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 Hypersonic vehicles are in the centre of developments for future space (e.g. Moon-to-Earth, Orbit-
to-Earth) and civil transportations (in the spirit of the Concorde). Although such vehicles have been 
studied in the past (e.g. Single-Stage-To-Orbit (SSTO), re-entry capsules), new vehicle designs 
and their corresponding subsystems are more complex and require functioning under stringent 
constraints and specifications. These are particularly oriented in enhancing passenger comfort and 
safety. In order to guarantee increased performances despite this plethora of constraints as well 
as model uncertainties (e.g. aerodynamic, aero-elasticity) and perturbations (e.g. wind-gusts), it is 
imperative to develop innovative control algorithms. 
 Throughout the last 30 years of active research on the control of hypersonic vehicles a number of 
different methodologies has been applied such as classical linear, robust, dynamic inversion, 
adaptive, sliding mode, backstepping, see [2-7] and [1] for a more exhaustive list. However, due to 
the complex nature of hypersonic vehicles (e.g. high angle-of-attack flight conditions, aero-elastic-
propulsive couplings) current designs are not satisfactory, providing conservative performance and 
safety guarantees that further result in under-exploiting the advanced capabilities of such vehicles. 
The most popular control design approach for aerospace applications in general is robust control 
[8]. It proposes a systematic design and a number of adapted toolboxes for gain selection and 
simulation. Furthermore, the design specifications (temporal performances, robustness) as defined 
in the aerospace industry are easily integrated in the robust control context. These advantages 
render robust control (H-infinity in particular) a strong candidate for a successful design for the 
control of a hypersonic vehicle. Drawbacks of robust control are that it cannot easily accommodate 
for parameter variations and that it can lead to conservative designs as it relies on the linearization 
of the system about an operation point (which usually is not even perfectly known).  
 On the other hand, nonlinear and adaptive control designs provide mathematical tools capable of 
accounting for nonlinearities and uncertainties during the whole envelope. Such designs can allow 
exploiting to the maximum the dynamic capabilities of the vehicle. The major drawback of such 
designs is that they cannot be rendered systematic as they are model-dependent and that there is 
a lack of available toolboxes. In addition, design specifications can be difficulty integrated a priori 
in the synthesis phase. 
 The complementarity of robust and nonlinear techniques suggests that their possible combination 
could lead to significantly elevated closed-loop performances. This Phd thesis aims at exploring 
this research avenue. 
 To this end, a first natural idea will be to apply the widely used Nonlinear Dynamic Inversion (NDI) 
[9,10], that will allow to put the system dynamics in an almost linear form and without neglecting 
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the nonlinear terms. Then, a robust (Hinfinity) synthesis step will lead to an effective control law 
valid in the complete flight envelope.  Furthermore, a more application-realistic version of NDI that 
directly accounts the available sensors, termed Incremental NDI (INDI) [11-14], will be used. A 
major advantage of this alternative design is that it provides increased robustness with respect to 
uncertainties in the aerodynamic model. To further enhance the performances of the INDI/Hinf 
control law with respect to safety (state, inputs) constraints, we will explore the use of Barrier-
Lyapunov functions (BLF) [15,16]. Such function are types of Lyapunov function that can be used 
to ensure that the system converges to a desired trajectory/equilibrium while making sure that 
system trajectories does not enter a particular unsafe region. 
 The objective of this Phd is to explore the systematic combination of robust (H infinity) and 
nonlinear (INDI and BLF-enhanced) control techniques with the goal of enhancing closed-loop 
performances for hypersonic vehicles. The closed-loop performances will be evaluated on the 6-
DoF model of NASA’s X30 hypersonic aircraft, called the General Hypersonic Aerodynamic 
Example (GHAME) [17]. 
 The Phd thesis will be organised as follows:  Modelling and simulation of the GHAME vehicle, 
bibliographical overview of control design techniques with a focus on H-infinity/NDI/INDI, H-
infinity/NDI/INDI control design applied to the GHAME vehicle, bibliographical overview on 
barrier/barrier-Lyapunov functions for safety specifications, BLF-enhanced (I)NDI control design for 
GHAME. 
 This Phd thesis will be co-advised by Dr. Ioannis SARRAS (ONERA) and Profs Spilios 
THEODOULIS, Erik-Jan van KAMPEN and Coen DE VISSER (TU Delft). The candidate is 
expected to spend equal time at ONERA (Palaiseau, FRANCE) and TU Delft (Delft, The 
Netherlands). 
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