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Context: climate separation in food industry (1/2)

More than half of food purchases are
perishable products presented for sale in
cold environment. Figure 1: Climate separation

device Froiloc c© developped by
Irstea

⇒ The emergence of new techniques comes from the need to address the
contradiction between the food safety objective of maintaining cold
environments, possibly ultra-clean, and work conditions objective of
raising the temperature of the environment experienced by operators.
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Context: climate separation in food industry (2/2)

These techniques aim to improve:
food safety;
work conditions;
energy saving.

The climate separation devices are devel-
oped and optimized in stabilized conditions,
but confronted to the industrial environ-
ments, these devices see their performances
of separation deteriorated.

Figure 1: Climate separation
device Froiloc c© developped by
Irstea

⇒ Our motivation is to improve the climate separation with a
closed-loop control.
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The mixing layer (1/2)

In new climate separation techniques (see
Fig. 1), interfaces between the two
environments (blue and red) can be
modelized by a typical mixing-layer. Figure 1: Climate separation

device Froiloc c© developped by
Irstea

In the mixing-layer, the flow is turbulent (see Fig. 2).

Figure 2: Visualisation of the mixing-layer in the wind tunnel of Irstea
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The mixing layer (2/2)

There is a considerable bibliography on the Mixing-Layer, whose the main
subjects are:

analysis stability, see e.g. (Michalke, 1964, Ho and Huerre, 1984);
mean behaviour in self similarity regions, see e.g. (Wygnanski and
Fiedler (1970), ¨̂ Sodjavi and Carlier (2013));
forcing or open loop-control, see e.g.(Oster and Wygnanski, 1982,
Ho and Huang, 1982, Koochesfahani and MacKinnon, 1991);
closed-loop control, recently, see e.g. (Wiltse and Glezer, 2011,
Parezanovic et al., 2014). Others turbulent systems, see e.g.
(Gautier and Aider, 2014, Duriez et al., 2013).
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Visualisation of the forced mixing-layer of the wind tunnel

(Chatelain et al., 2013).
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The control?

We use closed-loop control: depends of an observation of the system.

Figure 3: Closed-loop control of a disturbed system

Advantages:

Robustness to the modeling errors;
robustness to the disturbances on the system.
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The vision-based control (1/2)

The sensor: Camera
Advantages:

is accurate for the state estimation;
offers a large choice of desired states (base flow → unsteady flow);
can be used to get a dynamical model of the desired state.

Limits?

real-time processing;
visualisation of the flow.

Usual domains of use

robotics (industrial, medical, mobile or motion);
augmented reality, computer animation,.. (more limited degree)
and more recently, in flow control.
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The vision-based control (2/2)

Goal: closed-loop control of flow fluid;
Display device

extract the 2D velocity field by
optical flow;
choice of the visual informations

modelling of the variation of visual
informations depending of variation of
control signal: computation of the
interaction matrix;
synthesis of the control law;
actuation on the fluid flow.

Figure 4: Example of use of
vision in control of Poiseuille
flow

(Tatsambon Fomena and Collewet, 2011, Dao and Collewet, 2012, Roca
et al., 2014, Gautier and Aider, 2014)
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Design of the state space model (1/4)

Let consider Navier-Stokes equations on incompressible flow

∂t
−→
U + (

−→
U · ∇)

−→
U = − 1

ρ
∇P + ν∆

−→
U (1a)

∇ ·
−→
U = 0. (1b)

We consider also flow around a given profile
−→
U b such that ∂t

−→
U b = 0 and

(
−→
U b · ∇)

−→
U b = −1

ρ
∇P + ν∆

−→
U b. (2)

These fields verify the continuity equation
∇ ·
−→
U b = 0. (3)

After some computations (linearisation,dimensionless), we can write
LẊ = AX +BU . (4)

L is not inversible matrix!
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Design of the state space model (2/4)

To write the system (1) with the classical form
Ẋ = AX +BU , (5)

we use representations which allow to re-write the system (1) with two
variables: vorticity/stream-function and velocity/vorticity.
In the case of vorticity/stream-function formulation, we use the
stream-function ψ(x, y, t) such that

u = ∂yψ, (6)
v = −∂xψ, (7)
ωz = −∇2ψ. (8)

And finaly, we can express the Navier-Stokes equations only with the
stream-function[

(∂t + Ub∂x)∆− ∂2yUb∂x −
1

Re
∆2

]
ψ = 0. (9)
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Design of the state space model (3/4)

The boundary conditions are
∂y
−→u (x, y = 0, t) = 0;

∂y
−→u (x, y = 1, t) = 0;

∂x
−→u (x = 1, y, t) = 0;

−→u (x = 0, y, t) = u.
Using simple semi-discrete formulation (finite differences in space), we
can write

L∂t[ψ](t) = A[ψ](t) (10)

where L is an inversible matrix and [ψ] is the vector representing the set
of considered stream-function.
We can then express an autonomous system given by

∂t[ψ] = L−1A[ψ] = A[ψ] (11)
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Design of the state space model (4/4)

Now we need to differency the control space and the state space to be
controlled.
There exist matrices M and Mc, with appropriate dimensions, such that
we have

[ψ] = M [ψ]r +Mc[ψ]u, (12)

and such that we have MTM = I, MTMc = 0, (Anda Ondo, 2013).
Using (12), we have

MTM∂t[ψ]r = MTAM [ψ]r +MTAMc[ψ]u −MTMc∂t[ψ]u

⇔ ∂t[ψ]r = MTAM [ψ]r +MTAMc[ψ]u (13)
So we can express our controlled state space such that

Ẋ = AX +BU . (14)
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On the controllability of the obtained models (1/2)

Let consider the system
Ẋ = AX +BU , (15)

before we compute a control law, we have to verify that our model is
controllable. The following assertions are equivalent:

the pair (A,B) is stabilizable;
there exists a matrix K such that (A+BK) is stable;
using the Popov-Belevitch-Hautus criterion (or PBH):
rank([A− λI B]) = nx · ny ∀ λ ∈ spec(A)) ∩ C∗+.

Using the PBH criterion, we test the controllability of the system for nx
and ny such that

nx = ny ∈
(
4 8 12 16 20

)
(16)

D. Anda Ondo et al
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On the controllability of the obtained models (2/2)

Figure 5: Stabilizability of the model: for each given nxy, all real positive
eigenvalues of A are tested. The minor rank is then divided by nxy.
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The Linear Quadratic Regulator (LQR) (1/2)

The problem of the control LQR is resolved using the closed-loop control
which minimizes the functionnal cost∫ ∞

0

(X T (t)QX (t) + UT (t)RU(t))dt (17)

where Q = QT ≥ 0 and R = R > 0, U = −KX with K = R−1BTP
and P = PT is the solution of the algebraic Riccati equation

ATP + PA− PBR−1BTP +Q = 0. (18)
How to determine Q and R in the case of the mixing-layer?
Matrices Q is given such that, (McKernan, 2006):

X TQX = E =
1

V

∫
V

ρ
~uT~u

2
dV (19)

where E is the unitary volume energy.
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The Linear Quadratic Regulator (LQR) (2/2)

Using the discrete approximation of (19), we have, after some
computations,

X TQX ' dxdy

ny∑
j=0

(
1

4dx2

[
ψ2
i=0,··· ,nx−1

0

]
j

+
1

4dx2

[
0

ψ2
i=1,··· ,nx

]
j

+
1

4dy2
[
ψ2
i

]
j−1 +

1

4dy2
[
ψ2
i

]
j+1

− 2

4dx2

 0
ψi+1ψi−1

0


j

− 2

4dy2
[ψi]

T
j+1 [ψi]j−1

 , (20)

where we assume the length in z-direction is 1.
The matrix R can be defined such that

R = r2I. (21)
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Incompact3D: a real-like system (1/2)

Incompact3D is a powerful numerical tool for academic research. It can
combine the versatility of industrial codes with the accuracy of spectral
codes, see (Laizet and Lamballais, 2011).
https://code.google.com/p/incompact3d/
Advantages:

based on a cartesian mesh (allow to implement high order compact
schemes);
Immersed Boundary Method;
Poisson equation is fully solved in spectral space;
large choice of boundary conditions.
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Incompact3D: a real-like system (2/2)

Simulation of the mixing-layer with upstream Strouhal frequency
excitation.

D. Anda Ondo et al
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Results: the simulation scenario

The Incompact3D is implemented with the following parameters:
The box is such that: nx = 512, ny = 256 and nz = 8;
Reynolds number: Re = 300;
velocities: uhigh = 2 and ulow = 1;
Boundary conditions such that them in the control design;
time step dt = 0.03;
center refinement for y mesh and no refinement for x mesh.

For the temporal scheme, we use Adam-Bashforth in order 3.
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Results

Figure 6: Values of the errors (ψm − ψd)
in the middle (Lx/2) along y-axis.

the desired state is such that:
ψd(y) =

∫ y

ymin

((
U2−U1

U2+U1

)
tanh(hr)
tanh(h) + 1

)
dr;

the desired state varies between 0 and 384.
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Conclusion

Summary

design of a linearized state space model for the mixing-layer around
a chosen state;
design of a stabilizing control law for the linearized state space
model;
implementation of the control law in Incompact3D and first
simulation are discussed.

Perspectives

concentrate more sites around the region of mixture: use a refined
mesh for the design of the control law;
take into account the disturbances on the control (Pu): LQR-I?
combine a feedforward and a feedback?
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Thank you for your attention!1

1Acknowledgments: thank you to Région Bretagne for the financing of the
project.
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