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Introduction
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• Private research center, specialized in 
numerical simulations

• Two locations

– Non-profit organization in Charleroi (BE)

– Subsidiary in Moissy-Cramayel (FR)

• 80+ researchers

• Started in 2002 with the support of the 
European Regional Development Funds and 
the impulse of the Walloon aeronautical 
sector and universities

• Operational missions: collaborative research in close collaboration with industry and 
academia + services for companies (HPC supercomputing facilities, consultancy)

Dimensionality Reduction (14/03/2025)

Cenaero
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Aerostructures Design & 
Development

Aerostructures Engineering 
Environment

Buildings and Smart Cities

Turbomachinery Design

High-Fidelity CFD & CAA for 
Aeronautical Applications

High Performance Composites

High Performance Computing

Hypersonic Flows & Phase-
changing Materials

Machine Learning for Modeling, 
Optimization & Data Mining

Manufacturability & Multidisci-
plinary Design for Manufacturing

Metallic Manufacturing Processes 
Modeling

Multiscale Mechanics through Lifetime

Dimensionality Reduction (14/03/2025)
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Machine Learning & Optimization

• Machine Learning (ML) activities in various scientific and 
industrial projects 

• In addition to ML activities, we also develop Minamo software 
for optimization and parametric studies

Dimensionality ReductionDetection of defectsPrediction of physical fields Time series prediction
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Dimensionality reduction in simulation-based problems

• Dimensionality reduction in the case of Cenaero’s activities:

– Need to cope with high-dimensonal design spaces

– Data coming from physics-based simulations

– Application: engineering design and optimization (fields: 
aeronautics, biomedical, buildings, …)

Dimensionality Reduction (14/03/2025)
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Dimensionality reduction in simulation-based problems

• Dimensionality reduction in the case of Cenaero’s activities:

– Need to cope with high-dimensonal design spaces

– Data coming from physics-based simulations

– Application: engineering design and optimization (fields: 
aeronautics, biomedical, buildings, …)

• Context of this research:

– WINGS project funded by the Walloon Region, with HPC 
resources from Lucia Tier 1 supercomputer (hosted by Cenaero 
and also funded by the Walloon Region)

– Goal: develop dimensionality reduction methods for mechanical 
design examples characterized by highly flexible 
parametrizations

Dimensionality Reduction (14/03/2025)
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Dimensionality Reduction
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Motivation for dimensionality reduction

• Dimensionality reduction: popular in various application fields

• Black-box simulations ⇒ no analytical properties can be a priori assumed

• Restricted to continuous features (no integer, discrete, or categorical var.)

Identification of 

overlapping genes

Acoustic signal 

compression
Data visualization of the 

internet network map

Text categorization of 

massive document resources

Model reduction in 

physics-based simulations

Dimensionality Reduction (14/03/2025)
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Dimensionality reduction in design optimization

• Three main paradigms:

x = [ x
1
 … x

N
 ]T

Input space (e.g. CAD 

or FFD parameters)

Simulation

(CFD, CAA, 

FEA, ...)

y = [ y
1
 … y

M
 ]T

Output space (e.g. scalar 

responses extracted from 

velocity field, stresses, …) 

Dimensionality Reduction (14/03/2025)
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Dimensionality reduction in design optimization

• Three main paradigms:

x = [ x
1
 … x

N
 ]T

Input space (e.g. CAD 

or FFD parameters)

Simulation

(CFD, CAA, 

FEA, ...)

y = [ y
1
 … y

M
 ]T

Output space (e.g. scalar 

responses extracted from 

velocity field, stresses, …) 

Model reduction on the output space

 Ex.: POD on the CFD flow field

[Li & Zhang, 2016; Benamara et al., 2017; etc.]

Dimensionality Reduction (14/03/2025)
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Dimensionality reduction in design optimization

• Three main paradigms:

x = [ x
1
 … x

N
 ]T

Input space (e.g. CAD 

or FFD parameters)

Simulation

(CFD, CAA, 

FEA, ...)

y = [ y
1
 … y

M
 ]T

Output space (e.g. scalar 

responses extracted from 

velocity field, stresses, …) 

Model reduction on the input space 

Ex.: PCA on the airfoil geometries

[Gaudrie, Le Riche et al., 2019]

Dimensionality Reduction (14/03/2025)
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Dimensionality reduction in design optimization

• Three main paradigms:

x = [ x
1
 … x

N
 ]T

Input space (e.g. CAD 

or FFD parameters)

Simulation

(CFD, CAA, 

FEA, ...)

y = [ y
1
 … y

M
 ]T

Output space (e.g. scalar 

responses extracted from 

velocity field, stresses, …) 

⚫ Efficient, but often CPU expensive 

and not always flexible enough 

(need for adjoints, ...)

⚫ Our goal: develop an alternative 

generic and affordable 

dimensionality reduction 

methodology (on the input 

space)

⇒ Drag-reduced coordinates

⇒ Surrogate on a limited set of 

variables

Model reduction on the input space, 

taking the ouputs into account

Ex.: Active subspaces [Lucaczyk et 

al., 2014]

Dimensionality Reduction (14/03/2025)
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Dimensionality reduction

• Generally speaking, data management issues involve:
– Size (= number of samples)

– Complexity (e.g., non-linearities, singularities, ...)

– Dimensionality (= number of features/parameters/variables/inputs)

• To address these issues, several dimensionality reduction 
techniques have been proposed to:

– Transform the original dataset into 
a new dataset representing low 
dimensionality...

– … while maintaining as much as 
possible the original meanings of 
the data [Zebari et al., 2020]

– Their performances vary in the 
way they can capture or (not) the 
inner complexity of the data

Dimensionality Reduction (14/03/2025)
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Dimensionality reduction: benefits expected

• Benefits expected:
– Reduction of the computational time and complexity of the 

subsequent approximation and optimization process

– Avoids overfitting and noise

– Better data visualization and interpretation

• Active area of research
– Lots of papers recently published

• In various fields (engineering, biotech, finance, etc.)

• For several applications (image and text processing, data visualization, etc.)

– Historical trend of research 

• First methods focus on global projections (typically: preserve covariance 
between dimensions, like Principal Component Analysis or PCA)

• Now: more localized approaches (i.e. preserve pairwise distances or 
proximities as much as possible)

Dimensionality Reduction (14/03/2025)
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Taxonomy of dimensionality reduction techniques

Dimensionality Reduction (14/03/2025)

Hou, C. K. J. and Behdinan, K. Dimensionality reduction in surrogate modeling: A review of combined methods. Data Science and 

Engineering, 7(4):402–427, 2022.
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Taxonomy of dimensionality reduction techniques

Dimensionality Reduction (14/03/2025)

Hou, C. K. J. and Behdinan, K. Dimensionality reduction in surrogate modeling: A review of combined methods. Data Science and 

Engineering, 7(4):402–427, 2022.
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A simple geometrical interpretation

• Visual comparison of dimensionality reduction paradigms:

Dimensionality Reduction (14/03/2025)
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Focus on variable clustering:

⇒ The original parameter space is preserved

⇒ Parameters are grouped according to a given criterion, but no one is discarded 

A simple geometrical interpretation

• Visual comparison of dimensionality reduction paradigms:

Dimensionality Reduction (14/03/2025)
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• Analysis on the state-of-the-art in variable clustering:

– Most methods imply the resolution of a minimization problem 
expressed as a linear regression or matrix factorization process, 
coupled with additional penalty functions to deal with grouping

– Techniques directly or remotely inspired by data clustering (k-means, 
...) are frequently integrated within the search for variable groups

– Most methods work like in a black-box mode: no visualization tool is 
proposed to help the user apprehending the high-dimensional space

– In structural and multidisciplinary optimization, the methods proposed 
usually involve, in one way or another, a significant level of user’s 
expertise, or imply strong physical assumptions 

• Let’s remind our objective: devise a generic and flexible 
variable clustering strategy, with visualization functionalities

Literature review

Dimensionality Reduction (14/03/2025)
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Variable clustering methodology

• Hypothesis: variables with similar impact on the responses are 
grouped together

High-dimensional 

space

Dimensionality Reduction (14/03/2025)
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Variable clustering methodology

• Hypothesis: variables with similar impact on the responses are 
grouped together

High-dimensional 

space

Variable impacts

on the responses

Linear regression 

(Ridge, LASSO, ...)

or

Random forest regression 

scores, ...

or

Any (statistical, …) method 

to assess the influences of 

inputs on the outputs
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Variable clustering methodology

• Hypothesis: variables with similar impact on the responses are 
grouped together

High-dimensional 

space

Variable impacts

on the responses

Linear regression 

(Ridge, LASSO, ...)

or

Random forest regression 

scores, ...

or

Any (statistical, …) method 

to assess the influences of 

inputs on the outputs

Variable clustering

DBSCAN, K-MEANS, ...

Variables grouped by 

importance
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Variable clustering methodology

• Hypothesis: variables with similar impact on the responses are 
grouped together

Variable clustering

DBSCAN, K-MEANS, ...

Variables grouped by 

importance

Issue: poor results 

observed with (even 

moderately) high 

number of variables 

and responses

Variable impacts

on the responses

Linear regression 

(Ridge, LASSO, ...)

or

High-dimensional 

space

Random forest regression 

scores, ...

or

Any (statistical, …) method 

to assess the influences of 

inputs on the outputs
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1

3

2

Variable clustering methodology

• Hypothesis: variables with similar impact on the responses are 
grouped together

Variable clustering

DBSCAN, K-MEANS, ...

Variables grouped by 

importance

Solution: projection 

on an intermediate 

latent space, as a 

pre-conditioner of 

the clustering

Variable impacts

on the responses

Linear regression 

(Ridge, LASSO, ...)

or

High-dimensional 

space

Random forest regression 

scores, ...

or

Any (statistical, …) method 

to assess the influences of 

inputs on the outputs
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• Idea: decomposition in three distinct steps 1, 2, and 3, using 
the UMAP dimensionality reduction technique at step 2:

− UMAP (Uniform Manifold Approximation and Projection, by McInnes et al., 
2018) has gained popularity in recent years in various DR contexts

− Based on fuzzy algebraic topology and Riemannian geometry, UMAP 
constructs a graph in high dimensions to connect the data, and then performs 
an optimization to find the most similar graph in lower dimensions

Three-step methodology

Dimensionality Reduction (14/03/2025)

McInnes, L., Healy, J., Saul, N., and Großberger, L. UMAP: Uniform Manifold Approximation and Projection. Journal of Open 

Source Software, 3(29):861, 2018.
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UMAP-based variable clustering

Dimensionality Reduction (14/03/2025)
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• Various fields of applications (genetics, image processing, ...) 

• Example: analyzing genotype data among 488,377 individuals in 
the UK, according to ethnicity [Diaz-Papkovitch et al., 2018]

Applications of UMAP

– Method: dimension reduction of genomic 
data combining Principal Component 
Analysis (PCA) with UMAP to illustrate 
population structure in large cohorts, and 
capture their relationships on local and 
global scales

– Aims:
• Detect correlations between genetic diseases and 

ethnic origins

• Genetic anthropology

Legend: BA, Black African; BC, Black Caribbean; BG, Bangladeshi; CHN, Chinese; IND, Indian; PK, Pakistani; 

WB, White British; WI, White Irish; WBC, White and Black Caribbean; WBA, White and Black African; WAA, 

White and Asian; AAB, Any other Asian Background; ABB, Any other Black Background; AWB, Any other White 

Background; AMB, Any other Mixed Background; OEG, Other ethnic group.

Dimensionality Reduction (14/03/2025)

PCA (first 2 modes)
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• Various fields of applications (genetics, image processing, ...) 

• Example: analyzing genotype data among 488,377 individuals in 
the UK, according to ethnicity [Diaz-Papkovitch et al., 2018]

Applications of UMAP

– Method: dimension reduction of genomic 
data combining Principal Component 
Analysis (PCA) with UMAP to illustrate 
population structure in large cohorts, and 
capture their relationships on local and 
global scales

– Aims:
• Detect correlations between genetic diseases and 

ethnic origins

• Genetic anthropology

Legend: BA, Black African; BC, Black Caribbean; BG, Bangladeshi; CHN, Chinese; IND, Indian; PK, Pakistani; 

WB, White British; WI, White Irish; WBC, White and Black Caribbean; WBA, White and Black African; WAA, 

White and Asian; AAB, Any other Asian Background; ABB, Any other Black Background; AWB, Any other White 

Background; AMB, Any other Mixed Background; OEG, Other ethnic group.

Dimensionality Reduction (14/03/2025)

UMAP on first 10 PCA modes
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• Step 0: design of experiments (dataset)

• Step 1: compute a k-neighbor connected graph in the high-
dimensional space

• Step 2: define a symmetric measure of similarity for each pair 
of data points i and j: 

UMAP algorithm

Dimensionality Reduction (14/03/2025)
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• Step 3: compute a k-neighbor connected graph for the 
embedded points y(i) with a similarity measure in the latent 
space

• Step 4: the discrepancy between the similarity measures in the 
high- and low-dimensional spaces is computed by the fuzzy 
cross-entropy, to be minimized:

• Additional mathematical developments lead to a more tractable 
function to be minimized:

UMAP algorithm

Dimensionality Reduction (14/03/2025)
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– UMAP has demonstrated its effectiveness when compared to other 
techniques like t-SNE or LargeVis in terms of CPU time and 
resources

– Further modifications have been proposed in the literature 
(DenseMap algorithm to regularize the cost function, variant for time 
series, etc.)

– UMAP can be used in high dimensions (not limited to 2D/3D 
visualization)

– UMAP is a stochastic algorithm: randomness used both when 
speeding up approximation steps, and when solving hard 
optimization problems

– UMAP has been promoted as an efficient pre-conditioner for 
clustering in a few studies [Allaoui et al., 2020; Hozumi et al., 2021]

UMAP algorithm: remarks

Dimensionality Reduction (14/03/2025)
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Application to design 
optimization

Dimensionality Reduction (14/03/2025)
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Let’s go back to our original problem

• Goal: optimize highly parametrized structural and mechanical 
systems

• Algorithm: surrogate-based optimizer (SBO) from Minamo

• Sequential approach followed:

Design of 
Experiments

to evaluate the 
responses on a 
representative 
subset of the 
design space

Dimensionality Reduction (14/03/2025)
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Let’s go back to our original problem

• Goal: optimize highly parametrized structural and mechanical 
systems

• Algorithm: surrogate-based optimizer (SBO) from Minamo

• Sequential approach followed:

Design of 
Experiments

to evaluate the 
responses on a 
representative 
subset of the 
design space

Dimensionality 
reduction to group 

variables by 
importance

(using UMAP)

Surrogate-based 
optimization 
(SBO) using 

Minamo

Dimensionality Reduction (14/03/2025)
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First validation: on structural test cases

wing

• Variables: cross-sectional diameters of beams

• Dimensionality:

• Responses: outputs from a finite element 
analysis [FEAP program, by Taylor et al., 2008]

domebldg

Dimensionality Reduction (14/03/2025)
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• Direct clustering vs. UMAP-preconditioned clustering

– Variable impacts on responses estimated by Ridge linear regression 
coefficients, clustering performed by DBSCAN

– Illustration on the skyscraper test case (bldg):

– DBSCAN without UMAP-preconditioning fails to identify meaningful 
clusters of variables (caveat: no hyperparameter tuning)

Is the UMAP step really useful?

Direct: 1 cluster found UMAP-based: 6 clusters found

Dimensionality Reduction (14/03/2025)
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• Industrial case: structural optimization of the Dutch Maritime 
Museum [Descamps et al., 2014 – ULB / Princeton University / 
Ney & Partners]

− 1954 design variables (cross-section areas)

− Objective: mass – Constraints: on stresses, buckling, and 
displacements

Complex structural application: Dutch Maritime Museum

Dimensionality Reduction (14/03/2025)
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• Industrial case: structural optimization of the Dutch Maritime 
Museum [Descamps et al., 2014 – ULB / Princeton University / 
Ney & Partners]

− 1954 design variables (cross-section areas)

− Objective: mass – Constraints: on stresses, buckling, and 
displacements

Complex structural application: Dutch Maritime Museum

Dimensionality Reduction (14/03/2025)

66 clusters detected by UMAP + DBSCAN
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• SBO results

Dimensionality Reduction (14/03/2025)

Complex structural application: Dutch Maritime Museum

Filomeno Coelho, R., Sainvitu, C., and Benamara, T. UMAP-based Dimensionality Reduction for Variable Grouping: Application to 
the Design Optimization of Truss Structures. In 13th ASMO UK / 2nd ASMO-EUROPE / ISSMO Conference on Engineering Design 
Optimization Product and Process Improvement, Cenaero, Belgium, July 8-9, 2024.
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• SBO results

Dimensionality Reduction (14/03/2025)

Complex structural application: Dutch Maritime Museum

• Take aways from these first results:
− Strategy successfully tested on cases up to 1954 design variables, but on 

structural design cases only with symmetry / repeatibility patterns
− What about different mechanical systems like compressors?
− Should the same variable grouping be used during the whole SBO?

Filomeno Coelho, R., Sainvitu, C., and Benamara, T. UMAP-based Dimensionality Reduction for Variable Grouping: Application to 
the Design Optimization of Truss Structures. In 13th ASMO UK / 2nd ASMO-EUROPE / ISSMO Conference on Engineering Design 
Optimization Product and Process Improvement, Cenaero, Belgium, July 8-9, 2024.
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Multi-stage compressor (Safran Aero Boosters)

• Number of input parameters:

− N = 144 design variables

− Simulation: axisymmetric throughflow CFD 
solver, widely used at the preliminary design 
stage in turbomachinery [Simon, 2007]

− Rate of successful simulations: ~55%

Dimensionality Reduction (14/03/2025)

Nigro, R., Baert, L., Nyssen, F., de Cazenove, J., Dominique, J., Lepot, I., Veglio, M., and Princivalle, R. Multi-fidelity aeromechanical 
design framework for high flow speed multistage axial compressors. In: Proceedings of the ASME TurboExpo 2024 conference, 
London, UK, June 23-28, 2024.



45

Multi-stage compressor (Safran Aero Boosters)

• Preliminary results on a multi-stage compressor (SAB)
⚫ Design of Experiments of 5 N = 720 geometries (LHS – Latin Hypercube Sampling)

⚫ Dimensionality reduction performed on 1175 responses

⚫ Agglomerative clustering better adapted to this configuration

Dimensionality Reduction (14/03/2025)
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Multi-stage compressor (Safran Aero Boosters)

x1

x10

...

x3

x4

x8

x9

...

x2

x5

...

ind2ind1 best

End of SBO step j with 3 clusters

x1

x10

...

x3

x4

x8

x9

x2

x5

...

best

+  a few 
samples 
randomly 
selected from 
previous step

+ newly generated 
samples with finer 
variable clustering

Starting clustering step j+1 with 6 clusters

• Idea: update the clustering of variables during the SBO
⚫ Caution: when switching from a “coarse-grained” to a “fine-grained” variable 

clustering, there must be a mapping between levels, in order to re-use points 
from previous SBO iterations:

Dimensionality Reduction (14/03/2025)
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Multi-stage compressor (Safran Aero Boosters)

• Preliminary results on a multi-stage compressor (SAB)
⚫ SBO: 1 objective (minimize fuel burn) and 122 aerodynamical constraints

⚫ Similar performances obtained, but with a decrease of ~50% CPU time required 
(faster training of the surrogates due to reduced dimensionalities)

Dimensionality Reduction (14/03/2025)
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Conclusions and future 
prospects

Dimensionality Reduction (14/03/2025)
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• Design of Experiments
– Size of the design of experiments: compromise between accuracy of the 

results and cost of the simulations

• Variable importances:
– Ridge regression: computationally inexpensive and often acceptable 

[Grömping, 2009], but might be insufficient in some cases

– Currently investigated: Random forests (RF), Mutual information (MI) 
scores [Université de Namur]

– Grouping dependent on active constraints only?

• UMAP for variable clustering
– UMAP useful to pre-condition data for clustering

– Strategy efficiently combined to surrogate-based optimization

– Ongoing developments on active learning strategies

Discussion

Dimensionality Reduction (14/03/2025)
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