Introduction	Stability analysis of LPV systems	Analysis of LPV systems with PC parameters	Control of LPV systems with PC parameters	Cond
000	0000	0000000000	000000	000

Analysis of control of LPV systems with piecewise constant parameters

Corentin Briat ETH-Zürich - D-BSSE

MOSAR Workshop Onera, Toulouse, France - 28/11/2014

	Introduction	Stability analysis of LPV systems	Analysis of LPV systems with PC parameters	Control of LPV systems with PC parameters	Conclusion
С	0 00	0000	0000000000	000000	000
	××	D-BSSE Department of Biosystems Science and Engineering			

Introduction

LPV systems

$$\dot{x}(t) = A(\rho(t))x(t) + B(\rho(t))u(t) y(t) = C(\rho(t))x(t) + D(\rho(t))u(t) x(0) = x_0$$
 (1)

where

- x, u and y are the state of the system, the (control) input and the output
- ρ is the parameter vector
- Matrix-valued functions $A(\cdot)$, $B(\cdot)$, $C(\cdot)$ and $D(\cdot)$ "nice enough"

LPV systems

$$\dot{x}(t) = A(\rho(t))x(t) + B(\rho(t))u(t) y(t) = C(\rho(t))x(t) + D(\rho(t))u(t) x(0) = x_0$$
 (1)

where

- x, u and y are the state of the system, the (control) input and the output
- *ρ* is the parameter vector
- Matrix-valued functions $A(\cdot)$, $B(\cdot)$, $C(\cdot)$ and $D(\cdot)$ "nice enough"

Commonly considered parameters

- Bounded differentiable trajectories
- Discontinuous bounded trajectories
- · Periodic, switched and Markov jump systems can also be seen as LPV systems

Stability analysis

- Identical to uncertain time-varying parametric systems
- LPV analysis = robust analysis

Stability analysis

- Identical to uncertain time-varying parametric systems
- LPV analysis = robust analysis

LPV design

- · We assume in the LPV framework that the parameters are measured/known
- So, we can use them in controllers, observers, etc.
- For instance, a gain-scheduled state-feedback controller would take the form

$$u(t) = K(\rho(t))x(t)$$
(2)

- LPV control > robust control
- But LPV controllers are more difficult to design!

Stability analysis of LPV systems

$$\dot{x}(t) = A(\rho(t))x(t)$$

 $x(0) = x_0$
(3)

is quadratically stable if and only if there exists a matrix $P \in \mathbb{S}_{\succ 0}^n$ such that the LMI

$$A(\theta)^T P + PA(\theta) \prec 0 \tag{4}$$

holds for all $\theta \in \mathcal{P}$.

$$\dot{x}(t) = A(\rho(t))x(t)$$

 $x(0) = x_0$
(3)

is quadratically stable if and only if there exists a matrix $P \in \mathbb{S}_{\succ 0}^n$ such that the LMI

$$A(\theta)^T P + P A(\theta) \prec 0 \tag{4}$$

holds for all $\theta \in \mathcal{P}$.

Remarks

- Common Lyapunov function $V(x) = x^T P x$
- All possible trajectories for the parameters are considered (with the restriction of existence of solutions)
- Quadratic stability $\Longrightarrow A(\rho)$ Hurwitz stable for all $\rho \in \mathcal{P}$
- Semi-infinite dimensional LMI problem

$$\dot{x}(t) = A(\rho(t))x(t)$$

 $x(0) = x_0$
(5)

with $\rho \in \{f : \mathbb{R}_{\geq 0} \to \mathcal{P} \subset \mathbb{R}^N, f'(t) \in \mathcal{D}, t \geq 0\}$ is robustly stable if and only if there exists a differentiable matrix-valued function $P : \mathcal{P} \to \mathbb{S}_{\geq 0}^n$ such that the LMI

$$\sum_{i=1}^{N} \theta'_{i} \frac{\partial}{\partial \theta_{i}} P(\theta) + A(\theta)^{T} P(\theta) + P(\theta) A(\theta) \prec 0$$
(6)

holds for all $\theta \in \mathcal{P}$ and all $\theta' \in \mathcal{D}$.

ETH zürich

$$\begin{aligned} \dot{x}(t) &= A(\rho(t))x(t) \\ x(0) &= x_0 \end{aligned}$$
 (5)

with $\rho \in \{f : \mathbb{R}_{\geq 0} \to \mathcal{P} \subset \mathbb{R}^N, f'(t) \in \mathcal{D}, t \geq 0\}$ is robustly stable if and only if there exists a differentiable matrix-valued function $P : \mathcal{P} \to \mathbb{S}_{\geq 0}^n$ such that the LMI

$$\sum_{i=1}^{N} \theta'_{i} \frac{\partial}{\partial \theta_{i}} P(\theta) + A(\theta)^{T} P(\theta) + P(\theta) A(\theta) \prec 0$$
(6)

holds for all $\theta \in \mathcal{P}$ and all $\theta' \in \mathcal{D}$.

Remarks

- Parameter-dependent Lyapunov function $V(x) = x^T P(\rho) x$
- Trajectories of the parameters are continuously differentiable
- $A(\rho)$ Hurwitz stable for all $\rho \in \mathcal{P}$ is necessary and sufficient for robust stability provided that the parameters vary sufficiently slowly
- Infinite-dimensional LMI problem

ETH zürich

Remarks on LPV systems

- Two main classes of parameter trajectories associated with two main stability concepts
- · Quadratic stability may be conservative while robust stability too demanding
- Part of the success of periodic, switched and jump systems lies in the "tailoredness" of the tools
- The definition of the parameter trajectories is way too loose to lead to accurate results (e.g. asymptotic stability does not imply quadratic stability)

Remarks on LPV systems

- Two main classes of parameter trajectories associated with two main stability concepts
- · Quadratic stability may be conservative while robust stability too demanding
- Part of the success of periodic, switched and jump systems lies in the "tailoredness" of the tools
- The definition of the parameter trajectories is way too loose to lead to accurate results (e.g. asymptotic stability does not imply quadratic stability)

Proposal

- What about something in between the set of all possible trajectories and those that are continuously differentiable?
- For instance, we can consider piecewise continuous/constant parameter trajectories
- · Quadratic and robust stability not adapted
- Need something new!

Stability analysis of LPV systems with piecewise constant parameters

Two main class of parameters

- Periodic changes \rightarrow constant dwell-time
- Aperiodic changes \rightarrow minimum dwell-time

Two main class of parameters

- Periodic changes \rightarrow constant dwell-time
- Aperiodic changes \rightarrow minimum dwell-time

Stability results

- · Discrete-time-like stability conditions
- · Lifted conditions

Two main class of parameters

- Periodic changes \rightarrow constant dwell-time
- Aperiodic changes \rightarrow minimum dwell-time

Stability results

- · Discrete-time-like stability conditions
- Lifted conditions

Discussions

- · Connections with quadratic and robust stability
- · Connections with switched systems
- Computational considerations
- Example

ETH Zürich

$$\dot{x} = A(\rho)x, \ x(0) = x_0$$
 (7)

with piecewise constant parameter $\rho \in \mathscr{P}_{T}$ where

$$\mathscr{P}_{\bar{T}} = \left\{ \begin{array}{c} \rho : \mathbb{R}_{\geq 0} \to \mathscr{P} : \ \rho(t) = \rho(t_k), \ t \in [t_k, t_{k+1}), \\ t_k = k\bar{T} + \sigma_0, \ 0 \leq \sigma_0 < \bar{T}, \ k \in \mathbb{N} \end{array} \right\}$$
(8)

ETH Zürich

$$\dot{x} = A(\rho)x, \ x(0) = x_0$$
 (7)

with piecewise constant parameter $\rho \in \mathscr{P}_{T}$ where

$$\mathscr{P}_{\overline{T}} = \left\{ \begin{array}{c} \rho : \mathbb{R}_{\geq 0} \to \mathscr{P} : \ \rho(t) = \rho(t_k), \ t \in [t_k, t_{k+1}), \\ t_k = k\overline{T} + \sigma_0, \ 0 \leq \sigma_0 < \overline{T}, \ k \in \mathbb{N} \end{array} \right\}$$
(8)

Theorem

ETH zürich

Assume that there exists matrix-valued function $P : \mathcal{P} \to \mathbb{S}^n_{\succeq 0}$ such that

$$e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta)\bar{T}} - P(\eta) \prec 0$$
(9)

holds for all $\theta, \eta \in \mathcal{P}$.

Then, the LPV system with piecewise constant parameters and constant dwell-time \bar{T} is asymptotically stable.

$$\dot{x} = A(\rho)x, \ x(0) = x_0$$
 (10)

with piecewise constant parameter $\rho\in\mathscr{P}_{\geqslant\bar{T}}$ where

$$\mathscr{P}_{\geqslant \bar{T}} = \left\{ \begin{array}{c} \rho : \mathbb{R}_{\ge 0} \to \mathscr{P} : \rho(t) = \rho(t_k), t \in [t_k, t_{k+1}) \\ t_{k+1} - t_k \ge \bar{T}, \ k \in \mathbb{N}_0 \end{array} \right\}.$$
(11)

$$\dot{x} = A(\rho)x, \ x(0) = x_0$$
 (10)

with piecewise constant parameter $\rho \in \mathscr{P}_{\geqslant \bar{T}}$ where

$$\mathscr{P}_{\geq \bar{T}} = \left\{ \begin{array}{c} \rho : \mathbb{R}_{\geq 0} \to \mathscr{P} : \rho(t) = \rho(t_k), t \in [t_k, t_{k+1}) \\ t_{k+1} - t_k \geq \bar{T}, \ k \in \mathbb{N}_0 \end{array} \right\}.$$
(11)

Theorem

Assume that there exists a matrix-valued function $P: \mathcal{P} \to \mathbb{S}^n_{\succ 0}$ such that

$$e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta)\bar{T}} - P(\eta) \prec 0$$
(12)

and

$$A(\theta)^T P(\theta) + P(\theta)A(\theta) \prec 0$$
(13)

holds for all $\theta, \eta \in \mathcal{P}$. Then, the LPV system with piecewise constant parameters is asymptotically stable with minimum dwell-time \overline{T} .

Corentin Briat

ETH zürich

Analysis of control of LPV systems with piecewise constant parameters

Conditions

$$e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta)\bar{T}} - P(\eta) \prec 0, \quad A(\theta)^T P(\theta) + P(\theta)A(\theta) \prec 0$$

ETH zürich

Verification of the conditions

• Infinite-dimensional LMIs

Conditions

$$e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta)\bar{T}} - P(\eta) \prec 0, \quad A(\theta)^T P(\theta) + P(\theta) A(\theta) \prec 0$$

ETH Zürich

Verification of the conditions

- Infinite-dimensional LMIs
- Nonconvex exponential terms $e^{A(\theta)\bar{T}}$
- Not easy to check exactly even if the dependence if affine
- · Gridding possible but inaccurate and computationally expensive

Conditions

$$e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta)\bar{T}} - P(\eta) \prec 0, \quad A(\theta)^T P(\theta) + P(\theta) A(\theta) \prec 0$$

ETH zürich

Verification of the conditions

- Infinite-dimensional LMIs
- Nonconvex exponential terms $e^{A(\theta)\bar{T}}$
- Not easy to check exactly even if the dependence if affine
- Gridding possible but inaccurate and computationally expensive

Control design

• Nonconvex at all since we would have that $e^{(A(\theta)+B(\theta)K(\theta))\bar{T}}$

The following statements are equivalent:

(a) There exists a matrix-valued function $P: \mathcal{P} \to \mathbb{S}^n_{\succ 0}$ such that the condition

$$e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta)\bar{T}} - P(\eta) \prec 0$$
(14)

holds for all $\theta, \eta \in \mathcal{P}$.

The following statements are equivalent:

(a) There exists a matrix-valued function $P: \mathcal{P} \to \mathbb{S}^n_{\succ 0}$ such that the condition

$$e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta)\bar{T}} - P(\eta) \prec 0$$
(14)

holds for all $\theta, \eta \in \mathcal{P}$.

(b) There exists a matrix-valued function S : [0, T̄] × 𝒫 → 𝔅ⁿ, S(T̄, θ) ≻ 0, such that the conditions

$$\partial_{\tau} S(\tau, \theta) + \operatorname{Sym}[S(\tau, \theta)A(\theta)] \leq 0$$
 (15)

and

$$S(0,\theta) - S(\bar{T},\eta) \prec 0 \tag{16}$$

hold for all $\theta, \eta \in \mathcal{P}$ and all $\tau \in \mathcal{T} := [0, \overline{T}]$.

ETH Zürich

The following statements are equivalent:

(a) There exists a matrix-valued function $P: \mathcal{P} \to \mathbb{S}^n_{\succ 0}$ such that the condition

$$e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta)\bar{T}} - P(\eta) \prec 0$$
(14)

holds for all $\theta, \eta \in \mathcal{P}$.

(b) There exists a matrix-valued function $S:[0,\bar{T}] \times \mathcal{P} \to \mathbb{S}^n$, $S(\bar{T},\theta) \succ 0$, such that the conditions

$$\partial_{\tau} S(\tau, \theta) + \operatorname{Sym}[S(\tau, \theta)A(\theta)] \leq 0$$
 (15)

and

$$S(0,\theta) - S(\bar{T},\eta) \prec 0 \tag{16}$$

hold for all $\theta, \eta \in \mathcal{P}$ and all $\tau \in \mathcal{T} := [0, \overline{T}]$.

Moreover, when one of the above statements holds, the LPV system with piecewise constant parameters and constant dwell-time \bar{T} is asymptotically stable.

$(b) \Rightarrow (a)$

• Integrating $\partial_{\tau} S(\tau, \theta) + \operatorname{Sym}[S(\tau, \theta)A(\theta)] \leq 0$ over $\tau \in [0, \overline{T}]$ yields

$$e^{A(\theta)^T \bar{T}} S(\bar{T}, \theta) e^{A(\theta) \bar{T}} \preceq S(0, \theta).$$

- Using now $S(0,\theta)-S(\bar{T},\eta)\prec 0$ yields the condition

$$e^{A(\theta)^T \bar{T}} S(\bar{T}, \theta) e^{A(\theta) \bar{T}} - S(\bar{T}, \eta) \prec 0.$$

 $(b) \Rightarrow (a)$

• Integrating $\partial_{\tau} S(\tau, \theta) + \operatorname{Sym}[S(\tau, \theta)A(\theta)] \leq 0$ over $\tau \in [0, \overline{T}]$ yields

$$e^{A(\theta)^T \bar{T}} S(\bar{T}, \theta) e^{A(\theta) \bar{T}} \preceq S(0, \theta).$$

- Using now $S(0,\theta)-S(\bar{T},\eta)\prec 0$ yields the condition

$$e^{A(\theta)^T \bar{T}} S(\bar{T}, \theta) e^{A(\theta)\bar{T}} - S(\bar{T}, \eta) \prec 0.$$

 $(a) \Rightarrow (b)$

• Assume that there exists $P(\theta)$ such that $e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta) \bar{T}} - P(\eta) \prec 0$

• Pick
$$S^*(\tau, \theta) = e^{-A(\theta)^T \tau} S^*(0, \theta) e^{-A(\theta)\tau}$$

- Then, we have that $\partial_{\tau}S^{*}(\tau,\theta) + \operatorname{Sym}[S^{*}(\tau,\theta)A(\theta)] = 0$
- Moreover, we have that

$$S^{*}(0,\theta) - S^{*}(\bar{T},\eta) = e^{A(\theta)^{T}\bar{T}}S^{*}(\bar{T},\theta)e^{A(\theta)\bar{T}} - S^{*}(\bar{T},\eta) \prec 0$$
(17)

The following statements are equivalent:

(a) There exists a matrix-valued function $P: \mathcal{P} \to \mathbb{S}_{\succ 0}^n$ such that the conditions

$$A(\theta)^T P(\theta) + P(\theta)A(\theta) \prec 0$$
(18)

$$e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta)\bar{T}} - P(\eta) \prec 0$$
(19)

hold for all $\theta, \eta \in \mathcal{P}$.

The following statements are equivalent:

(a) There exists a matrix-valued function $P: \mathcal{P} \to \mathbb{S}_{\succ 0}^n$ such that the conditions

$$A(\theta)^T P(\theta) + P(\theta)A(\theta) \prec 0$$
(18)

$$e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta)\bar{T}} - P(\eta) \prec 0$$
(19)

hold for all $\theta, \eta \in \mathcal{P}$.

(b) There exists a matrix-valued function $S:[0,\bar{T}] \times \mathcal{P} \to \mathbb{S}^n$, $S(\bar{T},\theta) \succ 0$, such that the conditions

$$A(\theta)^T S(\bar{T},\theta) + S(\bar{T},\theta)A(\theta) \prec 0$$
(20)

$$\partial_{\tau} S(\tau, \theta) + \operatorname{Sym}[S(\tau, \theta)A(\theta)] \leq 0$$
 (21)

$$S(0,\theta) - S(\bar{T},\eta) \prec 0 \tag{22}$$

hold for all $\theta, \eta \in \mathcal{P}$ and all $\tau \in \mathcal{T} := [0, \overline{T}]$.

The following statements are equivalent:

(a) There exists a matrix-valued function $P: \mathcal{P} \to \mathbb{S}_{\succ 0}^n$ such that the conditions

$$A(\theta)^T P(\theta) + P(\theta)A(\theta) \prec 0$$
(18)

$$e^{A(\theta)^T \bar{T}} P(\theta) e^{A(\theta)\bar{T}} - P(\eta) \prec 0$$
(19)

hold for all $\theta, \eta \in \mathcal{P}$.

(b) There exists a matrix-valued function $S:[0,\bar{T}] \times \mathcal{P} \to \mathbb{S}^n$, $S(\bar{T},\theta) \succ 0$, such that the conditions

$$A(\theta)^T S(\bar{T},\theta) + S(\bar{T},\theta)A(\theta) \prec 0$$
(20)

$$\partial_{\tau} S(\tau, \theta) + \operatorname{Sym}[S(\tau, \theta)A(\theta)] \leq 0$$
 (21)

$$S(0,\theta) - S(\bar{T},\eta) \prec 0 \tag{22}$$

hold for all $\theta, \eta \in \mathcal{P}$ and all $\tau \in \mathcal{T} := [0, \overline{T}]$.

Moreover, when one of the above statements holds, the LPV system with piecewise constant parameters and minimum dwell-time \bar{T} is asymptotically stable.

Theorem (Quadratic stability)

When $\bar{T} \rightarrow 0$ in the minimum dwell-time theorem, then the quadratic stability condition

$$A(\theta)^T P + P A(\theta) \prec 0 \tag{23}$$

is recovered.

Connection with quadratic and robust stability

Theorem (Quadratic stability)

When $\bar{T} \rightarrow 0$ in the minimum dwell-time theorem, then the quadratic stability condition

$$A(\theta)^T P + PA(\theta) \prec 0 \tag{23}$$

is recovered.

Theorem (Robust stability)

When $\bar{T} \rightarrow \infty$ in the minimum dwell-time theorem, then the robust stability condition

$$A(\theta)^T P(\theta) + P(\theta)A(\theta) \prec 0$$
(24)

for constant parametric uncertainties is recovered.

Connection with quadratic and robust stability

Theorem (Quadratic stability)

When $\bar{T} \rightarrow 0$ in the minimum dwell-time theorem, then the quadratic stability condition

$$A(\theta)^T P + P A(\theta) \prec 0 \tag{23}$$

is recovered.

Theorem (Robust stability)

When $\bar{T} \rightarrow \infty$ in the minimum dwell-time theorem, then the robust stability condition

$$A(\theta)^T P(\theta) + P(\theta)A(\theta) \prec 0$$
(24)

for constant parametric uncertainties is recovered.

Switched systems

Let $\mathcal{P} = \{1, \dots, M\}$, for some finite $M \in \mathbb{N}$, and define

$$A(\rho) = \sum_{i=1}^{M} \delta_{i,\rho} A_i$$
(25)

where $\delta_{i,j}$ is the Kronecker delta; i.e. $\delta_{i,j} = 1$ if i = j, and 0 otherwise.

Switched systems

Let $\mathcal{P} = \{1, \dots, M\}$, for some finite $M \in \mathbb{N}$, and define

$$A(\rho) = \sum_{i=1}^{M} \delta_{i,\rho} A_i$$
(25)

where $\delta_{i,j}$ is the Kronecker delta; i.e. $\delta_{i,j} = 1$ if i = j, and 0 otherwise.

Corollary (1)

Assume that there exist matrices $P_i \in \mathbb{S}_{\succ 0}^n$, i = 1, ..., M, such that the conditions

$$A_i^T P_i + P_i A_i \prec 0 \tag{26}$$

and

$$e^{A_i^T \bar{T}} P_i e^{A_i \bar{T}} - P_j \prec 0 \tag{27}$$

hold for all $i, j = 1, \ldots, M$, $i \neq j$.

Then, the switched system defined for (25) is asymptotically stable with minimum dwell-time \bar{T} .

1 Statistical of the second stability and stabilization of continuous-time switched linear systems, SIAM Journal on Control and Optimization, 2006

- The sets $\ensuremath{\mathcal{P}}$ and $\ensuremath{\mathcal{T}}$ are defined as

$$\begin{array}{rcl} \mathcal{P} & := & \{\theta \in \mathbb{R} : g(\theta) := (\theta_{max} - \theta)(\theta - \theta_{min}) \ge 0\} \\ \mathcal{T} & := & \{\tau \in \mathbb{R} : \ h(\tau) := \tau(\bar{T} - \tau) \ge 0\} \end{array}$$

• We say that that a symmetric matrix-valued function $M(\cdot)$ is a matrix sum of squares if there exists a matrix-valued function $N(\cdot)$ such that $M(\cdot) = N(\cdot)^T N(\cdot)$.

- The sets $\ensuremath{\mathcal{P}}$ and $\ensuremath{\mathcal{T}}$ are defined as

$$\begin{array}{rcl} \mathcal{P} & := & \left\{ \theta \in \mathbb{R} : g(\theta) := (\theta_{max} - \theta)(\theta - \theta_{min}) \geq 0 \right\} \\ \mathcal{T} & := & \left\{ \tau \in \mathbb{R} : \; h(\tau) := \tau(\bar{T} - \tau) \geq 0 \right\} \end{array}$$

• We say that that a symmetric matrix-valued function $M(\cdot)$ is a matrix sum of squares if there exists a matrix-valued function $N(\cdot)$ such that $M(\cdot) = N(\cdot)^T N(\cdot)$.

Proposition

Let $\varepsilon_1, \varepsilon_2, \overline{\Gamma} > 0$ be given and assume that there exist polynomial matrix-valued functions $S, \Gamma_j : \mathbb{R}^2 \to \mathbb{S}^n, j = 1, \dots, 4$ and $\Gamma : \mathbb{R} \to \mathbb{S}^n$ such that

• $\Gamma, \Gamma_j, j = 1, \dots, 4$, are SOS matrix polynomials

- The sets $\ensuremath{\mathcal{P}}$ and $\ensuremath{\mathcal{T}}$ are defined as

$$\begin{array}{rcl} \mathcal{P} & := & \{\theta \in \mathbb{R} : g(\theta) := (\theta_{max} - \theta)(\theta - \theta_{min}) \geq 0\} \\ \mathcal{T} & := & \{\tau \in \mathbb{R} : \ h(\tau) := \tau(\bar{T} - \tau) \geq 0\} \end{array}$$

• We say that that a symmetric matrix-valued function $M(\cdot)$ is a matrix sum of squares if there exists a matrix-valued function $N(\cdot)$ such that $M(\cdot) = N(\cdot)^T N(\cdot)$.

Proposition

Let $\varepsilon_1, \varepsilon_2, \overline{\Gamma} > 0$ be given and assume that there exist polynomial matrix-valued functions $S, \Gamma_j : \mathbb{R}^2 \to \mathbb{S}^n, j = 1, \dots, 4$ and $\Gamma : \mathbb{R} \to \mathbb{S}^n$ such that

- $\Gamma, \Gamma_j, j = 1, \dots, 4$, are SOS matrix polynomials
- $S(\overline{T}, \theta) \Gamma(\theta)g(\theta) \varepsilon_1 I_n$ is SOS

- The sets $\ensuremath{\mathcal{P}}$ and $\ensuremath{\mathcal{T}}$ are defined as

$$\begin{array}{rcl} \mathcal{P} & := & \left\{ \theta \in \mathbb{R} : g(\theta) := (\theta_{max} - \theta)(\theta - \theta_{min}) \geq 0 \right\} \\ \mathcal{T} & := & \left\{ \tau \in \mathbb{R} : \; h(\tau) := \tau(\bar{T} - \tau) \geq 0 \right\} \end{array}$$

• We say that that a symmetric matrix-valued function $M(\cdot)$ is a matrix sum of squares if there exists a matrix-valued function $N(\cdot)$ such that $M(\cdot) = N(\cdot)^T N(\cdot)$.

Proposition

Let $\varepsilon_1, \varepsilon_2, \overline{\Gamma} > 0$ be given and assume that there exist polynomial matrix-valued functions $S, \Gamma_j : \mathbb{R}^2 \to \mathbb{S}^n, j = 1, \dots, 4$ and $\Gamma : \mathbb{R} \to \mathbb{S}^n$ such that

- $\Gamma, \Gamma_j, j = 1, \dots, 4$, are SOS matrix polynomials
- $S(\overline{T}, \theta) \Gamma(\theta)g(\theta) \varepsilon_1 I_n$ is SOS
- $-\partial_{\tau}S(\tau,\theta) \operatorname{Sym}[S(\tau,\theta)A(\theta)] \Gamma_1(\tau,\theta)h(\tau) \Gamma_2(\tau,\theta)g(\theta)$ is SOS

• The sets $\ensuremath{\mathcal{P}}$ and $\ensuremath{\mathcal{T}}$ are defined as

$$\begin{array}{rcl} \mathcal{P} & := & \left\{ \theta \in \mathbb{R} : g(\theta) := (\theta_{max} - \theta)(\theta - \theta_{min}) \geq 0 \right\} \\ \mathcal{T} & := & \left\{ \tau \in \mathbb{R} : \; h(\tau) := \tau(\bar{T} - \tau) \geq 0 \right\} \end{array}$$

• We say that that a symmetric matrix-valued function $M(\cdot)$ is a matrix sum of squares if there exists a matrix-valued function $N(\cdot)$ such that $M(\cdot) = N(\cdot)^T N(\cdot)$.

Proposition

Let $\varepsilon_1, \varepsilon_2, \overline{\Gamma} > 0$ be given and assume that there exist polynomial matrix-valued functions $S, \Gamma_j : \mathbb{R}^2 \to \mathbb{S}^n, j = 1, \dots, 4$ and $\Gamma : \mathbb{R} \to \mathbb{S}^n$ such that

- $\Gamma, \Gamma_j, j = 1, \dots, 4$, are SOS matrix polynomials
- $S(\overline{T}, \theta) \Gamma(\theta)g(\theta) \varepsilon_1 I_n$ is SOS
- $-\partial_{\tau}S(\tau,\theta) \operatorname{Sym}[S(\tau,\theta)A(\theta)] \Gamma_1(\tau,\theta)h(\tau) \Gamma_2(\tau,\theta)g(\theta)$ is SOS
- $S(\bar{T},\eta) S(0,\theta) \varepsilon_2 I \Gamma_3(\theta,\eta)g(\theta) \Gamma_4(\theta,\eta)g(\eta)$ is SOS

• The sets $\ensuremath{\mathcal{P}}$ and $\ensuremath{\mathcal{T}}$ are defined as

$$\begin{array}{rcl} \mathcal{P} & := & \left\{ \theta \in \mathbb{R} : g(\theta) := (\theta_{max} - \theta)(\theta - \theta_{min}) \geq 0 \right\} \\ \mathcal{T} & := & \left\{ \tau \in \mathbb{R} : \; h(\tau) := \tau(\bar{T} - \tau) \geq 0 \right\} \end{array}$$

• We say that that a symmetric matrix-valued function $M(\cdot)$ is a matrix sum of squares if there exists a matrix-valued function $N(\cdot)$ such that $M(\cdot) = N(\cdot)^T N(\cdot)$.

Proposition

Let $\varepsilon_1, \varepsilon_2, \overline{\Gamma} > 0$ be given and assume that there exist polynomial matrix-valued functions $S, \Gamma_j : \mathbb{R}^2 \to \mathbb{S}^n, j = 1, \dots, 4$ and $\Gamma : \mathbb{R} \to \mathbb{S}^n$ such that

- $\Gamma, \Gamma_j, j = 1, \dots, 4$, are SOS matrix polynomials
- $S(\overline{T}, \theta) \Gamma(\theta)g(\theta) \varepsilon_1 I_n$ is SOS
- $-\partial_{\tau}S(\tau,\theta) \operatorname{Sym}[S(\tau,\theta)A(\theta)] \Gamma_1(\tau,\theta)h(\tau) \Gamma_2(\tau,\theta)g(\theta)$ is SOS
- $S(\bar{T},\eta) S(0,\theta) \varepsilon_2 I \Gamma_3(\theta,\eta)g(\theta) \Gamma_4(\theta,\eta)g(\eta)$ is SOS

Then the LPV system with piecewise constant parameters and constant dwell-time \bar{T} is asymptotically stable.

• Let us consider here an LPV system with the matrix

$$A(\theta) = \begin{bmatrix} 0 & 1\\ -2 - \theta & -1 \end{bmatrix}$$
(28)

where $\theta \in [0, \overline{\theta}], \overline{\theta} > 0$.

• It is known that this system is quadratically stable if and only if $\bar{\theta} \leq 3.828$.

• Let us consider here an LPV system with the matrix

$$A(\theta) = \begin{bmatrix} 0 & 1\\ -2 - \theta & -1 \end{bmatrix}$$
(28)

where $\theta \in [0, \overline{\theta}], \overline{\theta} > 0$.

- It is known that this system is quadratically stable if and only if $\bar{\theta} \leq 3.828$.
- We use polynomials of order 4 and we get the following results:

Control of LPV systems with piecewise constant parameters

· Let us consider the LPV system

$$\dot{x}(t) = A(\rho(t))x(t) + B(\rho(t))u(t)$$

 $x(0) = x_0$

where $\{t_k\}_{k\in\mathbb{N}_0}$ is the sequence of time instants at which the parameter vector changes value.

· Let us consider the LPV system

$$\begin{array}{lll} \dot{x}(t) & = & A(\rho(t))x(t) + B(\rho(t))u(t) \\ x(0) & = & x_0 \end{array}$$

where $\{t_k\}_{k\in\mathbb{N}_0}$ is the sequence of time instants at which the parameter vector changes value.

Control laws

· Constant dwell-time case

$$u(t) = K(t - t_k, \rho(t_k))x(t), \ t \in [t_k, t_{k+1})$$
(29)

· Let us consider the LPV system

$$\begin{array}{lll} \dot{x}(t) & = & A(\rho(t))x(t) + B(\rho(t))u(t) \\ x(0) & = & x_0 \end{array}$$

where $\{t_k\}_{k\in\mathbb{N}_0}$ is the sequence of time instants at which the parameter vector changes value.

Control laws

· Constant dwell-time case

$$u(t) = K(t - t_k, \rho(t_k))x(t), \ t \in [t_k, t_{k+1})$$
(29)

Minimum dwell-time case

$$u(t) = \begin{cases} K(t - t_k, \rho(t_k))x(t), & t \in [t_k, t_k + \bar{T}) \\ K(\bar{T}, \rho(t_k))x(t), & t \in [t_k + \bar{T}, t_{k+1}) \end{cases}$$
(30)

The following statements are equivalent:

(a) There exists a matrix-valued function $P: \mathcal{P} \to \mathbb{S}^n_{\succ 0}$ such that the condition

$$\Phi_{\theta}(\bar{T})^T P(\theta) \Phi_{\theta}(\bar{T}) - P(\eta) \prec 0$$
(31)

holds for all $\theta, \eta \in \mathcal{P}$ where

$$\Phi'_{\theta}(s) = (A(\theta) + B(\theta)K(s,\theta))\Phi_{\theta}(s), \ \Phi_{\theta}(0) = I, \ s \in [0,\bar{T}].$$
(32)

The following statements are equivalent:

(a) There exists a matrix-valued function $P: \mathcal{P} \to \mathbb{S}_{\succeq 0}^n$ such that the condition

$$\Phi_{\theta}(\bar{T})^T P(\theta) \Phi_{\theta}(\bar{T}) - P(\eta) \prec 0$$
(31)

holds for all $\theta, \eta \in \mathcal{P}$ where

$$\Phi'_{\theta}(s) = (A(\theta) + B(\theta)K(s,\theta))\Phi_{\theta}(s), \ \Phi_{\theta}(0) = I, \ s \in [0,\bar{T}].$$
(32)

(b) There exists a matrix-valued function S̃ : [0, T̄] × 𝒫 → 𝔅ⁿ, S̃(T̄, θ) ≻ 0, such that the conditions

$$-\partial_{\tau}\tilde{S}(\tau,\theta) + \operatorname{Sym}[A(\theta)\tilde{S}(\tau,\theta) + B(\theta)U(\tau,\theta)] \leq 0$$
(33)

and

$$\tilde{S}(\bar{T},\eta) - \tilde{S}(0,\theta) \prec 0 \tag{34}$$

hold for all $\theta, \eta \in \mathcal{P}$ and all $\tau \in [0, \overline{T}]$.

The following statements are equivalent:

(a) There exists a matrix-valued function $P: \mathcal{P} \to \mathbb{S}^n_{\succ 0}$ such that the condition

$$\Phi_{\theta}(\bar{T})^T P(\theta) \Phi_{\theta}(\bar{T}) - P(\eta) \prec 0$$
(31)

holds for all $\theta, \eta \in \mathcal{P}$ where

$$\Phi_{\theta}'(s) = (A(\theta) + B(\theta)K(s,\theta))\Phi_{\theta}(s), \ \Phi_{\theta}(0) = I, \ s \in [0,\bar{T}].$$
(32)

(b) There exists a matrix-valued function $\tilde{S} : [0, \bar{T}] \times \mathcal{P} \to \mathbb{S}^n$, $\tilde{S}(\bar{T}, \theta) \succ 0$, such that the conditions

$$-\partial_{\tau}\tilde{S}(\tau,\theta) + \operatorname{Sym}[A(\theta)\tilde{S}(\tau,\theta) + B(\theta)U(\tau,\theta)] \leq 0$$
(33)

and

$$\tilde{S}(\bar{T},\eta) - \tilde{S}(0,\theta) \prec 0 \tag{34}$$

hold for all $\theta, \eta \in \mathcal{P}$ and all $\tau \in [0, \overline{T}]$.

Moreover, when one of the above statements holds, then the closed-loop LPV system is asymptotically stable with constant dwell-time \bar{T} and a suitable controller gain can be computed using $K(\tau, \theta) = U(\tau, \theta)\tilde{S}(\tau, \theta)^{-1}$.

Corentin Briat

Analysis of control of LPV systems with piecewise constant parameters

Assume that there exists a matrix-valued function $\tilde{S}: [0, \bar{T}] \times \mathcal{P} \to \mathbb{S}^n$, $\tilde{S}(\bar{T}, \theta) \succ 0$, such that the conditions

$$\operatorname{Sym}[A(\theta)\tilde{S}(\bar{T},\theta) + B(\theta)U(\bar{T},\theta)] \prec 0,$$
(35)

$$-\partial_{\tau}\tilde{S}(\tau,\theta) + \operatorname{Sym}[A(\theta)\tilde{S}(\tau,\theta) + B(\theta)U(\tau,\theta)] \leq 0$$
(36)

and

ETH zürich

$$\tilde{S}(\bar{T},\eta) - \tilde{S}(0,\theta) \prec 0 \tag{37}$$

hold for all $\theta, \eta \in \mathcal{P}$ and all $\tau \in [0, \overline{T}]$.

Assume that there exists a matrix-valued function $\tilde{S}: [0, \bar{T}] \times \mathcal{P} \to \mathbb{S}^n$, $\tilde{S}(\bar{T}, \theta) \succ 0$, such that the conditions

$$\operatorname{Sym}[A(\theta)\tilde{S}(\bar{T},\theta) + B(\theta)U(\bar{T},\theta)] \prec 0,$$
(35)

$$-\partial_{\tau}\tilde{S}(\tau,\theta) + \operatorname{Sym}[A(\theta)\tilde{S}(\tau,\theta) + B(\theta)U(\tau,\theta)] \leq 0$$
(36)

and

ETH Zürich

$$\tilde{S}(\bar{T},\eta) - \tilde{S}(0,\theta) \prec 0 \tag{37}$$

hold for all $\theta, \eta \in \mathcal{P}$ and all $\tau \in [0, \overline{T}]$.

Then the closed-loop LPV system is asymptotically stable with minimum dwell-time \bar{T} and a suitable controller gain is moreover given by

$$K(\tau,\theta) = U(\tau,\theta)\tilde{S}(\tau,\theta)^{-1}.$$
(38)

$$\dot{x} = \begin{bmatrix} 3-\theta & 1\\ 1-\theta & 2+\theta \end{bmatrix} x + \begin{bmatrix} 1\\ 1+\theta \end{bmatrix} u, \ \theta \in [0,1].$$
(39)

$$\dot{x} = \begin{bmatrix} 3-\theta & 1\\ 1-\theta & 2+\theta \end{bmatrix} x + \begin{bmatrix} 1\\ 1+\theta \end{bmatrix} u, \ \theta \in [0,1].$$
(39)

Proposition

No control law of the form $u = K(\theta)x$ can quadratically stabilize the system (39).

$$\dot{x} = \begin{bmatrix} 3-\theta & 1\\ 1-\theta & 2+\theta \end{bmatrix} x + \begin{bmatrix} 1\\ 1+\theta \end{bmatrix} u, \ \theta \in [0,1].$$
(39)

Proposition

No control law of the form $u = K(\theta)x$ can quadratically stabilize the system (39).

Proof

• Quadratically stabilizable if and only if the LMI

 $L(\theta) := B_{\perp}(\theta) [A(\theta)P + PA(\theta)^T] B_{\perp}(\theta)^T \prec 0$

is feasible for all $\theta \in [0,1]$ where $B_{\perp}(\theta) = \begin{bmatrix} 1+\theta & -1 \end{bmatrix}$.

$$\dot{x} = \begin{bmatrix} 3-\theta & 1\\ 1-\theta & 2+\theta \end{bmatrix} x + \begin{bmatrix} 1\\ 1+\theta \end{bmatrix} u, \ \theta \in [0,1].$$
(39)

Proposition

No control law of the form $u = K(\theta)x$ can quadratically stabilize the system (39).

Proof

· Quadratically stabilizable if and only if the LMI

 $L(\theta) := B_{\perp}(\theta) [A(\theta)P + PA(\theta)^T] B_{\perp}(\theta)^T \prec 0$

is feasible for all $\theta \in [0,1]$ where $B_{\perp}(\theta) = \begin{bmatrix} 1+\theta & -1 \end{bmatrix}$.

• Assume it is stabilizable, then $L(0) \prec 0$ and $L(1) \prec 0$.

$$\dot{x} = \begin{bmatrix} 3-\theta & 1\\ 1-\theta & 2+\theta \end{bmatrix} x + \begin{bmatrix} 1\\ 1+\theta \end{bmatrix} u, \ \theta \in [0,1].$$
(39)

Proposition

No control law of the form $u = K(\theta)x$ can quadratically stabilize the system (39).

Proof

· Quadratically stabilizable if and only if the LMI

$$L(\theta) := B_{\perp}(\theta) [A(\theta)P + PA(\theta)^T] B_{\perp}(\theta)^T \prec 0$$

is feasible for all $\theta \in [0,1]$ where $B_{\perp}(\theta) = \begin{bmatrix} 1+\theta & -1 \end{bmatrix}$.

- Assume it is stabilizable, then $L(0) \prec 0$ and $L(1) \prec 0$.
- This implies that there exists a $p \in \mathbb{R}$ such that

$$f_1(p) = p^2 - 3p + 2 < 0$$
 and $f_2(p) = p^2 - 6p + 8 < 0.$ (40)

$$\dot{x} = \begin{bmatrix} 3-\theta & 1\\ 1-\theta & 2+\theta \end{bmatrix} x + \begin{bmatrix} 1\\ 1+\theta \end{bmatrix} u, \ \theta \in [0,1].$$
(39)

Proposition

No control law of the form $u = K(\theta)x$ can quadratically stabilize the system (39).

Proof

· Quadratically stabilizable if and only if the LMI

$$L(\theta) := B_{\perp}(\theta) [A(\theta)P + PA(\theta)^T] B_{\perp}(\theta)^T \prec 0$$

is feasible for all $\theta \in [0,1]$ where $B_{\perp}(\theta) = \begin{bmatrix} 1+\theta & -1 \end{bmatrix}$.

- Assume it is stabilizable, then $L(0) \prec 0$ and $L(1) \prec 0$.
- This implies that there exists a $p \in \mathbb{R}$ such that

$$f_1(p) = p^2 - 3p + 2 < 0$$
 and $f_2(p) = p^2 - 6p + 8 < 0.$ (40)

• But $f_1(p) < 0 \Leftrightarrow p \in (1,2)$ and $f_2(p) < 0 \Leftrightarrow p \in (2,4)$.

$$\dot{x} = \begin{bmatrix} 3-\theta & 1\\ 1-\theta & 2+\theta \end{bmatrix} x + \begin{bmatrix} 1\\ 1+\theta \end{bmatrix} u, \ \theta \in [0,1].$$
(39)

Proposition

No control law of the form $u = K(\theta)x$ can quadratically stabilize the system (39).

Proof

· Quadratically stabilizable if and only if the LMI

 $L(\theta) := B_{\perp}(\theta) [A(\theta)P + PA(\theta)^T] B_{\perp}(\theta)^T \prec 0$

is feasible for all $\theta \in [0,1]$ where $B_{\perp}(\theta) = \begin{bmatrix} 1+\theta & -1 \end{bmatrix}$.

- Assume it is stabilizable, then $L(0) \prec 0$ and $L(1) \prec 0$.
- This implies that there exists a $p \in \mathbb{R}$ such that

$$f_1(p) = p^2 - 3p + 2 < 0$$
 and $f_2(p) = p^2 - 6p + 8 < 0.$ (40)

- But $f_1(p) < 0 \Leftrightarrow p \in (1,2)$ and $f_2(p) < 0 \Leftrightarrow p \in (2,4)$.
- This implies that the system is not quadratically stabilizable.

• We pick $\bar{T} = 0.05$, polynomials S, U of order 1, and polynomials Γ 's of order 2.

- We pick $\bar{T} = 0.05$, polynomials S, U of order 1, and polynomials Γ 's of order 2.
- Primal/dual variables: 551/120; computation time: less than 2sec

- We pick $\bar{T} = 0.05$, polynomials S, U of order 1, and polynomials Γ 's of order 2.
- Primal/dual variables: 551/120; computation time: less than 2sec
- We find

$$K(\tau,\theta) = \frac{1}{\operatorname{den}(\tau,\theta)} \begin{bmatrix} K_1(\tau,\theta) & K_2(\tau,\theta) \end{bmatrix}$$

where

$$\begin{array}{lll} K_1(\tau,\theta) &=& 76.930 - 1109.596\tau + 14.343\theta + 1569.878\tau^2 + 170.469\tau\theta - 9.158\theta^2 \\ K_2(\tau,\theta) &=& 24.445 - 739.302\tau - 17.004\theta + 1136.874\tau^2 + 159.427\tau\theta + 3.174\theta^2 \\ {\rm den}(\tau,\theta) &=& -23.189 + 483.241\tau - 0.934\theta - 947.359\tau^2 + 3.140\tau\theta + 1.066\theta^2 \end{array}$$

- We pick $\bar{T} = 0.05$, polynomials S, U of order 1, and polynomials Γ 's of order 2.
- Primal/dual variables: 551/120; computation time: less than 2sec
- We find

$$K(\tau,\theta) = \frac{1}{\operatorname{den}(\tau,\theta)} \begin{bmatrix} K_1(\tau,\theta) & K_2(\tau,\theta) \end{bmatrix}$$

where

 $\begin{array}{lll} K_1(\tau,\theta) &=& 76.930 - 1109.596\tau + 14.343\theta + 1569.878\tau^2 + 170.469\tau\theta - 9.158\theta^2 \\ K_2(\tau,\theta) &=& 24.445 - 739.302\tau - 17.004\theta + 1136.874\tau^2 + 159.427\tau\theta + 3.174\theta^2 \\ {\rm den}(\tau,\theta) &=& -23.189 + 483.241\tau - 0.934\theta - 947.359\tau^2 + 3.140\tau\theta + 1.066\theta^2 \end{array}$

ETH Zürich

Analysis of control of LPV systems with piecewise constant parameters

Concluding remarks

Concluding statements

- Tractable conditions for analysis and control of LPV systems with piecewise constant parameters
- · Extend quadratic and robust stability

S

Concluding statements

- Tractable conditions for analysis and control of LPV systems with piecewise constant parameters
- Extend quadratic and robust stability

Possible extensions

- Piecewise differentiable parameters (underway)
- Dynamic output feedback?
- Performance analysis, e.g. L2-performance
- Nonlinear systems
- Homogeneous Lyapunov functions (non-conservative¹)

1 See F. Wirth. A converse Lyapunov theorem for linear parameter-varying and linear switching systems, SIAM Journal on Control and Optimization,

2005

ETH Zürich

ETH zürich

Thank you for your attention