

Necessary and sufficient condition for stabilizability of discrete-time linear switched systems: A set-theory approach

Mirko Fiacchini¹ and Marc Jungers²

¹GIPSA-lab, Grenoble. ²CRAN, Nancy. mirko.fiacchini@gipsa-lab.fr
marc.jungers@univ-lorraine.fr

(中) (문) (문) (문) (문)

Journées MOSAR-SDH, Nancy, March 25th-26th, 2014

Stabilizability of DT linear switched systems

国际 化国际

< 一 →

2 Stabilizability of DT linear switched systems

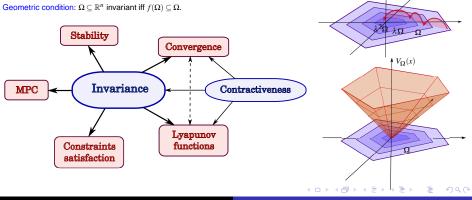
< □ > < 同 >

Set-theory and invariance for complex systems

Set-theory: techniques concerning properties shared by all the elements of sets of the state space.

Invariance

Set $\Omega \subseteq \mathbb{R}^n$ is invariant if every trajectory with $x_0 \in \Omega$ stays in Ω .



λΩ

Set-theory and invariance for complex systems

For linear systems:

- well established theoretical and computational results,
- iterative procedures (mainly for discrete-time systems),
- boundary-type condition for invariance, also for discrete-time systems,
- set-induced Lyapunov functions,
- computationally suitable methods: convex analysis, optimization, LMI.

・ロット (雪) (日) (日)

Problem

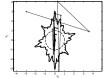
When moving from linear systems, useful properties related to linearity are lost \Rightarrow adaptation of tools for linear systems to more complex systems is not trivial.

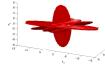
Objective

Extend and apply set-theory and invariance to complex (nonlinear, hybrid, interconnected, saturated, etc) systems.

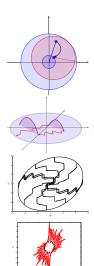
Why set-theory and invariance?

- Nice.
- Computationally-oriented \Rightarrow useful.
- Intuitive.
- Different point of view on the problems \Rightarrow original.





< 口 > < 同



프 () (프 ()

< 一 →

Stabilizability of DT linear switched systems

Joint work with Marc Jungers (CNRS researcher at CRAN, Nancy).

Discrete-time autonomous switched system

 $x_{k+1} = A_{\sigma(k)} x_k,$

where $\sigma : \mathbb{N} \to \mathbb{N}_q$ selects the transition matrix $\{A_i\}_{i \in \mathbb{N}_q}$, and can be considered as:

- a perturbation: necessary and sufficient condition for asymptotic stability; existence of a polyhedral Lyapunov function (Molchanov & Pyatnitskiy, SCL89; Blanchini, AUT95),
- or as a control input: sufficient condition for stabilizability, Lyapunov-Metzler inequality (Geromel & Colanieri, IJC06).

Open problem: necessary and sufficient condition for the stabilizability of switched linear systems, (Lin & Antsaklis, TAC08).

Objectives and contributions (F. & Jungers, IFAC13, AUT13):

- provide necessary and sufficient condition for stabilizability,
- set-theory and invariance based results,
- computational espects: algorithmic test,
- nonconvex control Lyapunov functions,
- highlight the duality with the perturbation case,
- characterize the class of stabilizing controls.

(日)

э.

Preliminiaries

A C-set is a compact, convex set containing the origin in its interior.

Definition

A set $\Omega \subseteq \mathbb{R}^n$ is a C*-set if it is compact, star-convex with respect to the origin and $0 \in int(\Omega)$.

Notice a set is

- Convex if $\forall x_0 \in \Omega$ and $\forall x \in \Omega$, then $\alpha x_0 + (1 \alpha)x \in \Omega$, $\forall \alpha \in [0, 1]$.
- Star-convex if $\exists x_0 \in \Omega$, such that $\forall x \in \Omega$, then $\alpha x_0 + (1 \alpha)x \in \Omega$, $\forall \alpha \in [0, 1]$.

Minkowski function of a C*-set Ω : $\Psi_{\Omega}(x) = \min_{\alpha} \{ \alpha \in \mathbb{R} : x \in \alpha \Omega \}.$

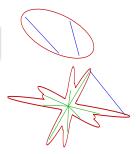
- Any C-set is a C*-set.
- Given a C*-set Ω , we have that $\alpha \Omega$ is a C*-set and $\alpha \Omega \subseteq \Omega$ for all $\alpha \in [0, 1]$.

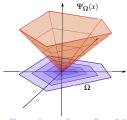
 $\Psi_{\Omega}(\cdot)$ is: defined on \mathbb{R}^{n} ; homogenous of degree one; positive definite and radially unbounded. But nonconvex in general!

Theorem (Blanchini, AUT95)

There exists a Lyapunov function for the perturbed system if and only if there exists a C-set $\hat{\Omega}$ and a scalar $\lambda \in [0,1)$ such that $A_i \hat{\Omega} \subseteq \lambda \hat{\Omega}$, for all $i \in \mathbb{N}_q$.

Idea: look for a C*-set whose Minkowski function is a control Lyapunov function.





N&S condition for switched systems 9 / 21

Necessary and sufficient condition for stabilizability

Algorithm 1

Control λ -contractive C*-set for the switched system.

- Initialization: given the C^* -set $\Omega \subseteq \mathbb{R}^n$, define $\Omega_0 = \Omega$ and k = 0;
- Iteration for k ≥ 0:
- $\begin{aligned} \Omega_{k+1}^i &= \boldsymbol{A}_i^{-1} \Omega_k, \quad \forall i \in \mathbb{N}_q, \\ \Omega_{k+1} &= \bigcup_{i \in \mathbb{N}_q} \Omega_{k+1}^i; \end{aligned}$

Stop if
$$\Omega \subseteq \operatorname{int}\left(\bigcup_{j \in \mathbb{N}_{k+1}} \Omega_j\right)$$
; denote $\check{N} = k+1$ and $\check{\Omega} = \bigcup_{j \in \mathbb{N}_{\check{N}}} \Omega_j$.

Geometrical interpretation:

- the set Ωⁱ_k is the set of x that can be stirred in Ω in k steps by a switching sequence beginning with i ∈ N_q;
- then Ω_k is the set of points that can be driven in Ω in k steps;
- and hence Δ the set of those which can reach Ω in Ň or less steps, by an adequate switching law.

Necessary and sufficient condition for stabilizability.

Theorem

There exists a control Lyapunov function for the switched system if and only if the Algorithm 1 ends with finite N.

Stabilizing switching control law

Proposition

If Algorithm 1 ends with finite \check{N} then $\Psi_{\check{O}}(x)$ is a global control Lyapunov function and given the set-valued map

$$\check{\Sigma}(x) = \arg\min_{(i,k)} \{ \Psi_{\Omega_{k}^{i}}(x) : i \in \mathbb{N}_{q}, k \in \mathbb{N}_{\check{N}} \} \subseteq \mathbb{N}_{q} \times \mathbb{N}_{\check{N}},$$

$$\begin{cases} \Psi_{\check{\Omega}}(x_{j}^{\check{\sigma}}(x)) \leq \Psi_{\check{\Omega}}(x), & \forall j \in \mathbb{N}_{\check{k}(x)}, \\ \Psi_{\check{\Omega}}(x_{\check{k}(x)}^{\check{\sigma}}(x)) \leq \check{\lambda}\Psi_{\check{\Omega}}(x). \end{cases}$$

Corollary

If the Algorithm 1 ends with finite \check{N} then the switching law is such that $\Psi_{\check{\Omega}}(x_{p\check{N}}^{\check{\sigma}}(x)) \leq \check{\lambda}^{p}\Psi_{\check{\Omega}}(x)$, for all $p \in \mathbb{N}$ and $x \in \mathbb{R}^{n}$.

- If the system is asymptotically stabilizable, then the algorithm ends with finite Ň for all initial C*-set Ω.
- The value of Ň and the complexity of the set Δ depends on the choice of Ω. But...
- If Ω is a (union of) ellipsoid ⇒ also Ωⁱ_k, Ω_k and Δ are union of ellipsoids ⇒ the switching law consists in finding the minimal x^T P_jx with j ∈ M = (q^{N+1} − q)/(q − 1).
- If Ω is a (union of) polytope ⇒ also Ωⁱ_k, Ω_k and Δ are union of polytopes ⇒ the switching law consists in checking linear equalities.

Robustness-control duality

Uncertain linear systems

Robust λ -contractive C-set for an uncertain system.

- Initialization: given the C-set $\Gamma \subseteq \mathbb{R}^n$ and $\lambda \in [0,1]$, define $\Gamma_0 = \Gamma$ and k = 0;
- Iteration for $k \ge 0$:

$$\begin{split} \Gamma_{k+1}^{i} &= \lambda A_{i}^{-1} \Gamma_{k}, \quad \forall i \in \mathbb{N}_{q}, \\ \Gamma_{k+1} &= \Gamma \cap \bigcap_{i \in \mathbb{N}_{q}} \Gamma_{k+1}^{i}; \end{split}$$

$$\begin{aligned} \textbf{Stop if } \Gamma_{k} \subset \Gamma_{k+1}; \text{ denote } \hat{N} = k \text{ and } \hat{\Gamma} = \Gamma_{k}. \end{split}$$

Theorem (*Blanchini, AUT95*)

There is a Lyapunov function for the parametric uncertain linear system if and only if there exists a polyhedral Lyapunov function for the system.

Then, the family of convex, homogeneous functions induced by a C-set are a class of universal Lyapunov functions for parametric uncertain linear systems.

Switched linear systems

Control λ -contractive C*-set for the switched system.

Initialization: given the C^{*}-set $\Omega \subseteq \mathbb{R}^n$, define $\Omega_0 = \Omega$ and k = 0;

Iteration for $k \ge 0$:

$$\begin{split} \Omega_{k+1}^{i} &= A_{i}^{-1}\Omega_{k}, \quad \forall i \in \mathbb{N}_{q}, \\ \Omega_{k+1} &= \bigcup_{i \in \mathbb{N}_{q}} \Omega_{k+1}^{i}; \end{split}$$

$$\bullet \quad \text{Stop if } \Omega \subseteq \operatorname{int} (\bigcup_{j \in \mathbb{N}_{k+1}} \Omega_{j}); \text{ denote } \check{N} = k+1 \text{ and} \\ \check{\Omega} &= \bigcup_{j \in \mathbb{N}_{\check{N}}} \Omega_{j}. \end{split}$$

Theorem (F. & Jungers, AUT13)

There exists a control Lyapunov function for the switched linear system if and only if the Algorithm ends with finite \check{N} .

Then, the family of nonconvex, homogeneous functions induced by a C*-set are a class of universal Lyapunov functions for switched systems.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Sufficient condition for non-stabilizability

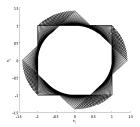
Algorithm 2

Non-stabilizability test for the switched system.

- Initialization: given the \mathbb{C}^* -set $\Omega \subseteq \mathbb{R}^n$, define $\Omega_0 = \Omega$ and k = 0;
- Iteration for $k \ge 0$ get Ω_{k+1}^i and Ω_{k+1} as above and define:

$$\hat{\mathbf{D}}_{k+1} = \left(\bigcup_{j\in\mathbb{N}_{k+1}}\Omega_j\right)\cup\Omega.$$

Stop if
$$\Omega_{k+1} \subseteq \hat{\Omega}_k$$
; denote $\hat{N} = k$ and $\hat{\Omega} = \hat{\Omega}_{\hat{N}}$.



Geometrical interpretation:

if the new set Ω_{k+1} is contained in the union of the former ones and the initial set Ω , then the following sets will not increase \Rightarrow non-stabilizable.

Sufficient condition for non-stabilizability.

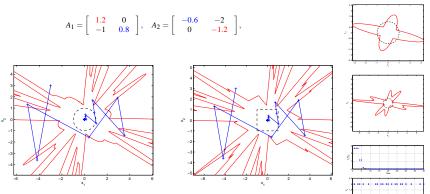
Theorem

If the Algorithm 2 ends with finite \hat{N} then there is no switching law stabilizing the switched system.

If the system is not stabilizable the algorithm can terminate of not.

Example Single mode linear system with $A_1 = R(\beta \pi)$ with $R(\beta \pi)$ rotation matrix, $\beta \in \mathbb{R} \setminus \mathbb{Q}$ and $\beta \in (0, 0.5)$.

Non-Schur switched system with q = n = 2.



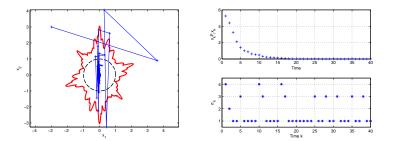
・ロン ・聞 と ・ ヨ と ・ ヨ と

æ

System with q = 4, n = 2 and

$$\begin{split} A_1 &= \begin{bmatrix} 1.5 & 0 \\ 0 & -0.8 \end{bmatrix}, \qquad A_2 = 1.1 \, R(\frac{2\pi}{5}) \\ A_3 &= 1.05 \, R(\frac{2\pi}{5}-1), \qquad \qquad A_4 = \begin{bmatrix} -1.2 & 0 \\ 1 & 1.3 \end{bmatrix}. \end{split}$$

The matrices A_i , with $i \in \mathbb{N}_4$, are not Schur. Notice: only one stable eigenvalue!



Ē▶ KĒ▶ -

æ

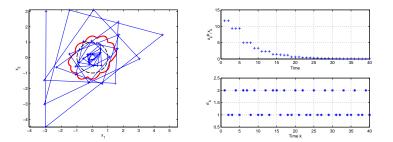
< □ > < 同 >

Switched system with

$$A_1 = \begin{bmatrix} 0 & -1.01 \\ 1 & -1 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 0 & -1.01 \\ 1 & -0.5 \end{bmatrix}$$

The product of the eigenvalues of every convex combination of the matrices is always 1.01 and the technique based on Lyapunov-Metzler inequalities (Geromel & Colanieri, IJC06) is NOT applicable.

Nevertheless...

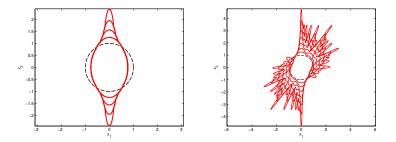


< □ > < 同 >

Switched system with

$$A_1 = \begin{bmatrix} 1.3 & 0 \\ 0 & 0.9 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 1.4 & 0 \\ 0 & 0.8 \end{bmatrix},$$

for $\theta = 0$ (left) and $\theta = \frac{\pi}{5}$ (right).



글 🖌 🖈 글 🛌

æ

< □ > < 同 >

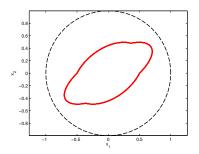
Sufficient condition for non-stabilizability.

Theorem (*F. & Jungers, AUT13*) If $\Omega_{k+1} = ri \bigcup_{i \in \mathbb{N}_q} A_i^{-1} \Omega_k \subseteq \bigcup_{j \in \mathbb{N}_k} \Omega_j \cup \Omega,$ then there is no switching law stabilizing the switched system.

Consider

$$A_1 = 2 \begin{bmatrix} 0 & -1.01 \\ 1 & -1 \end{bmatrix}, \quad A_2 = 2 \begin{bmatrix} 0 & -1.01 \\ 1 & -0.5 \end{bmatrix}.$$

The criterion is attained in only one step, then the system is not stabilizable.



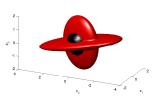
▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

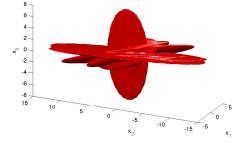
3

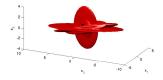
Switched system with q = 2, n = 3 and

$$A_1 = \begin{bmatrix} 1.2 & 0 & 0 \\ -1 & 0.8 & 0 \\ 0 & 0 & 0.5 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0.7 & 0 & 0 \\ 0 & -0.6 & -2 \\ 0 & 0 & -1.2 \end{bmatrix}$$

 A_1 and A_2 are not Schur. The ball \mathbb{B}^3 is chosen as initial set.







Conclusions

Results:

- necessary and sufficient condition for the stabilizability of discrete-time linear switched systems;
- constructive method based on set-theory: nonconvex control Lyapunov functions;
- computational approach: iterative algorithm;
- evident duality: robustness-control, for all-existence, intersection-union, C-set-C*-set...
- characterize "non-stabilizability".

Open problems and future works:

- complexity analisys and computational issues;
- more genaral cases: nonautonomous, nonlinear switched systems,...

(日)

Necessary and sufficient condition for stabilizability of discrete-time linear switched systems: A set-theory approach

Mirko Fiacchini¹ and Marc Jungers²

¹GIPSA-lab, Grenoble. ²CRAN, Nancy. mirko.fiacchini@gipsa-lab.fr
marc.jungers@univ-lorraine.fr

(中) (문) (문) (문) (문)

Journées MOSAR-SDH, Nancy, March 25th-26th, 2014