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 Hypersonic vehicles are in the centre of developments for future space (e.g. Moon-to-Earth, Orbit-to-Earth) 
and civil transportations (in the spirit of the Concorde). Although such vehicles have been studied in the past 
(e.g. Single-Stage-To-Orbit (SSTO), re-entry capsules), new vehicle designs and their corresponding 
subsystems are more complex and require functioning under stringent constraints and specifications. These 
are particularly oriented in enhancing passenger comfort and safety. In order to guarantee increased 
performances despite this plethora of constraints as well as model uncertainties (e.g. aerodynamic, aero-
elasticity) and perturbations (e.g. wind-gusts), it is imperative to develop innovative control algorithms. 
 Throughout the last 30 years of active research on the control of hypersonic vehicles a number of different 
methodologies has been applied such as classical linear, robust, dynamic inversion, adaptive, sliding mode, 
backstepping, see [2-7] and [1] for a more exhaustive list. However, due to the complex nature of hypersonic 
vehicles (e.g. high angle-of-attack flight conditions, aero-elastic-propulsive couplings) current designs are not 
satisfactory, providing conservative performance and safety guarantees that further result in under-exploiting 
the advanced capabilities of such vehicles. 
The most popular control design approach for aerospace applications in general is robust control [8]. It 
proposes a systematic design and a number of adapted toolboxes for gain selection and simulation. 
Furthermore, the design specifications (temporal performances, robustness) as defined in the aerospace 
industry are easily integrated in the robust control context. These advantages render robust control (H-infinity 
in particular) a strong candidate for a successful design for the control of a hypersonic vehicle. Drawbacks 
of robust control are that it cannot easily accommodate for parameter variations and that it can lead to 
conservative designs as it relies on the linearization of the system about an operation point (which usually is 
not even perfectly known).  
 On the other hand, nonlinear and adaptive control designs provide mathematical tools capable of accounting 
for nonlinearities and uncertainties during the whole envelope. Such designs can allow exploiting to the 
maximum the dynamic capabilities of the vehicle. The major drawback of such designs is that they cannot 
be rendered systematic as they are model-dependent and that there is a lack of available toolboxes. In 
addition, design specifications can be difficulty integrated a priori in the synthesis phase. 
 The complementarity of robust and nonlinear techniques suggests that their possible combination could lead 
to significantly elevated closed-loop performances. This Phd thesis aims at exploring this research avenue. 
 To this end, a first natural idea will be to apply the widely used Nonlinear Dynamic Inversion (NDI) [9,10], 
that will allow to put the system dynamics in an almost linear form and without neglecting the nonlinear terms. 
Then, a robust (Hinfinity) synthesis step will lead to an effective control law valid in the complete flight 
envelope.  Furthermore, a more application-realistic version of NDI that directly accounts the available 
sensors, termed Incremental NDI (INDI) [11-14], will be used. A major advantage of this alternative design is 
that it provides increased robustness with respect to uncertainties in the aerodynamic model. To further 
enhance the performances of the INDI/Hinf control law with respect to safety (state, inputs) constraints, we 
will explore the use of Barrier-Lyapunov functions (BLF) [15,16]. Such function are types of Lyapunov function 
that can be used to ensure that the system converges to a desired trajectory/equilibrium while making sure 
that system trajectories does not enter a particular unsafe region. 
 The objective of this Phd is to explore the systematic combination of robust (H infinity) and nonlinear (INDI 
and BLF-enhanced) control techniques with the goal of enhancing closed-loop performances for hypersonic 
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vehicles. The closed-loop performances will be evaluated on the 6-DoF model of NASA’s X30 hypersonic 
aircraft, called the General Hypersonic Aerodynamic Example (GHAME) [17]. 
 The Phd thesis will be organised as follows:  Modelling and simulation of the GHAME vehicle, bibliographical 
overview of control design techniques with a focus on H-infinity/NDI/INDI, H-infinity/NDI/INDI control design 
applied to the GHAME vehicle, bibliographical overview on barrier/barrier-Lyapunov functions for safety 
specifications, BLF-enhanced (I)NDI control design for GHAME. 
 This Phd thesis will be co-advised by Dr. Ioannis SARRAS (ONERA) and Prof Spilios THEODOULIS, Erik-
Jan van KAMPEN and Coen DE VISSER (TU Delft). The candidate is expected to spend equal time at 
ONERA (Palaiseau, FRANCE) and TU Delft (Delft, The Netherlands). 
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