifies further investigation.  

Hitherto, training cases are very close to the application case. Hereafter, the effects of less obvious 
database on results must be measured to assess the generalization capability of the data-driven 
approaches for reacting flow CFD simulations. The non-linear interaction between elements of the 
database could lead to a completely unexpected new flow configuration, potentially unphysical. 
Research works on the measurement of the result alterations, the database structure and the training 
processes are therefore required to propose a framework to enlarge the generalization capability of 
the data-driven approaches for CFD flow field generation. 

Objectives: 

The main objective of the thesis is to develop a framework to design an efficient database and 
organize the training able to promote the geometrical generalization capability of a data-driven model 
for CFD reacting flow field generation. An underlying objective is to measure the alterations of the 
ML algorithm results when considering different geometry configurations. 

Thesis approach: 

The present work is focused on a 2D configuration of a duct CH4/Air reacting flow with a shaped wall 
(Fig. 1) as reference case. CEDRE, the CFD’s software of ONERA, will be used for the computations. 
The top wall is altered according to the geometry configuration to study whereas the bottom wall 
remains unchanged. The study will start with subsonic steady compressible 2D laminar reacting and 
frozen flows. As the thesis progresses, turbulence and unsteadiness will be added. The walls are no-
slip and adiabatic. The equivalence ratio of reference is 0.82, corresponding to the case of the step 
flow treated in MICAEDI facility [14].  

 

The ML-based algorithm will use, as input, the geometry and the boundary conditions of the 
combustion chamber (Fig.2). Non-dimensional approach will be used to maximize the applicability 
range. The output will be the pressure, the temperature, the species mass fractions and the velocity 

Figure 1: Reference work case. 
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flow fields. ML-framework is designed to generate flow fields from a complex combustion chamber 
geometry and specific boundary conditions. In the present thesis, all walls are assumed no-slip and 
adiabatic. ML algorithm is trained from a database built from selected basic elements provided by 
numerical simulations of variations of the elementary reference case with changing the shape of the 
top wall. The selection, treatment, division and training organization processes are part of the objects 
of the thesis: several methods will be studied and assessed to provide some understanding elements 
to control the non-linear trends of the synthesis process and limit the occurrence of non-physical 
solutions due to the strongly non-linearity of reacting flow Navier-Stokes equations and ML 
approaches.  

 

 

 

For all the databases, the considered maximum ranges are from 0.1 to 0.6 for the Mach number and 
from 100 to 10000 for Reynolds number. The Damköhler number range is from 0.01 to 100. The 
meshes refinement will be intentionally reduced to simulate with a reasonable cost the overall 
considered cases, as the objective will be assessed qualitatively. 

The database generation processes will target to provide a minimal number of elementary cases for 
maximal applicability in the context of combustion chamber. For that, several kinds of database must 
be built. Four levels of database is considered: 

• Homogeneous frozen flow: the treated cases display the most numerous configurations 
comparing with others. Only one represented species is used, as only aerodynamics is 
regarded; 

• Heterogeneous frozen flow: the treated cases consider a heterogeneous distributions. 
Arbitrary source terms or inflows with different species distributions are considered to get a 
database of the heterogeneous effects of the species transportation in the flow; 

• Premixed flame flow: the treated cases consider a reacting flow with a pre-mixed inflow. In 
those cases, the geometry or a body will be used to hold the flame; 

Figure 2: Principle scheme of the elementary data-driven method and approach for producing 
synthetically flow fields. 
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• Non-premixed flame flow: the oxidizer and the fuel are injected separately in positions defined 
by the configurations. 

Several geometrical configurations of the top wall used for the database allow to form a set of 
canonical problems (convergent, divergent duct flows, step-flow, flame-holder in a duct, etc.). For 
each configurations, geometry variations will be considered (step wall, injector positions, length to 
height ratio, slope angle of the top wall, etc.). The maximum calculations will be around one 
thousand. However, each flow field will be divided on hundreds of elements to feed the ML algorithm. 

 

The main target is to measure the ability of the database methodology and the ML design to 
reproduce the dominant flow patterns as well as reasonable estimation of quantities of interest. The 
criteria to assess the quality of the results are the ability to reproduce the main phenomena involved 
in the flow field (recirculation zones, flame shape and position, unsteadiness, etc.), the magnitude of 
the characteristic non-dimensional numbers (Re, Da, Ma, etc.), and the conformity with the 
fundamental physical conservation laws. 

Our ML approach consists of a two-sided idea, which is capable of dealing with unknown underlying 
function spaces, uncertainty in data and possible explanations w.r.t data generating scenarios. First 
part covers two types of PINNs (classical Physics-informed neural networks), which is a type of deep 
learning that can take into consideration the knowledge of the physical phenomenon in question. The 
knowledge can be governing partial differential equations (PDEs), for example. This approach allows 
to be more faithful to the physic with a lower amount of dataset, compared to a data-driven deep 
learning. Based on the discussion opened in [6] and the possible problems w.r.t classical PINNs, we 
are also looking for epistemic and aleatoric uncertainty, which is covered by the Bayesian view in 
terms of data and model prediction. The methodical equivalent in this approach is the Baysian-PINN 
[10, 11]. Last but not least, we would like to examine the conditions of the data-generating 
distribution through the possibilities of the Generative Adversarial Networks (GAN). Those GANs 
(might be considered as an alternative approach when PINNs turns out to be difficult to integrate.) 
are a promising tool for recovering data generating processes, which we would like to map back to 
the different settings with methods coming from Latent Space Arithmetic’s [12]  

To validate and assess the performances of the several developed ML approaches, an experimental 
database, provided by ONERA, will be used to validate the approach for comforting its practical use 
in industrial case. Those data are provided by a set of test cases obtained previously at ONERA in 
configurations close to propulsive systems. They consist of combustion imaging data obtained at high 
acquisition rates, e.g., [13, 14]. The studied cases can be treated in 2D gaseous phase only, fitting 
with the scope the present thesis. The exact geometries and operating conditions will be used in the 
ML input and the results are treated and compared with experimental visualization results. Here, the 
purpose is mainly qualitative, which is in line with the main objective of the thesis. Stable flows are 
considered. However, unstable cases could be foreseen to assess the capability of the ML approaches 
to catch the critical cases of industrial configurations. 
 
Methodologically, a classical approach is firstly adopted, consisting on considering one configuration 
for the database and training the ML algorithm with it to synthetize flow fields from an input geometry 
of the same configuration. A first performance assessment is carried out. Then, the database is 
altered with other configurations. The performances of the ML algorithm is assessed again, giving a 
first measurement of the effects of geometry configuration on the flow field generations of the ML 
algorithm. According to the obtained results, more complex approaches will be considered. 
 
The first part of thesis will be dedicated to building the training data using CEDRE’s simulations and 
generalization framework at ONERA Palaiseau’s center. The frozen database is firstly built to assess 
the effects of geometry on aerodynamics in frozen flows generated by a first design of the ML 
algorithms. Then the premixed database is used to start the study of the reacting flows. The MICAEDI 
results will be considered in the validation process of the database and ML design. The last database 



 

GEN-F160-10 (GEN-SCI-029) 

to build is the diffusion flame database. Several meetings with DLR’s team are planned to build the 
first steps of ML algorithms. The second part of the thesis will be dedicated to the ML development 
and assessment of the database strategies and the chosen methodology, at DLR Cologne’s center. 
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