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Présentation du projet doctoral, contexte et objectif 
Flow control consists of introducing controlled disturbances to improve the operating performance of a 
dynamical system. In fluid mechanics, we can seek to improve aerodynamic performance (reduction of drag 
or instabilities, for example) while minimizing the energy consumed to introduce the control. For reasons of 
energy efficiency and robustness, we would like to develop closed-loop control strategies, i.e. taking into 
account the state of the system to determine at each time instant the optimal forcing to introduce. Historically, 
much work has been carried out using model-based approaches, developed from first-principles equations 
(Navier Stokes equations, for example) or simplified dynamical models based on different reduced basis (POD, 
DMD, stability modes, etc.). However, these models are known of being fragile in terms of parametric modeling, 
and are therefore often poorly suited to flow control applications. The aim of this thesis is to develop simplified 
dynamical models of separated flows using data-driven modeling approaches, and to use these models 
to develop closed-loop control strategies. 

As linear control is a well-established control method, it may be interesting to model non-linear turbulent flows 
via linearized models. In this context, separated flows exhibiting bistability phenomena are of particular interest, 
due to their dynamical and modeling complexities. Indeed, bistable separation flows are characterized by two 
attracting equilibria and random switches from one to the other under the influence of finite-amplitude external 
perturbations. This type of behavior is found on multiple applications ranging from automotive (recirculation in 
the wake of a car [1]) to aerospace (vortex developing over a fighter aircraft/missile nose cone at high angle 
of attack [2]). In the automotive case, the asymmetric wake causes increased drag compared to a symmetric 
one, which penalizes fuel consumption. In the nose cone case, unsteady loads are detrimental to 
maneuverability and safety of the vehicle. Figure 1 shows the case of flow in a diffuser, which will be particularly 
used in this thesis to develop the methods. 

For control purposes, the main challenge is to be able to predict the seemingly erratic behavior of bistable 
systems under the influence of external noise, i.e. random switches, using real-time data from sensors (see 
Fig. 1(b)). The aim of this thesis is therefore to develop new tools and methodology for modelling and 
control of bistable flows from data, by coupling state-of-the-art machine learning techniques with 
dynamical system theory. 



 

GEN-F160-10 (GEN-SCI-029) 

 

Figure 1: Diffuser flows with bistability. (a) Different types of flows in the diffuser. (b) Configuration with sensors to 
measure upstream disturbances and system state. 

 

Several ideas will be investigated during this PhD. One option is to augment linear models based on the 
Koopman operator [5], by learning an ad hoc nonlinear term, which should activate slightly before bifurcation 
occurs [6,7]. As an illustration, Figure 2 shows that a single linearized model cannot describe the complete 
wake flow dynamics around a circular cylinder. 

 
 

Another option is to rely on echo state networks based on reservoir computing (see Figure 3). It has been 
shown that these networks may be used in chaotic systems to anticipate extreme events well beyond the 
characteristic predictability time [4]. This technique is therefore a good candidate for forecasting subcritical 
bifurcations in stochastically forced systems too. Finally, approaches blending modern nonlinear observer 
theory with machine learning will be investigated [9]. 

 

 

After the dynamics modelling phase, closed-loop control will be implemented using model predictive control 
[10]. This powerful framework takes full-advantage of the data by constantly re-tuning the control signal using 
receding-horizon optimization. It can also be made adaptive by constantly retuning the model on-the-fly using 
incoming data. 

 
 
 
 

Figure 3: Nonlinear dynamical model using reservoir computing [2]. 

Figure 2: Koopman mode modelling for two invariant solutions. The case of the cylinder wake flow configuration [8]. 
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