Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

Vision-based Control of the Mixing-Layer

GDR CDD-MOSAR, LIMSI, Orsay, 17/11/2014

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

Outline

1 Introduction

- 2 The choice of the control
- 3 The modelling
- 4 The First results

5 Conclusion

Introduction	The choice of the control	The
0		000
0000		00

The modelling

The First results

Conclusion

References

Context: climate separation in food industry (1/2)

More than half of food purchases are perishable products presented for sale in cold environment.

Figure 1: Climate separation device Froiloc© developped by Irstea

 \Rightarrow The emergence of new techniques comes from the need to address the contradiction between the food safety objective of maintaining cold environments, possibly ultra-clean, and work conditions objective of raising the temperature of the environment experienced by operators.

Introduction	The choice of the control	The modelling	The First results	
00	000	0000	00	
0000				

Conclusion

References

Context: climate separation in food industry (2/2)

These techniques aim to improve:

- food safety;
- work conditions;
- energy saving.

The climate separation devices are developed and optimized in stabilized conditions, but confronted to the industrial environments, these devices see their performances *Irs* of separation deteriorated.

Figure 1: Climate separation device Froiloc© developped by Irstea

Introduction	The choice of the control	The modelling	The First results	
00	000	0000	00	
0000				

onclusion

References

Context: climate separation in food industry (2/2)

These techniques aim to improve:

- o food safety;
- work conditions:
- energy saving.

closed-loop control.

The climate separation devices are developed and optimized in stabilized conditions, but confronted to the industrial environments, these devices see their performances Irstea of separation deteriorated. \Rightarrow Our motivation is to improve the climate separation with a

Figure 1: Climate separation device Froiloc^(C) developped by

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 ●000		0000 00 00	00 00		

The mixing layer (1/2)

In new climate separation techniques (see Fig. 1), interfaces between the two environments (blue and red) can be modelized by a typical mixing-layer.

Figure 1: Climate separation device Froiloc© developped by Irstea

(日) (周) (日) (日)

In the mixing-layer, the flow is turbulent (see Fig. 2).

Figure 2: Visualisation of the mixing-layer in the wind tunnel of Irstea

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0 00 0		0000 00 00	00 00		

The mixing layer (2/2)

There is a considerable bibliography on the Mixing-Layer, whose the main subjects are:

- analysis stability, see e.g. (Michalke, 1964, Ho and Huerre, 1984);
- mean behaviour in self similarity regions, see e.g. (Wygnanski and Fiedler (1970), ⊂ Sodjavi and Carlier (2013));
- forcing or open loop-control, see e.g.(Oster and Wygnanski, 1982, Ho and Huang, 1982, Koochesfahani and MacKinnon, 1991);
- closed-loop control, recently, see e.g. (Wiltse and Glezer, 2011, Parezanovic et al., 2014). Others turbulent systems, see e.g. (Gautier and Aider, 2014, Duriez et al., 2013).

Introduction	The choice of the control	The modelling	The First results	Conclusion	Reference
0000		00			

Visualisation of the forced mixing-layer of the wind tunnel

(Chatelain et al., 2013).

D. Anda Ondo et al Control of the Mixing Layer

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
0000		0000 00 00	00 00		

- 2 The choice of the control
- 3 The modelling
- 4 The First results

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

- 2 The choice of the control
 - 3 The modelling
- 4 The First results

5 Conclusion

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000	000	0000 00 00	00 00		

The control?

We use closed-loop control: depends of an observation of the system.

Figure 3: Closed-loop control of a disturbed system

Advantages:

- Robustness to the modeling errors;
- robustness to the disturbances on the system.

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000	000	0000 00 00	00 00		

The vision-based control (1/2)

The sensor: Camera

Advantages:

- is accurate for the state estimation;
- offers a large choice of desired states (base flow \rightarrow unsteady flow);
- can be used to get a dynamical model of the desired state.

Limits?

- real-time processing;
- visualisation of the flow.

Usual domains of use

- robotics (industrial, medical, mobile or motion);
- augmented reality, computer animation,.. (more limited degree)
- and more recently, in flow control.

D. Anda Ondo et al Control of the Mixing Layer

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
0000	000	0000 00 00	00 00		

The vision-based control (2/2)

- Goal: closed-loop control of flow fluid;
- Display device
 - extract the 2D velocity field by optical flow;
 - choice of the visual informations
- modelling of the variation of visual informations depending of variation of control signal: computation of the interaction matrix;
- synthesis of the control law;

• actuation on the fluid flow. (Tatsambon Fomena and Collewet, 2011, Dao and Collewet, 2012, Roca et al., 2014, Gautier and Aider, 2014)

Figure 4: Example of use of vision in control of Poiseuille flow

イロト イポト イヨト イヨト

	Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 00	00 0000		0000 00 00	00 00		

Outline

- 2 The choice of the control
- 3 The modelling
- 4 The First results

5 Conclusion

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		● 000 00 00	00 00		

Design of the state space model (1/4)

Let consider Navier-Stokes equations on incompressible flow

$$\partial_t \vec{U} + (\vec{U} \cdot \nabla) \vec{U} = -\frac{1}{\rho} \nabla P + \nu \Delta \vec{U}$$
(1a)

$$\nabla \cdot \vec{U} = 0. \tag{1b}$$

We consider also flow around a given profile \overrightarrow{U}_b such that $\partial_t \overrightarrow{U}_b = 0$ and

$$(\overrightarrow{U}_{b}\cdot\nabla)\overrightarrow{U}_{b} = -\frac{1}{\rho}\nabla P + \nu\Delta\overrightarrow{U}_{b}.$$
(2)

These fields verify the continuity equation

$$\nabla \cdot \vec{U}_b = 0. \tag{3}$$

イロト イポト イヨト イヨト

After some computations (linearisation, dimensionless), we can write

$$\mathcal{L}\dot{\mathcal{X}} = A\mathcal{X} + B\mathcal{U}.$$
 (4)

 \mathcal{L} is not inversible matrix!

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

Design of the state space model (2/4)

To write the system
$$(1)$$
 with the classical form

$$\dot{\mathcal{X}} = A\mathcal{X} + B\mathcal{U},\tag{5}$$

we use representations which allow to re-write the system (1) with two variables: **vorticity/stream-function** and **velocity/vorticity**. In the case of vorticity/stream-function formulation, we use the stream-function $\psi(x,y,t)$ such that

$$u = \partial_y \psi, \tag{6}$$

$$v = -\partial_x \psi, \tag{7}$$

$$\omega_z = -\nabla^2 \psi. \tag{8}$$

And finaly, we can express the Navier-Stokes equations only with the stream-function

$$\left[(\partial_t + U_b \partial_x) \Delta - \partial_y^2 U_b \partial_x - \frac{1}{Re} \Delta^2 \right] \psi = 0.$$
(9)

- * ロト * @ ト * ヨト * ヨト - ヨー のへの

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

Design of the state space model (3/4)

The boundary conditions are

- $\partial_y \overrightarrow{u}(x, y = 0, t) = 0;$
- $\partial_y \overrightarrow{u}(x, y = 1, t) = 0;$
- $\partial_x \overrightarrow{u}(x=1,y,t)=0;$

•
$$\overrightarrow{u}(x=0,y,t) = \mathbf{u}.$$

Using simple semi-discrete formulation (finite differences in space), we can write

$$\mathbb{L}\partial_t[\psi](t) = \mathbb{A}[\psi](t) \tag{10}$$

where $\mathbb L$ is an inversible matrix and $[\psi]$ is the vector representing the set of considered stream-function.

We can then express an autonomous system given by

$$\partial_t[\psi] = \mathbb{L}^{-1}\mathbb{A}[\psi] = \mathcal{A}[\psi]$$
(11)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

Design of the state space model (3/4)

The boundary conditions are

- $\partial_y \overrightarrow{u}(x, y = 0, t) = 0;$
- $\partial_y \overrightarrow{u}(x, y = 1, t) = 0;$
- $\partial_x \overrightarrow{u}(x=1,y,t)=0;$

•
$$\overrightarrow{u}(x=0,y,t) = \mathbf{u}.$$

Using simple semi-discrete formulation (finite differences in space), we can write

$$\mathbb{L}\partial_t[\psi](t) = \mathbb{A}[\psi](t) \tag{10}$$

where $\mathbb L$ is an inversible matrix and $[\psi]$ is the vector representing the set of considered stream-function.

We can then express an autonomous system given by

$$\partial_t[\psi] = \mathbb{L}^{-1}\mathbb{A}[\psi] = \mathcal{A}[\psi]$$
(11)

イロト 不得下 イヨト イヨト

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		000● 00 00	00 00		

Design of the state space model (4/4)

Now we need to differency the control space and the state space to be controlled.

There exist matrices ${\cal M}$ and ${\cal M}_c,$ with appropriate dimensions, such that we have

$$[\psi] = M[\psi]_r + M_c[\psi]_u, \tag{12}$$

and such that we have $M^T M = \mathbb{I}$, $M^T M_c = 0$, (Anda Ondo, 2013). Using (12), we have

$$M^{T}M\partial_{t}[\psi]_{r} = M^{T}\mathcal{A}M[\psi]_{r} + M^{T}\mathcal{A}M_{c}[\psi]_{u} - M^{T}M_{c}\partial_{t}[\psi]_{u}$$

$$\Leftrightarrow \quad \partial_{t}[\psi]_{r} = M^{T}\mathcal{A}M[\psi]_{r} + M^{T}\mathcal{A}M_{c}[\psi]_{u}$$
(13)

So we can express our controlled state space such that

$$\dot{\mathcal{X}} = A\mathcal{X} + B\mathcal{U}. \tag{14}$$

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00	000	0000	00		
0000		00	00		

On the controllability of the obtained models (1/2)

Let consider the system

$$\dot{\mathcal{X}} = A\mathcal{X} + B\mathcal{U},\tag{15}$$

before we compute a control law, we have to verify that our model is controllable. The following assertions are equivalent:

- the pair (A, B) is stabilizable;
- there exists a matrix \mathcal{K} such that $(A + B\mathcal{K})$ is stable;
- using the Popov-Belevitch-Hautus criterion (or PBH): $\operatorname{rank}([A - \lambda \mathbb{I} \quad B]) = nx \cdot ny \quad \forall \quad \lambda \in \operatorname{spec}(A)) \cap \mathbb{C}_+^*.$

Using the PBH criterion, we test the controllability of the system for $n\boldsymbol{x}$ and $n\boldsymbol{y}$ such that

$$nx = ny \in \begin{pmatrix} 4 & 8 & 12 & 16 & 20 \end{pmatrix}$$
 (16)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	The choice of the control	The
00	000	0000
0000		00

The modelling 0000 0● The First results

Conclusion ____

References

On the controllability of the obtained models (2/2)

Figure 5: Stabilizability of the model: for each given n_{xy} , all real positive eigenvalues of A are tested. The minor rank is then divided by n_{xy} .

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00	00 00		
		00			

The Linear Quadratic Regulator (LQR) (1/2)

The problem of the control LQR is resolved using the closed-loop control which minimizes the functionnal cost

$$\int_{0}^{\infty} (\mathcal{X}^{T}(t)\mathcal{Q}\mathcal{X}(t) + \mathcal{U}^{T}(t)\mathcal{R}\mathcal{U}(t)) dt$$
(17)

where $Q = Q^T \ge 0$ and $\mathcal{R} = \mathcal{R} > 0$, $\mathcal{U} = -\mathcal{K}\mathcal{X}$ with $\mathcal{K} = \mathcal{R}^{-1}B^T\mathcal{P}$ and $\mathcal{P} = \mathcal{P}^T$ is the solution of the algebraic Riccati equation $A^T\mathcal{P} + \mathcal{P}A - \mathcal{P}B\mathcal{R}^{-1}B^T\mathcal{P} + Q = 0.$ (18)

How to determine Q and \mathcal{R} in the case of the mixing-layer? Matrices Q is given such that, (M^cKernan, 2006):

$$\mathcal{X}^T \mathcal{Q} \mathcal{X} = E = \frac{1}{V} \int_V \rho \frac{\vec{u}^T \vec{u}}{2} \mathrm{dV}$$
 (19)

・ロト ・ 日 ・ ・ ヨ ・

where E is the unitary volume energy.

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

The Linear Quadratic Regulator (LQR) (2/2)

Using the discrete approximation of (19), we have, after some computations,

$$\mathcal{X}^{T} \mathcal{Q} \mathcal{X} \simeq dx dy \sum_{j=0}^{ny} \left(\frac{1}{4dx^{2}} \begin{bmatrix} \psi_{i=0,\cdots,nx-1}^{2} \\ 0 \end{bmatrix}_{j}^{j} + \frac{1}{4dx^{2}} \begin{bmatrix} 0 \\ \psi_{i=1,\cdots,nx}^{2} \end{bmatrix}_{j}^{j} + \frac{1}{4dy^{2}} \begin{bmatrix} \psi_{i}^{2} \\ 0 \end{bmatrix}_{j-1}^{j} + \frac{1}{4dy^{2}} \begin{bmatrix} \psi_{i}^{2} \\ 0 \end{bmatrix}_{j+1}^{j} - \frac{2}{4dx^{2}} \begin{bmatrix} 0 \\ \psi_{i+1}\psi_{i-1} \\ 0 \end{bmatrix}_{j}^{j} - \frac{2}{4dy^{2}} \begin{bmatrix} \psi_{i} \end{bmatrix}_{j+1}^{T} \begin{bmatrix} \psi_{i} \end{bmatrix}_{j-1}^{j} \right), \quad (20)$$

where we assume the length in z-direction is 1. The matrix \mathcal{R} can be defined such that

$$\mathcal{R} = r^2 \mathbb{I}.\tag{21}$$

イロト イポト イヨト イヨト

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

- 2 The choice of the control
- 3 The modelling
- 4 The First results

00 000 000	Introduction	The choice of the control	The modelling	The First results	Conclusion	References
0000 00 00 00	00 0000		0000 00 00	● ○ ○○		

Incompact3D: a real-like system (1/2)

Incompact3D is a powerful numerical tool for academic research. It can combine the versatility of industrial codes with the accuracy of spectral codes, see (Laizet and Lamballais, 2011). https://code.google.com/p/incompact3d/ Advantages:

- based on a cartesian mesh (allow to implement high order compact schemes);
- Immersed Boundary Method;
- Poisson equation is fully solved in spectral space;
- large choice of boundary conditions.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

Incompact3D: a real-like system (2/2)

Simulation of the mixing-layer with upstream Strouhal frequency excitation.

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 ●0		

Results: the simulation scenario

The Incompact3D is implemented with the following parameters:

- The box is such that: nx = 512, ny = 256 and nz = 8;
- Reynolds number: Re = 300;
- velocities: $u_{high} = 2$ and $u_{low} = 1$;
- Boundary conditions such that them in the control design;
- time step dt = 0.03;
- center refinement for y mesh and no refinement for x mesh.

For the temporal scheme, we use Adam-Bashforth in order 3.

・ロト ・ 日 ・ ・ ヨ ・

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 0●		

Results

Figure 6: Values of the errors $(\psi_m - \psi_d)$ in the middle $(L_x/2)$ along y-axis.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- the desired state is such that: $\psi_d(y) = \int_{y_{min}}^{y} \left(\left(\frac{U_2 - U_1}{U2 + U1} \right) \frac{\tanh(hr)}{\tanh(h)} + 1 \right) dr;$
- the desired state varies between 0 and 384.

э

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

Outline

Introduction

- 2 The choice of the control
- 3 The modelling

4 The First results

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

Conclusion

Summary

- design of a linearized state space model for the mixing-layer around a chosen state;
- design of a stabilizing control law for the linearized state space model;
- implementation of the control law in Incompact3D and first simulation are discussed.

Perspectives

- concentrate more sites around the region of mixture: use a refined mesh for the design of the control law;
- take into account the disturbances on the control (P_u) : LQR-I? combine a feedforward and a feedback?

◆□ > ◆圖 > ◆ 圖 > ◆ 圖 >

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

Thank you for your attention!

¹Acknowledgments: thank you to Région Bretagne for the financing of the project.

D. Anda Ondo et al Control of the Mixing Layer

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

References I

- D. Anda Ondo. Modélisation et analyse des systèmes à paramètres distribués non linéaires par la méthode de Boltzmann sur réseau : application aux écoulements à surface libre. These, Université de Grenoble, July 2013. URL http://tel.archives-ouvertes.fr/tel-00860782.
- K. Chatelain, A. Leroy, S. Aubrun, and J. Carlier. étude de la réceptivité d'un écoulement dynamque cisaillé libre au forçage dynamique par actionneur plasma. 2013.
- X.-Q. Dao and C. Collewet. Drag Reduction of the Plane Poiseuille Flow by Partitioned Visual Servo Control. In *American control conference*, pages 4084–4089, Montréal, Canada, June 2012. URL http://hal.inria.fr/hal-00726528.
- T. Duriez, V. Parezanovic, B. R. Noack, and L. Cordier. Attractor control using machine learning, 2013. arXiv:1311.5250v1 [nlin.CD] 20 Nov 2013.
- . Gautier and J.-L. Aider. Feed-forward control of a perturbed backward-facing step flow. J. Fluid Mech., 759:181–196, 2014. doi: 10.1017/jfm.2014.518.
- C.-M. Ho and L.-S. Huang. Subharmonics and vortex merging in mixing layers. J. Fluid Mech., 119:443–473, 1982.

< 日 > < 同 > < 三 > < 三 >

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

References II

- C.-M. Ho and P. Huerre. Perturbed free shear layers. Ann. Rev. Fluid Mech., 16: 365–424, 1984.
- M. M. Koochesfahani and C. G. MacKinnon. Influence of forcing on the composition of mixed fluid in a two-stream shear layer. *Phys. Fluids A*, 3(5):1135–1142, May 1991.
- S. Laizet and E. Lamballais. User guide incompact3d. Technical report, Université de Poitiers, 2011. Version 1.0.
- A. Michalke. On the inviscid instability of the hyperbolictangent velocity profile. Journal of Fluid Mechanics, 19:543-556, 8 1964. ISSN 1469-7645. doi: 10.1017/S0022112064000908. URL http://journals.cambridge.org/article_S0022112064000908.
- J. M^cKernan. *Control of Plane Poiseuille Flow: A theoretical and Computationnal Investigation*. PhD thesis, Cranfield University, School of Engineering, 2006.
- D. Oster and I. Wygnanski. The forced mixing layer between parallel streams. J. Fluid Mechanics, 123:91–130, 1982.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	The choice of the control	The modelling	The First results	Conclusion	References
00 0000		0000 00 00	00 00		

References III

- V. Parezanovic, T. Duriez, L. Cordier, B. R. Noack, J. Delville, J.-P. Bonnet, M. Segond, M. Abel, and S. L. Brunton. Closed-loop control of an experimental mixing-layer using machine learning control, 2014. Under consideration for publication in J. Fluids Mech.
- P. Roca, A. Cammilleri, T. Duriez, L. Mathelin, and G. Artana. Streakline-based closed-loop control of a bluff body flow. *Physics of Fluids*, 26, 2014. doi: 10.1063/1.487176.
- K. Sodjavi and J. Carlier. Experimental study of thermal mixing layer using variable temperature hot-wire anemomentry. *Exp. Fluids*, 54, 2013. doi: 10.1007/s00348-013-1599-y.
- R. Tatsambon Fomena and C. Collewet. Fluid Flow Control: a Vision-Based Approach. International Journal of Flow Control, 3(2+3):133-169, Sept. 2011. URL http://hal.inria.fr/hal-00701080.
- J. M. Wiltse and A. Glezer. The effect of closed-loop feedback control on scalar mixing in a plane shear layer. *Exp. Fluids*, 51:1291–1314, 2011.
- I. Wygnanski and H. E. Fiedler. The two-dimensional mixing regions. J. Fluids Mech., 41:327–361, 1970. part 2.

(日) (同) (三) (三) (三)