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LPV systems

LPV systems

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)
y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)
x(0) = x0

(1)

where
• x, u and y are the state of the system, the (control) input and the output
• ρ is the parameter vector
• Matrix-valued functions A(·), B(·), C(·) and D(·) “nice enough"

Commonly considered parameters

• Bounded differentiable trajectories
• Discontinuous bounded trajectories
• Periodic, switched and Markov jump systems can also be seen as LPV systems
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What is the rationale for LPV systems?

Stability analysis

• Identical to uncertain time-varying parametric systems
• LPV analysis = robust analysis

LPV design

• We assume in the LPV framework that the parameters are measured/known
• So, we can use them in controllers, observers, etc.
• For instance, a gain-scheduled state-feedback controller would take the form

u(t) = K(ρ(t))x(t) (2)

• LPV control > robust control
• But LPV controllers are more difficult to design!
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Stability analysis of LPV systems
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Quadratic stability

Theorem
The LPV system

ẋ(t) = A(ρ(t))x(t)
x(0) = x0

(3)

is quadratically stable if and only if there exists a matrix P ∈ Sn�0 such that the LMI

A(θ)TP + PA(θ) ≺ 0 (4)

holds for all θ ∈ P .

Remarks
• Common Lyapunov function V (x) = xTPx

• All possible trajectories for the parameters are considered (with the restriction of
existence of solutions)

• Quadratic stability =⇒ A(ρ) Hurwitz stable for all ρ ∈ P
• Semi-infinite dimensional LMI problem
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Robust stability

Theorem
The LPV system

ẋ(t) = A(ρ(t))x(t)
x(0) = x0

(5)

with ρ ∈ {f : R≥0 → P ⊂ RN , f ′(t) ∈ D, t ≥ 0} is robustly stable if and only if there
exists a differentiable matrix-valued function P : P → Sn�0 such that the LMI

N∑
i=1

θ′i
∂

∂θi
P (θ) +A(θ)TP (θ) + P (θ)A(θ) ≺ 0 (6)

holds for all θ ∈ P and all θ′ ∈ D.

Remarks
• Parameter-dependent Lyapunov function V (x) = xTP (ρ)x

• Trajectories of the parameters are continuously differentiable
• A(ρ) Hurwitz stable for all ρ ∈ P is necessary and sufficient for robust stability

provided that the parameters vary sufficiently slowly
• Infinite-dimensional LMI problem
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Summary

Remarks on LPV systems

• Two main classes of parameter trajectories associated with two main stability
concepts

• Quadratic stability may be conservative while robust stability too demanding
• Part of the success of periodic, switched and jump systems lies in the

“tailoredness” of the tools
• The definition of the parameter trajectories is way too loose to lead to accurate

results (e.g. asymptotic stability does not imply quadratic stability)

Proposal

• What about something in between the set of all possible trajectories and those
that are continuously differentiable?

• For instance, we can consider piecewise continuous/constant parameter
trajectories

• Quadratic and robust stability not adapted
• Need something new!
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Stability analysis of LPV systems with
piecewise constant parameters
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Outline

Two main class of parameters

• Periodic changes→ constant dwell-time
• Aperiodic changes→ minimum dwell-time

Stability results

• Discrete-time-like stability conditions
• Lifted conditions

Discussions
• Connections with quadratic and robust stability
• Connections with switched systems
• Computational considerations
• Example
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Stability under constant dwell-time

Let us consider the LPV system

ẋ = A(ρ)x, x(0) = x0 (7)

with piecewise constant parameter ρ ∈PT̄ where

PT̄ =

{
ρ : R≥0 → P : ρ(t) = ρ(tk), t ∈ [tk, tk+1),

tk = kT̄ + σ0, 0 ≤ σ0 < T̄ , k ∈ N

}
(8)
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(8)

Theorem
Assume that there exists matrix-valued function P : P → Sn�0 such that

eA(θ)T T̄P (θ)eA(θ)T̄ − P (η) ≺ 0 (9)

holds for all θ, η ∈ P .
Then, the LPV system with piecewise constant parameters and constant dwell-time T̄
is asymptotically stable.
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Stability under minimum dwell-time

Let us consider the LPV system

ẋ = A(ρ)x, x(0) = x0 (10)

with piecewise constant parameter ρ ∈P>T̄ where

P>T̄ =

{
ρ : R≥0 → P : ρ(t) = ρ(tk), t ∈ [tk, tk+1)

tk+1 − tk ≥ T̄ , k ∈ N0

}
. (11)
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Assume that there exists a matrix-valued function P : P → Sn�0 such that

eA(θ)T T̄P (θ)eA(θ)T̄ − P (η) ≺ 0 (12)

and
A(θ)TP (θ) + P (θ)A(θ) ≺ 0 (13)

holds for all θ, η ∈ P .
Then, the LPV system with piecewise constant parameters is asymptotically stable with
minimum dwell-time T̄ .
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Difficulties

Conditions

eA(θ)T T̄P (θ)eA(θ)T̄ − P (η) ≺ 0, A(θ)TP (θ) + P (θ)A(θ) ≺ 0

Verification of the conditions
• Infinite-dimensional LMIs
• Nonconvex exponential terms eA(θ)T̄

• Not easy to check exactly even if the dependence if affine
• Gridding possible but inaccurate and computationally expensive

Control design

• Nonconvex at all since we would have that e(A(θ)+B(θ)K(θ))T̄
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Lifted conditions - Constant DT

Theorem
The following statements are equivalent:

(a) There exists a matrix-valued function P : P → Sn�0 such that the condition

eA(θ)T T̄P (θ)eA(θ)T̄ − P (η) ≺ 0 (14)

holds for all θ, η ∈ P .

(b) There exists a matrix-valued function S : [0, T̄ ]× P → Sn, S(T̄ , θ) � 0, such that
the conditions

∂τS(τ, θ) + Sym[S(τ, θ)A(θ)] � 0 (15)

and
S(0, θ)− S(T̄ , η) ≺ 0 (16)

hold for all θ, η ∈ P and all τ ∈ T := [0, T̄ ].

Moreover, when one of the above statements holds, the LPV system with piecewise
constant parameters and constant dwell-time T̄ is asymptotically stable.
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Sketch of the proof

(b) ⇒ (a)

• Integrating ∂τS(τ, θ) + Sym[S(τ, θ)A(θ)] � 0 over τ ∈ [0, T̄ ] yields

eA(θ)T T̄S(T̄ , θ)eA(θ)T̄ � S(0, θ).

• Using now S(0, θ)− S(T̄ , η) ≺ 0 yields the condition

eA(θ)T T̄S(T̄ , θ)eA(θ)T̄ − S(T̄ , η) ≺ 0.

(a) ⇒ (b)

• Assume that there exists P (θ) such that eA(θ)T T̄P (θ)eA(θ)T̄ − P (η) ≺ 0

• Pick S∗(τ, θ) = e−A(θ)T τS∗(0, θ)e−A(θ)τ

• Then, we have that ∂τS∗(τ, θ) + Sym[S∗(τ, θ)A(θ)] = 0

• Moreover, we have that

S∗(0, θ)− S∗(T̄ , η) = eA(θ)T T̄S∗(T̄ , θ)eA(θ)T̄ − S∗(T̄ , η) ≺ 0 (17)
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Lifted conditions - Minimum DT

Theorem
The following statements are equivalent:

(a) There exists a matrix-valued function P : P → Sn�0 such that the conditions

A(θ)TP (θ) + P (θ)A(θ) ≺ 0 (18)

eA(θ)T T̄P (θ)eA(θ)T̄ − P (η) ≺ 0 (19)

hold for all θ, η ∈ P .

(b) There exists a matrix-valued function S : [0, T̄ ]× P → Sn, S(T̄ , θ) � 0, such that
the conditions

A(θ)TS(T̄ , θ) + S(T̄ , θ)A(θ) ≺ 0 (20)

∂τS(τ, θ) + Sym[S(τ, θ)A(θ)] � 0 (21)

S(0, θ)− S(T̄ , η) ≺ 0 (22)

hold for all θ, η ∈ P and all τ ∈ T := [0, T̄ ].

Moreover, when one of the above statements holds, the LPV system with piecewise
constant parameters and minimum dwell-time T̄ is asymptotically stable.
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Connection with quadratic and robust stability

Theorem (Quadratic stability)
When T̄ → 0 in the minimum dwell-time theorem, then the quadratic stability condition

A(θ)TP + PA(θ) ≺ 0 (23)

is recovered.

Theorem (Robust stability)
When T̄ →∞ in the minimum dwell-time theorem, then the robust stability condition

A(θ)TP (θ) + P (θ)A(θ) ≺ 0 (24)

for constant parametric uncertainties is recovered.
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Connection with switched systems

Switched systems
Let P = {1, . . . ,M}, for some finite M ∈ N, and define

A(ρ) =
M∑
i=1

δi,ρAi (25)

where δi,j is the Kronecker delta; i.e. δi,j = 1 if i = j, and 0 otherwise.

Corollary (1)
Assume that there exist matrices Pi ∈ Sn�0, i = 1, . . . ,M , such that the conditions

ATi Pi + PiAi ≺ 0 (26)

and
eA

T
i T̄Pie

AiT̄ − Pj ≺ 0 (27)

hold for all i, j = 1, . . . ,M , i 6= j.
Then, the switched system defined for (25) is asymptotically stable with minimum
dwell-time T̄ .
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Computational aspects - One parameter case

Preliminaries
• The sets P and T are defined as

P := {θ ∈ R : g(θ) := (θmax − θ)(θ − θmin) ≥ 0}
T :=

{
τ ∈ R : h(τ) := τ(T̄ − τ) ≥ 0

}
• We say that that a symmetric matrix-valued function M(·) is a matrix sum of

squares if there exists a matrix-valued function N(·) such that M(·) = N(·)TN(·).

Proposition
Let ε1, ε2, T̄ > 0 be given and assume that there exist polynomial matrix-valued
functions S,Γj : R2 → Sn, j = 1, . . . , 4 and Γ : R→ Sn such that

• Γ,Γj , j = 1, . . . , 4, are SOS matrix polynomials
• S(T̄ , θ)− Γ(θ)g(θ)− ε1In is SOS
• −∂τS(τ, θ)− Sym[S(τ, θ)A(θ)]− Γ1(τ, θ)h(τ)− Γ2(τ, θ)g(θ) is SOS
• S(T̄ , η)− S(0, θ)− ε2I − Γ3(θ, η)g(θ)− Γ4(θ, η)g(η) is SOS

Then the LPV system with piecewise constant parameters and constant dwell-time T̄ is
asymptotically stable.
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Example

• Let us consider here an LPV system with the matrix

A(θ) =

[
0 1

−2− θ −1

]
(28)

where θ ∈ [0, θ̄], θ̄ > 0.
• It is known that this system is quadratically stable if and only if θ̄ ≤ 3.828.
• We use polynomials of order 4 and we get the following results:
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Control of LPV systems with piecewise
constant parameters
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Setup

System

• Let us consider the LPV system

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)
x(0) = x0

where {tk}k∈N0
is the sequence of time instants at which the parameter vector

changes value.

Control laws
• Constant dwell-time case

u(t) = K(t− tk, ρ(tk))x(t), t ∈ [tk, tk+1) (29)

• Minimum dwell-time case

u(t) =

{
K(t− tk, ρ(tk))x(t), t ∈ [tk, tk + T̄ )
K(T̄ , ρ(tk))x(t), t ∈ [tk + T̄ , tk+1)

(30)
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State-feedback control - Constant DT

Theorem
The following statements are equivalent:

(a) There exists a matrix-valued function P : P → Sn�0 such that the condition

Φθ(T̄ )TP (θ)Φθ(T̄ )− P (η) ≺ 0 (31)

holds for all θ, η ∈ P where

Φ′θ(s) = (A(θ) +B(θ)K(s, θ))Φθ(s), Φθ(0) = I, s ∈ [0, T̄ ]. (32)

(b) There exists a matrix-valued function S̃ : [0, T̄ ]× P → Sn, S̃(T̄ , θ) � 0, such that
the conditions

− ∂τ S̃(τ, θ) + Sym[A(θ)S̃(τ, θ) +B(θ)U(τ, θ)] � 0 (33)

and
S̃(T̄ , η)− S̃(0, θ) ≺ 0 (34)

hold for all θ, η ∈ P and all τ ∈ [0, T̄ ].

Moreover, when one of the above statements holds, then the closed-loop LPV system
is asymptotically stable with constant dwell-time T̄ and a suitable controller gain can be
computed using K(τ, θ) = U(τ, θ)S̃(τ, θ)−1.
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State-feedback control - Minimum DT

Theorem
Assume that there exists a matrix-valued function S̃ : [0, T̄ ]× P → Sn, S̃(T̄ , θ) � 0,
such that the conditions

Sym[A(θ)S̃(T̄ , θ) +B(θ)U(T̄ , θ)] ≺ 0, (35)

−∂τ S̃(τ, θ) + Sym[A(θ)S̃(τ, θ) +B(θ)U(τ, θ)] � 0 (36)

and
S̃(T̄ , η)− S̃(0, θ) ≺ 0 (37)

hold for all θ, η ∈ P and all τ ∈ [0, T̄ ].

Then the closed-loop LPV system is asymptotically stable with minimum dwell-time T̄
and a suitable controller gain is moreover given by

K(τ, θ) = U(τ, θ)S̃(τ, θ)−1. (38)
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Example

System

ẋ =

[
3− θ 1
1− θ 2 + θ

]
x+

[
1

1 + θ

]
u, θ ∈ [0, 1]. (39)

Proposition
No control law of the form u = K(θ)x can quadratically stabilize the system (39).

Proof
• Quadratically stabilizable if and only if the LMI

L(θ) := B⊥(θ)[A(θ)P + PA(θ)T ]B⊥(θ)T ≺ 0

is feasible for all θ ∈ [0, 1] where B⊥(θ) =
[

1 + θ −1
]
.

• Assume it is stabilizable, then L(0) ≺ 0 and L(1) ≺ 0.
• This implies that there exists a p ∈ R such that

f1(p) = p2 − 3p+ 2 < 0 and f2(p) = p2 − 6p+ 8 < 0. (40)

• But f1(p) < 0⇔ p ∈ (1, 2) and f2(p) < 0⇔ p ∈ (2, 4).
• This implies that the system is not quadratically stabilizable.
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is feasible for all θ ∈ [0, 1] where B⊥(θ) =
[

1 + θ −1
]
.

• Assume it is stabilizable, then L(0) ≺ 0 and L(1) ≺ 0.
• This implies that there exists a p ∈ R such that

f1(p) = p2 − 3p+ 2 < 0 and f2(p) = p2 − 6p+ 8 < 0. (40)

• But f1(p) < 0⇔ p ∈ (1, 2) and f2(p) < 0⇔ p ∈ (2, 4).
• This implies that the system is not quadratically stabilizable.
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Example

• We pick T̄ = 0.05, polynomials S,U of order 1, and polynomials Γ’s of order 2.
• Primal/dual variables: 551/120; computation time: less than 2sec
• We find

K(τ, θ) =
1

den(τ, θ)

[
K1(τ, θ) K2(τ, θ)

]
where

K1(τ, θ) = 76.930− 1109.596τ + 14.343θ + 1569.878τ2 + 170.469τθ − 9.158θ2

K2(τ, θ) = 24.445− 739.302τ − 17.004θ + 1136.874τ2 + 159.427τθ + 3.174θ2

den(τ, θ) = −23.189 + 483.241τ − 0.934θ − 947.359τ2 + 3.140τθ + 1.066θ2
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Concluding remarks
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Conclusions

Concluding statements

• Tractable conditions for analysis and control of LPV systems with piecewise
constant parameters

• Extend quadratic and robust stability

Possible extensions
• Piecewise differentiable parameters (underway)
• Dynamic output feedback?
• Performance analysis, e.g. L2-performance
• Nonlinear systems
• Homogeneous Lyapunov functions (non-conservative1)

1 F. Wirth. A converse Lyapunov theorem for linear parameter-varying and linear switching systems, SIAM Journal on Control and Optimization,

2005
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Thank you for your attention
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