Approximate Dynamic Programming meets Statistical Learning Theory

A. Lazaric (INRIA Lille - Team SequeL)

Journées "Méthodologies pour le contrôle de systèmes complexes"

Summary of the Talk

Approximate dynamic programming can/could successfully solve a wide range of problems

Summary of the Talk

Approximate dynamic programming can/could successfully solve a wide range of problems

Summary of the Talk

Approximate dynamic programming can/could successfully solve a wide range of problems

Summary of the Talk

Approximate dynamic programming can/could successfully solve a wide range of problems

Summary of the Talk

Outline

Preliminaries
Approximate Dynamic Programming

Linear Fitted Q-Iteration

Least-Squares Policy Iteration (LSPI)

Discussion

Outline

Preliminaries
Approximate Dynamic Programming

Linear Fitted Q-Iteration

Least-Squares Policy Iteration (LSPI)

Discussion

Inría

Markov Decision Process

The Reinforcement Learning Model

The Reinforcement Learning Model (Glossary)

- Environment $=$ system to control
- Agent $=$ controller
- State = fully observable state
- Action $=$ control
- Reward $=$ cost

Markov Decision Process

Definition (Markov decision process)

A discounted Markov decision process is a tuple $M=(X, A, p, r, \gamma)$:

Markov Decision Process

Definition (Markov decision process)

A discounted Markov decision process is a tuple $M=(X, A, p, r, \gamma)$:

- X is the state space,

Markov Decision Process

Definition (Markov decision process)

A discounted Markov decision process is a tuple $M=(X, A, p, r, \gamma)$:

- X is the state space,
- A is the action space,

Markov Decision Process

Definition (Markov decision process)

A discounted Markov decision process is a tuple $M=(X, A, p, r, \gamma)$:

- X is the state space,
- A is the action space,
- $p(y \mid x, a)$ is the (stationary and Markov) transition probability

$$
p(y \mid x, a)=\mathbb{P}\left(x_{t+1}=y \mid x_{t}=x, a_{t}=a\right),
$$

Markov Decision Process

Definition (Markov decision process)

A discounted Markov decision process is a tuple $M=(X, A, p, r, \gamma)$:

- X is the state space,
- A is the action space,
- $p(y \mid x, a)$ is the (stationary and Markov) transition probability

$$
p(y \mid x, a)=\mathbb{P}\left(x_{t+1}=y \mid x_{t}=x, a_{t}=a\right),
$$

- $r(x, a, y)$ is the reward of transition (x, a, y).

Markov Decision Process

Definition (Markov decision process)

A discounted Markov decision process is a tuple $M=(X, A, p, r, \gamma)$:

- X is the state space,
- A is the action space,
- $p(y \mid x, a)$ is the (stationary and Markov) transition probability

$$
p(y \mid x, a)=\mathbb{P}\left(x_{t+1}=y \mid x_{t}=x, a_{t}=a\right),
$$

- $r(x, a, y)$ is the reward of transition (x, a, y).
- $\gamma \in(0,1)$ is the discount factor

Markov Decision Process

Definition (Markov decision process)

A discounted Markov decision process is a tuple $M=(X, A, p, r, \gamma)$:

- X is the state space,
- A is the action space,
- $p(y \mid x, a)$ is the (stationary and Markov) transition probability

$$
p(y \mid x, a)=\mathbb{P}\left(x_{t+1}=y \mid x_{t}=x, a_{t}=a\right),
$$

- $r(x, a, y)$ is the reward of transition (x, a, y).
- $\gamma \in(0,1)$ is the discount factor

Definition (Policy)

A policy is a (stationary and deterministic) mapping

$$
\pi: X \rightarrow A
$$

Infinite Time Horizon with Discount

Definition (Value functions)

For any policy π, the (action-) state value function $V^{\pi}: X \mapsto \mathbb{R}$ $\left(Q^{\pi}: X \times A \mapsto \mathbb{R}\right)$ is

$$
\begin{gathered}
V^{\pi}(x)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, \pi\left(x_{t}\right)\right) \mid x_{0}=x ; \pi\right] \\
Q^{\pi}(x, a)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x, a_{0}=a, a_{t}=\pi\left(x_{t}\right), \forall t \geq 1\right]
\end{gathered}
$$

Infinite Time Horizon with Discount

Definition (Value functions)

For any policy π, the (action-) state value function $V^{\pi}: X \mapsto \mathbb{R}$ $\left(Q^{\pi}: X \times A \mapsto \mathbb{R}\right)$ is

$$
\begin{gathered}
V^{\pi}(x)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, \pi\left(x_{t}\right)\right) \mid x_{0}=x ; \pi\right] \\
Q^{\pi}(x, a)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x, a_{0}=a, a_{t}=\pi\left(x_{t}\right), \forall t \geq 1\right]
\end{gathered}
$$

Definition (Optimal policy and optimal value function)

The solution to an MDP is an optimal policy π^{*} satisfying

$$
\pi^{*} \in \arg \max _{\pi \in \Pi} V^{\pi}
$$

and its value function is the optimal value function $V^{*}=V^{\pi^{*}}$.

The Bellman Operators

Notation. w.l.o.g. a discrete state space $|X|=N$ and $V^{\pi} \in \mathbb{R}^{N}$.

Definition

For any $W \in \mathbb{R}^{N}$, the Bellman operator $\mathcal{T}^{\pi}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is

$$
\mathcal{T}^{\pi} W(x)=r(x, \pi(x))+\gamma \sum_{y} p(y \mid x, \pi(x)) W(y)
$$

The Bellman Operators

Notation. w.l.o.g. a discrete state space $|X|=N$ and $V^{\pi} \in \mathbb{R}^{N}$.

Definition

For any $W \in \mathbb{R}^{N}$, the Bellman operator $\mathcal{T}^{\pi}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is

$$
\mathcal{T}^{\pi} W(x)=r(x, \pi(x))+\gamma \sum_{y} p(y \mid x, \pi(x)) W(y)
$$

and the optimal Bellman operator is

$$
\mathcal{T} W(x)=\max _{a \in A}\left[r(x, a)+\gamma \sum_{y} p(y \mid x, a) W(y)\right] .
$$

The Bellman Operators

Notation. w.l.o.g. a discrete state space $|X|=N$ and $V^{\pi} \in \mathbb{R}^{N}$.

Definition

For any $W \in \mathbb{R}^{N}$, the Bellman operator $\mathcal{T}^{\pi}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is

$$
\mathcal{T}^{\pi} W(x)=r(x, \pi(x))+\gamma \sum_{y} p(y \mid x, \pi(x)) W(y)
$$

and the optimal Bellman operator is

$$
\mathcal{T} W(x)=\max _{a \in A}\left[r(x, a)+\gamma \sum_{y} p(y \mid x, a) W(y)\right]
$$

With abuse of notation \mathcal{T}^{π} and \mathcal{T} will be used for Q-functions as well.

The Bellman Operators

The Bellman operators are γ-Contraction in L_{∞}-norm: for any $W_{1}, W_{2} \in \mathbb{R}^{N}$

$$
\begin{aligned}
\left\|\mathcal{T}^{\pi} W_{1}-\mathcal{T}^{\pi} W_{2}\right\|_{\infty} & \leq \gamma\left\|W_{1}-W_{2}\right\|_{\infty} \\
\left\|\mathcal{T} W_{1}-\mathcal{T} W_{2}\right\|_{\infty} & \leq \gamma\left\|W_{1}-W_{2}\right\|_{\infty}
\end{aligned}
$$

Thus
V^{π} is the unique fixed point of \mathcal{T}^{π}, V^{*} is the unique fixed point of \mathcal{T}.

Outline

Preliminaries

Approximate Dynamic Programming

Linear Fitted Q-Iteration

Least-Squares Policy Iteration (LSPI)

Discussion

Invía

Exact Value Iteration

1. Let Q_{0} be any Q -function

Exact Value Iteration

1. Let Q_{0} be any Q -function
2. At each iteration $k=1,2, \ldots, K$

Exact Value Iteration

1. Let Q_{0} be any Q -function
2. At each iteration $k=1,2, \ldots, K$

- Compute $Q_{k+1}=\mathcal{T} Q_{k}$

Exact Value Iteration

1. Let Q_{0} be any Q -function
2. At each iteration $k=1,2, \ldots, K$

- Compute $Q_{k+1}=\mathcal{T} Q_{k}$

3. Return the greedy policy

$$
\pi_{K}(x) \in \arg \max _{a \in A} Q_{K}(x, a)
$$

Exact Value Iteration

1. Let Q_{0} be any Q -function
2. At each iteration $k=1,2, \ldots, K$

- Compute $Q_{k+1}=\mathcal{T} Q_{k}$

3. Return the greedy policy

$$
\pi_{K}(x) \in \arg \max _{a \in A} Q_{K}(x, a)
$$

From the contraction property of \mathcal{T}

$$
\begin{aligned}
\left\|Q_{k+1}-Q^{*}\right\|_{\infty} & =\left\|\mathcal{T} Q_{k}-\mathcal{T} Q^{*}\right\|_{\infty} \leq \gamma\left\|Q_{k}-Q^{*}\right\|_{\infty} \\
& \leq \gamma^{k+1}\left\|Q_{0}-Q^{*}\right\|_{\infty} \rightarrow 0
\end{aligned}
$$

Exact Policy Iteration

1. Let π_{0} be any stationary policy

Exact Policy Iteration

1. Let π_{0} be any stationary policy
2. At each iteration $k=1,2, \ldots, K$

Exact Policy Iteration

1. Let π_{0} be any stationary policy
2. At each iteration $k=1,2, \ldots, K$

- Policy evaluation: given π_{k}, compute $Q^{\pi_{k}}$.

Exact Policy Iteration

1. Let π_{0} be any stationary policy
2. At each iteration $k=1,2, \ldots, K$

- Policy evaluation: given π_{k}, compute $Q^{\pi_{k}}$.
- Policy improvement: compute the greedy policy

$$
\pi_{k+1}(x) \in \arg \max _{a \in A} Q^{\pi_{k}}(x, a)
$$

Exact Policy Iteration

1. Let π_{0} be any stationary policy
2. At each iteration $k=1,2, \ldots, K$

- Policy evaluation: given π_{k}, compute $Q^{\pi_{k}}$.
- Policy improvement: compute the greedy policy

$$
\pi_{k+1}(x) \in \arg \max _{a \in A} Q^{\pi_{k}}(x, a)
$$

3. Return the last policy π_{K}

Exact Policy Iteration

1. Let π_{0} be any stationary policy
2. At each iteration $k=1,2, \ldots, K$

- Policy evaluation: given π_{k}, compute $Q^{\pi_{k}}$.
- Policy improvement: compute the greedy policy

$$
\pi_{k+1}(x) \in \arg \max _{a \in A} Q^{\pi_{k}}(x, a)
$$

3. Return the last policy π_{K}

From the Bellman operators

$$
V^{\pi_{k+1}} \geq V^{\pi_{k}}
$$

Limitation of Exact Dynamic Programming

Dynamic programming algorithms require

- Explicit definition of transition probabilities $p(\cdot \mid x, a)$ and reward function $r(x, a)$,
- Exact representation of action-value functions Q in $X \times A$.

Limitation of Exact Dynamic Programming

Dynamic programming algorithms require

- Explicit definition of transition probabilities $p(\cdot \mid x, a)$ and reward function $r(x, a)$,
- Exact representation of action-value functions Q in $X \times A$.

Approximate DP relaxes these requirements by using

- Samples $\left\{x_{i}, a_{i}, x_{i}^{\prime}, r_{i}\right\}_{i}$ obtained from a generative model (e.g., a simulator) of the MDP,
- An approximation space $\mathcal{F}=\{f: X \times A \rightarrow \mathbb{R}\}$ to approximate Q-functions.

Approximate Value Iteration

Input: samples $\mathcal{D}=\left\{x_{i}, a_{i}, x_{i}^{\prime}, r_{i}\right\}_{i=1}^{n}$, approximation space \mathcal{F}

1. Let Q_{0} be any Q -function
2. At each iteration $k=1,2, \ldots, K$

- Compute $\widehat{Q}_{k+1} \approx \mathcal{T} Q_{k}$ (using \mathcal{D} and \mathcal{F})

3. Return the greedy policy

$$
\pi_{K}(x) \in \arg \max _{a \in A} \widehat{Q}_{K}(x, a)
$$

Approximate Value Iteration

Input: samples $\mathcal{D}=\left\{x_{i}, a_{i}, x_{i}^{\prime}, r_{i}\right\}_{i=1}^{n}$, approximation space \mathcal{F}

1. Let Q_{0} be any Q -function
2. At each iteration $k=1,2, \ldots, K$

- Compute $\widehat{Q}_{k+1} \approx \mathcal{T} Q_{k}$ (using \mathcal{D} and \mathcal{F})

3. Return the greedy policy

$$
\begin{array}{r}
\pi_{K}(x) \in \arg \max _{a \in A} \widehat{Q}_{K}(x, a) \\
\text { Problem: }\left\|Q^{*}-\widehat{Q}_{k+1}\right\| \stackrel{?}{\leq} \gamma\left\|Q^{*}-Q_{k}\right\|
\end{array}
$$

Approximate Policy Iteration

Input: samples $\mathcal{D}=\left\{x_{i}, a_{i}, x_{i}^{\prime}, r_{i}\right\}_{i=1}^{n}$, approximation space \mathcal{F}

1. Let π_{0} be any stationary policy
2. At each iteration $k=1,2, \ldots, K$

- Policy evaluation given π_{k}, compute $\widehat{Q}^{\pi_{k}} \approx Q^{\pi_{k}}$ (using \mathcal{D} and \mathcal{F}).
- Policy improvement: compute the greedy policy

$$
\pi_{k+1}(x) \in \arg \max _{a \in A} \widehat{Q}^{\pi_{k}}(x, a)
$$

3. Return the last policy π_{K}

Approximate Policy Iteration

Input: samples $\mathcal{D}=\left\{x_{i}, a_{i}, x_{i}^{\prime}, r_{i}\right\}_{i=1}^{n}$, approximation space \mathcal{F}

1. Let π_{0} be any stationary policy
2. At each iteration $k=1,2, \ldots, K$

- Policy evaluation given π_{k}, compute $\widehat{Q}^{\pi_{k}} \approx Q^{\pi_{k}}$ (using \mathcal{D} and \mathcal{F}).
- Policy improvement: compute the greedy policy

$$
\pi_{k+1}(x) \in \arg \max _{a \in A} \widehat{Q}^{\pi_{k}}(x, a)
$$

3. Return the last policy π_{K}

Problem: $V^{\pi_{k}} \geq V^{\pi_{k-1}}$

Performance Bounds

Question: what is the performance of the policy π_{K} returned by an ADP algorithm?

Performance Bounds

Question: what is the performance of the policy π_{K} returned by an ADP algorithm?

$$
\left\|V^{*}-V^{\pi_{K}}\right\|_{p, \mu}
$$

Performance Bounds

Question: what is the performance of the policy π_{K} returned by an ADP algorithm?

$$
\| V^{*}-\left.V^{\pi_{K}}\right|_{p, \mu} \leq \text { bound }
$$

Performance Bounds

Question: what is the performance of the policy π_{K} returned by an ADP algorithm?

$$
\left\|V^{*}-V^{\pi_{K}}\right\|_{p, \mu} \leq \text { bound }(\text { MDP }, \text { alg }, \mathcal{D}, \mathcal{F})
$$

Performance Bounds

Question: what is the performance of the policy π_{K} returned by an ADP algorithm?

$$
\left\|V^{*}-V^{\pi_{K}}\right\|_{p, \mu} \leq \text { bound }(\mathrm{MDP}, \operatorname{alg}, \mathcal{D}, \mathcal{F}) \quad \text { w.h.p. }
$$

Statistical Learning Theory in ADP

Solution:

- supervised learning methods (regression, classification) appear in the inner-loop of ADP algorithms
- SLT tools used to analyze supervised learning methods can be used in ADP!

Statistical Learning Theory in ADP

Solution:

- supervised learning methods (regression, classification) appear in the inner-loop of ADP algorithms
- SLT tools used to analyze supervised learning methods can be used in ADP!

The specific nature of ADP makes things not so straightforward...

Outline

Preliminaries

Approximate Dynamic Programming

Linear Fitted Q-Iteration

Least-Squares Policy Iteration (LSPI)

Discussion

Invía

Linear Fitted Q-iteration

Linear space (used to approximate action-value functions)

$$
\mathcal{F}=\left\{f(x, a)=\sum_{j=1}^{d} \alpha_{j} \varphi_{j}(x, a), \quad \alpha \in \mathbb{R}^{d}\right\}
$$

Linear Fitted Q-iteration

Linear space (used to approximate action-value functions)

$$
\mathcal{F}=\left\{f(x, a)=\sum_{j=1}^{d} \alpha_{j} \varphi_{j}(x, a), \quad \alpha \in \mathbb{R}^{d}\right\}
$$

with features

$$
\varphi_{j}: \mathcal{X} \times \mathcal{A} \rightarrow[0, L] \quad \phi(x, a)=\left[\varphi_{1}(x, a) \ldots \varphi_{d}(x, a)\right]^{\top}
$$

Linear Fitted Q-iteration

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n

Linear Fitted Q-iteration

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n Initial function $\widehat{Q}_{0} \in \mathcal{F}$

Linear Fitted Q-iteration

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n Initial function $\widehat{Q}_{0} \in \mathcal{F}$
For $k=1, \ldots, K$

Linear Fitted Q-iteration

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n
Initial function $\widehat{Q}_{0} \in \mathcal{F}$
For $k=1, \ldots, K$

- Draw n samples $\left(x_{i}, a_{i}\right) \stackrel{\text { i.i.d }}{\sim} \rho$

Linear Fitted Q-iteration

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n
Initial function $\widehat{Q}_{0} \in \mathcal{F}$
For $k=1, \ldots, K$

- Draw n samples $\left(x_{i}, a_{i}\right) \stackrel{\text { i.i.d }}{\sim} \rho$
- Sample $x_{i}^{\prime} \sim p\left(\cdot \mid x_{i}, a_{i}\right)$ and $r_{i}=r\left(x_{i}, a_{i}\right)$

Linear Fitted Q-iteration

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n Initial function $\widehat{Q}_{0} \in \mathcal{F}$
For $k=1, \ldots, K$

- Draw n samples $\left(x_{i}, a_{i}\right) \stackrel{\text { i.i.d }}{\sim} \rho$
- Sample $x_{i}^{\prime} \sim p\left(\cdot \mid x_{i}, a_{i}\right)$ and $r_{i}=r\left(x_{i}, a_{i}\right)$
- Compute $y_{i}=r_{i}+\gamma \max _{a} \widehat{Q}_{k-1}\left(x_{i}^{\prime}, a\right)$

Linear Fitted Q-iteration

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n Initial function $\widehat{Q}_{0} \in \mathcal{F}$
For $k=1, \ldots, K$

- Draw n samples $\left(x_{i}, a_{i}\right) \stackrel{\text { i.i.d }}{\sim} \rho$
- Sample $x_{i}^{\prime} \sim p\left(\cdot \mid x_{i}, a_{i}\right)$ and $r_{i}=r\left(x_{i}, a_{i}\right)$
- Compute $y_{i}=r_{i}+\gamma \max _{a} \widehat{Q}_{k-1}\left(x_{i}^{\prime}, a\right)$
- Build training set $\left\{\left(\left(x_{i}, a_{i}\right), y_{i}\right)\right\}_{i=1}^{n}$

Linear Fitted Q-iteration

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n Initial function $\widehat{Q}_{0} \in \mathcal{F}$
For $k=1, \ldots, K$

- Draw n samples $\left(x_{i}, a_{i}\right) \stackrel{\text { i.i.d }}{\sim} \rho$
- Sample $x_{i}^{\prime} \sim p\left(\cdot \mid x_{i}, a_{i}\right)$ and $r_{i}=r\left(x_{i}, a_{i}\right)$
- Compute $y_{i}=r_{i}+\gamma \max _{a} \widehat{Q}_{k-1}\left(x_{i}^{\prime}, a\right)$
- Build training set $\left\{\left(\left(x_{i}, a_{i}\right), y_{i}\right)\right\}_{i=1}^{n}$
- Solve the least squares problem

$$
f_{\widehat{\alpha}_{k}}=\arg \min _{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}, a_{i}\right)-y_{i}\right)^{2}
$$

Linear Fitted Q-iteration

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n Initial function $\widehat{Q}_{0} \in \mathcal{F}$
For $k=1, \ldots, K$

- Draw n samples $\left(x_{i}, a_{i}\right) \stackrel{\text { i.i.d }}{\sim} \rho$
- Sample $x_{i}^{\prime} \sim p\left(\cdot \mid x_{i}, a_{i}\right)$ and $r_{i}=r\left(x_{i}, a_{i}\right)$
- Compute $y_{i}=r_{i}+\gamma \max _{a} \widehat{Q}_{k-1}\left(x_{i}^{\prime}, a\right)$
- Build training set $\left\{\left(\left(x_{i}, a_{i}\right), y_{i}\right)\right\}_{i=1}^{n}$
- Solve the least squares problem

$$
f_{\widehat{\alpha}_{k}}=\arg \min _{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}, a_{i}\right)-y_{i}\right)^{2}
$$

- Return $\widehat{Q}_{k}=f_{\widehat{\alpha}_{k}}$ (truncation may be needed)

Linear Fitted Q-iteration

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n Initial function $\widehat{Q}_{0} \in \mathcal{F}$
For $k=1, \ldots, K$

- Draw n samples $\left(x_{i}, a_{i}\right) \stackrel{\text { i.i.d }}{\sim} \rho$
- Sample $x_{i}^{\prime} \sim p\left(\cdot \mid x_{i}, a_{i}\right)$ and $r_{i}=r\left(x_{i}, a_{i}\right)$
- Compute $y_{i}=r_{i}+\gamma \max _{a} \widehat{Q}_{k-1}\left(x_{i}^{\prime}, a\right)$
- Build training set $\left\{\left(\left(x_{i}, a_{i}\right), y_{i}\right)\right\}_{i=1}^{n}$
- Solve the least squares problem

$$
f_{\widehat{\alpha}_{k}}=\arg \min _{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}, a_{i}\right)-y_{i}\right)^{2}
$$

- Return $\widehat{Q}_{k}=f_{\widehat{\alpha}_{k}}$ (truncation may be needed)

Return $\pi_{K}(\cdot)=\arg \max _{a} \widehat{Q}_{K}(\cdot, a)$ (greedy policy)

Sketch of the Analysis

Theoretical Objectives

Objective: derive a bound on the performance (quadratic) loss w.r.t. a testing distribution μ

$$
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu} \leq ? ? ?
$$

Theoretical Objectives

Objective: derive a bound on the performance (quadratic) loss w.r.t. a testing distribution μ

$$
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu} \leq ? ? ?
$$

Sub-Objective 1: derive an intermediate bound on the prediction error at any iteration k w.r.t. to the sampling distribution ρ

$$
\left\|\mathcal{T} \widehat{Q}_{k-1}-\widehat{Q}_{k}\right\|_{\rho} \leq ? ? ?
$$

Theoretical Objectives

Objective: derive a bound on the performance (quadratic) loss w.r.t. a testing distribution μ

$$
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu} \leq ? ? ?
$$

Sub-Objective 1: derive an intermediate bound on the prediction error at any iteration k w.r.t. to the sampling distribution ρ

$$
\left\|\mathcal{T} \widehat{Q}_{k-1}-\widehat{Q}_{k}\right\|_{\rho} \leq ? ? ?
$$

Sub-Objective 2: analyze how the error at each iteration is propagated through iterations

$$
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu} \leq \text { propagation }\left(\left\|\mathcal{T} \widehat{Q}_{k-1}-\widehat{Q}_{k}\right\|_{\rho}\right)
$$

The Sources of Error

- Desired solution

$$
Q_{k}=\mathcal{T} \widehat{Q}_{k-1}
$$

The Sources of Error

- Desired solution

$$
Q_{k}=\mathcal{T} \widehat{Q}_{k-1}
$$

- Best solution (wrt sampling distribution ρ)

$$
f_{\alpha_{k}^{*}}=\arg \inf _{f_{\alpha} \in \mathcal{F}}\left\|f_{\alpha}-Q_{k}\right\|_{\rho}
$$

The Sources of Error

- Desired solution

$$
Q_{k}=\mathcal{T} \widehat{Q}_{k-1}
$$

- Best solution (wrt sampling distribution ρ)

$$
f_{\alpha_{k}^{*}}=\arg \inf _{f_{\alpha} \in \mathcal{F}}\left\|f_{\alpha}-Q_{k}\right\|_{\rho}
$$

\Rightarrow Error from the approximation space \mathcal{F}

The Sources of Error

- Desired solution

$$
Q_{k}=\mathcal{T} \widehat{Q}_{k-1}
$$

- Best solution (wrt sampling distribution ρ)

$$
f_{\alpha_{k}^{*}}=\arg \inf _{f_{\alpha} \in \mathcal{F}}\left\|f_{\alpha}-Q_{k}\right\|_{\rho}
$$

\Rightarrow Error from the approximation space \mathcal{F}

- Returned solution

$$
f_{\widehat{\alpha}_{k}}=\arg \min _{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}, a_{i}\right)-y_{i}\right)^{2}
$$

The Sources of Error

- Desired solution

$$
Q_{k}=\mathcal{T} \widehat{Q}_{k-1}
$$

- Best solution (wrt sampling distribution ρ)

$$
f_{\alpha_{k}^{*}}=\arg \inf _{f_{\alpha} \in \mathcal{F}}\left\|f_{\alpha}-Q_{k}\right\|_{\rho}
$$

\Rightarrow Error from the approximation space \mathcal{F}

- Returned solution

$$
f_{\widehat{\alpha}_{k}}=\arg \min _{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}, a_{i}\right)-y_{i}\right)^{2}
$$

\Rightarrow Error from the (random) samples

Per-Iteration Error

Theorem

At each iteration k, Linear-FQI returns an approximation \widehat{Q}_{k} such that (Sub-Objective 1)

$$
\begin{aligned}
\left\|Q_{k}-\widehat{Q}_{k}\right\|_{\rho} \leq & 4\left\|Q_{k}-f_{\alpha_{k}^{*}}\right\|_{\rho} \\
& +O\left(\left(V_{\max }+L\left\|\alpha_{k}^{*}\right\|\right) \sqrt{\frac{\log 1 / \delta}{n}}\right) \\
& +O\left(V_{\max } \sqrt{\frac{d \log n / \delta}{n}}\right)
\end{aligned}
$$

with probability $1-\delta$.
Tools: concentration of measure inequalities, covering space, linear algebra, union bounds, special tricks for linear spaces, ...

Per-Iteration Error

$$
\begin{aligned}
\left\|Q_{k}-\widehat{Q}_{k}\right\|_{\rho} \leq & 4\left\|Q_{k}-f_{\alpha_{k}^{*}}\right\|_{\rho} \\
& +O\left(\left(V_{\max }+L\left\|\alpha_{k}^{*}\right\|\right) \sqrt{\frac{\log 1 / \delta}{n}}\right) \\
& +O\left(V_{\max } \sqrt{\frac{d \log n / \delta}{n}}\right)
\end{aligned}
$$

Per-Iteration Error

$$
\begin{aligned}
\left\|Q_{k}-\widehat{Q}_{k}\right\|_{\rho} \leq & 4\left\|Q_{k}-f_{\alpha_{k}^{*}}\right\|_{\rho} \\
& +O\left(\left(V_{\max }+L\left\|\alpha_{k}^{*}\right\|\right) \sqrt{\frac{\log 1 / \delta}{n}}\right) \\
& +O\left(V_{\max } \sqrt{\frac{d \log n / \delta}{n}}\right)
\end{aligned}
$$

Remarks

- No algorithm can do better
- Constant 4
- Depends on the space \mathcal{F}
- Changes with the iteration k

Per-Iteration Error

$$
\begin{aligned}
\left\|Q_{k}-\widehat{Q}_{k}\right\|_{\rho} \leq & 4\left\|Q_{k}-f_{\alpha_{k}^{*}}\right\|_{\rho} \\
& +O\left(\left(V_{\max }+L\left\|\alpha_{k}^{*}\right\|\right) \sqrt{\frac{\log 1 / \delta}{n}}\right) \\
& +O\left(V_{\max } \sqrt{\frac{d \log n / \delta}{n}}\right)
\end{aligned}
$$

Remarks

- Vanishing to zero as $O\left(n^{-1 / 2}\right)$
- Depends on the features (L) and on the best solution $\left(\left\|\alpha_{k}^{*}\right\|\right)$

Per-Iteration Error

$$
\begin{aligned}
\left\|Q_{k}-\widehat{Q}_{k}\right\|_{\rho} \leq & 4\left\|Q_{k}-f_{\alpha_{k}^{*}}\right\|_{\rho} \\
& +O\left(\left(V_{\max }+L\left\|\alpha_{k}^{*}\right\|\right) \sqrt{\frac{\log 1 / \delta}{n}}\right) \\
& +O\left(V_{\max } \sqrt{\frac{d \log n / \delta}{n}}\right)
\end{aligned}
$$

Remarks

- Vanishing to zero as $O\left(n^{-1 / 2}\right)$
- Depends on the dimensionality of the space (d) and the number of samples (n)

Error Propagation

Objective

$$
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu}
$$

Error Propagation

Objective

$$
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu}
$$

- Problem 1: the test norm μ is different from the sampling norm ρ

Error Propagation

Objective

$$
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu}
$$

- Problem 1: the test norm μ is different from the sampling norm ρ
- Problem 2: we have bounds for \widehat{Q}_{k} not for the performance of the corresponding π_{k}

Error Propagation

Objective

$$
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu}
$$

- Problem 1: the test norm μ is different from the sampling norm ρ
- Problem 2: we have bounds for \widehat{Q}_{k} not for the performance of the corresponding π_{k}
- Problem 3: we have bounds for one single iteration

Error Propagation

Transition kernel for a fixed policy P^{π}.

- m-step (worst-case) concentration of future state distribution

$$
c(m)=\left.\sup _{\pi_{1} \ldots \pi_{m}}\left\|\frac{d\left(\mu P^{\pi_{1}} \ldots P^{\pi_{m}}\right)}{d \rho}\right\|\right|_{\infty}<\infty
$$

Error Propagation

Transition kernel for a fixed policy P^{π}.

- m-step (worst-case) concentration of future state distribution

$$
c(m)=\sup _{\pi_{1} \ldots \pi_{m}}\left\|\frac{d\left(\mu P^{\pi_{1}} \ldots P^{\pi_{m}}\right)}{d \rho}\right\|_{\infty}<\infty
$$

- Average (discounted) concentration

$$
C_{\mu, \rho}=(1-\gamma)^{2} \sum_{m \geq 1} m \gamma^{m-1} c(m)<+\infty
$$

Error Propagation

Remark: relationship to top-Lyapunov exponent

$$
L^{+}=\sup _{\pi} \lim \sup _{m \rightarrow \infty} \frac{1}{m} \log ^{+}\left(\left\|\rho P^{\pi_{1}} P^{\pi_{2}} \cdots P^{\pi_{m}}\right\|\right)
$$

If $L^{+} \leq 0$ (stable system), then $c(m)$ has a growth rate which is polynomial and $C_{\mu, \rho}<\infty$ is finite

Error Propagation

Proposition

Let $\varepsilon_{k}=Q_{k}-\widehat{Q}_{k}$ be the propagation error at each iteration, then after K iteration the performance loss of the greedy policy π_{K} is

$$
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu}^{2} \leq\left[\frac{2 \gamma}{(1-\gamma)^{2}}\right]^{2} C_{\mu, \rho} \max _{k}\left\|\varepsilon_{k}\right\|_{\rho}^{2}+O\left(\frac{\gamma^{K}}{(1-\gamma)^{3}} V_{\max }^{2}\right)
$$

The Final Bound

Bringing everything together...

$$
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu}^{2} \leq\left[\frac{2 \gamma}{(1-\gamma)^{2}}\right]^{2} C_{\mu, \rho} \max _{k}\left\|\varepsilon_{k}\right\|_{\rho}^{2}+O\left(\frac{\gamma^{K}}{(1-\gamma)^{3}} V_{\max }^{2}\right)
$$

The Final Bound

Bringing everything together...

$$
\begin{aligned}
&\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu}^{2} \leq\left[\frac{2 \gamma}{(1-\gamma)^{2}}\right]^{2} C_{\mu, \rho} \max _{k}\left\|\varepsilon_{k}\right\|_{\rho}^{2}+O\left(\frac{\gamma^{K}}{(1-\gamma)^{3}} V_{\max }^{2}\right) \\
&\left\|\varepsilon_{k}\right\|_{\rho}=\left\|Q_{k}-\widehat{Q}_{k}\right\|_{\rho} \leq 4\left\|Q_{k}-f_{\alpha_{k}^{*}}\right\|_{\rho} \\
&+O\left(\left(V_{\max }+L\left\|\alpha_{k}^{*}\right\|\right) \sqrt{\frac{\log 1 / \delta}{n}}\right) \\
&+O\left(V_{\max } \sqrt{\frac{d \log n / \delta}{n}}\right)
\end{aligned}
$$

The Final Bound

Theorem (see e.g., Munos,'03)

LinearFQI with a space \mathcal{F} of d features, with n samples at each iteration returns a policy π_{K} after K iterations such that

$$
\begin{aligned}
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu} \leq & \frac{2 \gamma}{(1-\gamma)^{2}} \sqrt{C_{\mu, \rho}}\left(4 d(\mathcal{F}, \mathcal{T \mathcal { F }})+O\left(V_{\max }\left(1+\frac{L}{\sqrt{\omega}}\right) \sqrt{\frac{d \log n / \delta}{n}}\right)\right) \\
& +O\left(\frac{\gamma^{K}}{(1-\gamma)^{3}} V_{\max }^{2}\right)
\end{aligned}
$$

The Final Bound

Theorem

LinearFQI with a space \mathcal{F} of d features, with n samples at each iteration returns a policy π_{K} after K iterations such that

$$
\begin{aligned}
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu} \leq & \frac{2 \gamma}{(1-\gamma)^{2}} \sqrt{C_{\mu, \rho}}\left(4 d(\mathcal{F}, \mathcal{T \mathcal { F }})+O\left(V_{\max }\left(1+\frac{L}{\sqrt{\omega}}\right) \sqrt{\frac{d \log n / \delta}{n}}\right)\right) \\
& +O\left(\frac{\gamma^{K}}{(1-\gamma)^{3}} V_{\max }^{2}\right)
\end{aligned}
$$

The propagation (and different norms) makes the problem more complex \Rightarrow how do we choose the sampling distribution?

The Final Bound

Theorem

LinearFQI with a space \mathcal{F} of d features, with n samples at each iteration returns a policy π_{K} after K iterations such that

$$
\begin{aligned}
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu} \leq & \frac{2 \gamma}{(1-\gamma)^{2}} \sqrt{C_{\mu, \rho}}\left(4 d(\mathcal{F}, \mathcal{T \mathcal { F }})+O\left(V_{\max }\left(1+\frac{L}{\sqrt{\omega}}\right) \sqrt{\frac{d \log n / \delta}{n}}\right)\right) \\
& +O\left(\frac{\gamma^{K}}{(1-\gamma)^{3}} V_{\max }^{2}\right)
\end{aligned}
$$

The approximation error is worse than in regression

The Final Bound

The inherent Bellman error

$$
\begin{aligned}
\left\|Q_{k}-f_{\alpha_{k}^{*}}\right\|_{\rho} & =\inf _{f \in \mathcal{F}}\left\|Q_{k}-f\right\|_{\rho} \\
& =\inf _{f \in \mathcal{F}}\left\|\mathcal{T} \widehat{Q}_{k-1}-f\right\|_{\rho} \\
& \leq \inf _{f \in \mathcal{F}}\left\|\mathcal{T} f_{\alpha_{k-1}}-f\right\|_{\rho} \\
& \leq \sup _{g \in \mathcal{F}} \inf _{f \in \mathcal{F}}\|\mathcal{T} g-f\|_{\rho}=d(\mathcal{F}, \mathcal{T \mathcal { F }})
\end{aligned}
$$

Question: how to design \mathcal{F} to make it "compatible" with the Bellman operator?

The Final Bound

Theorem

LinearFQI with a space \mathcal{F} of d features, with n samples at each iteration returns a policy π_{K} after K iterations such that

$$
\begin{aligned}
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu} \leq & \frac{2 \gamma}{(1-\gamma)^{2}} \sqrt{C_{\mu, \rho}}\left(4 d \left(\mathcal{F}, \mathcal{T \mathcal { F }) + O (V _ { \operatorname { m a x } } (1 + \frac { L } { \sqrt { \omega } }) \sqrt { \frac { d \operatorname { l o g } n / \delta } { n } }))}\right.\right. \\
& +O\left(\frac{\gamma^{K}}{(1-\gamma)^{3}} V_{\max }^{2}\right)
\end{aligned}
$$

The dependency on γ is worse than at each iteration \Rightarrow is it possible to avoid it?

The Final Bound

Theorem

LinearFQI with a space \mathcal{F} of d features, with n samples at each iteration returns a policy π_{K} after K iterations such that

$$
\begin{aligned}
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu} \leq & \frac{2 \gamma}{(1-\gamma)^{2}} \sqrt{C_{\mu, \rho}}\left(4 d(\mathcal{F}, \mathcal{T \mathcal { F }})+O\left(V_{\max }\left(1+\frac{L}{\sqrt{\omega}}\right) \sqrt{\frac{d \log n / \delta}{n}}\right)\right) \\
& +O\left(\frac{\gamma^{K}}{(1-\gamma)^{3}} V_{\max }^{2}\right)
\end{aligned}
$$

The error decreases exponentially in K
$\Rightarrow K \approx \varepsilon /(1-\gamma)$

The Final Bound

Theorem

LinearFQI with a space \mathcal{F} of d features, with n samples at each iteration returns a policy π_{K} after K iterations such that

$$
\begin{aligned}
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu} \leq & \frac{2 \gamma}{(1-\gamma)^{2}} \sqrt{C_{\mu, \rho}}\left(4 d \left(\mathcal{F}, \mathcal{T \mathcal { F }) + O (V _ { \operatorname { m a x } } (1 + \frac { L } { \sqrt { \omega } }) \sqrt { \frac { d \operatorname { l o g } n / \delta } { n } }))}\right.\right. \\
& +O\left(\frac{\gamma^{K}}{(1-\gamma)^{3}} V_{\max }^{2}\right)
\end{aligned}
$$

The smallest eigenvalue of the Gram matrix
\Rightarrow design the features so as to be orthogonal w.r.t. ρ

The Final Bound

Theorem

LinearFQI with a space \mathcal{F} of d features, with n samples at each iteration returns a policy π_{K} after K iterations such that

$$
\begin{aligned}
\left\|Q^{*}-Q^{\pi_{K}}\right\|_{\mu} \leq & \frac{2 \gamma}{(1-\gamma)^{2}} \sqrt{C_{\mu, \rho}}\left(4 d(\mathcal{F}, \mathcal{T \mathcal { F }})+O\left(V_{\max }\left(1+\frac{L}{\sqrt{\omega}}\right) \sqrt{\frac{d \log n / \delta}{n}}\right)\right) \\
& +O\left(\frac{\gamma^{K}}{(1-\gamma)^{3}} V_{\max }^{2}\right)
\end{aligned}
$$

The asymptotic rate $O(d / n)$ is the same as for regression

Summary

Summary

The STL recipe for ADP:
 1. Take your favorite learning algorithm.

Summary

The STL recipe for ADP:

1. Take your favorite learning algorithm.
2. Integrate it into approximate value iteration.

Summary

The STL recipe for ADP:

1. Take your favorite learning algorithm.
2. Integrate it into approximate value iteration.
3. Find a paper proving bounds for the learning algorithm (or prove it yourself)

Summary

The STL recipe for ADP:

1. Take your favorite learning algorithm.
2. Integrate it into approximate value iteration.
3. Find a paper proving bounds for the learning algorithm (or prove it yourself)
4. Plug it in the error propagation bound.

Summary

The STL recipe for ADP:

1. Take your favorite learning algorithm.
2. Integrate it into approximate value iteration.
3. Find a paper proving bounds for the learning algorithm (or prove it yourself)
4. Plug it in the error propagation bound.
5. Enjoy your final bound!

Summary

The STL recipe for ADP:

1. Take your favorite learning algorithm.
2. Integrate it into approximate value iteration.
3. Find a paper proving bounds for the learning algorithm (or prove it yourself)
4. Plug it in the error propagation bound.
5. Enjoy your final bound!

Not always so easy...

Outline

Preliminaries
Approximate Dynamic Programming

Linear Fitted Q-Iteration

Least-Squares Policy Iteration (LSPI)

Discussion

Invía

Least-Squares Policy Iteration (LSPI)

LSPI uses

- Linear space to approximate value functions

$$
\mathcal{F}=\left\{f(x)=\sum_{j=1}^{d} \alpha_{j} \varphi_{j}(x), \quad \alpha \in \mathbb{R}^{d}\right\}
$$

Least-Squares Policy Iteration (LSPI)

LSPI uses

- Linear space to approximate value functions

$$
\mathcal{F}=\left\{f(x)=\sum_{j=1}^{d} \alpha_{j} \varphi_{j}(x), \quad \alpha \in \mathbb{R}^{d}\right\}
$$

- Least-Squares Temporal Difference (LSTD) algorithm for policy evaluation.

Least-Squares Temporal-Difference Learning (LSTD)

- V^{π} is the fixed-point of \mathcal{T}^{π}

$$
V^{\pi}=\mathcal{T}^{\pi} V^{\pi}
$$

- V^{π} may not belong to \mathcal{F}
- Best approximation of V^{π} in \mathcal{F} is

$$
\Pi V^{\pi}=\underset{f f=\mathcal{F}}{\arg \min }\left\|V^{\pi}-f\right\|
$$

$$
\text { (} \Pi \text { is the projection onto } \mathcal{F} \text {) }
$$

Least-Squares Temporal-Difference Learning (LSTD)

- LSTD searches for the fixed-point of $\Pi_{?} \mathcal{T}^{\pi}$ instead ($\Pi_{?}$ is a projection into \mathcal{F} w.r.t. $L_{\text {? }}$-norm)

Least-Squares Temporal-Difference Learning (LSTD)

- LSTD searches for the fixed-point of $\Pi_{?} \mathcal{T}^{\pi}$ instead ($\Pi_{?}$ is a projection into \mathcal{F} w.r.t. $L_{\text {? }}$-norm)
- $\Pi_{\infty} \mathcal{T}^{\pi}$ is a contraction in L_{∞}-norm
- L_{∞}-projection is numerically expensive when the number of states is large or infinite

Least-Squares Temporal-Difference Learning (LSTD)

- LSTD searches for the fixed-point of $\Pi_{?} \mathcal{T}^{\pi}$ instead ($\Pi_{?}$ is a projection into \mathcal{F} w.r.t. $L_{\text {? }}$-norm)
- $\Pi_{\infty} \mathcal{T}^{\pi}$ is a contraction in L_{∞}-norm
- L_{∞}-projection is numerically expensive when the number of states is large or infinite
- LSTD searches for the fixed-point of $\Pi_{2, \rho} \mathcal{T}^{\pi}$

$$
\Pi_{2, \rho} g=\underset{f \in \mathcal{F}}{\arg \min }\|g-f\|_{2, \rho}
$$

Least-Squares Temporal-Difference Learning (LSTD)

When the fixed-point of $\Pi_{\rho} \mathcal{T}^{\pi}$ exists, we call it the LSTD solution

$$
V_{\mathrm{TD}}=\Pi_{\rho} \mathcal{T}^{\pi} V_{\mathrm{TD}}
$$

Least-Squares Temporal-Difference Learning (LSTD)

When the fixed-point of $\Pi_{\rho} \mathcal{T}^{\pi}$ exists, we call it the LSTD solution

$$
V_{\mathrm{TD}}=\Pi_{\rho} \mathcal{T}^{\pi} V_{\mathrm{TD}}
$$

$$
\left\langle\mathcal{T}^{\pi} V_{\mathrm{TD}}-V_{\mathrm{TD}}, \varphi_{i}\right\rangle_{\rho}=0, \quad i=1, \ldots, d
$$

$$
\underbrace{\left\langle r^{\pi}, \varphi_{i}\right\rangle_{\rho}}_{b_{i}}-\sum_{i=1}^{d} \underbrace{\left\langle\varphi_{j}-\gamma P^{\pi} \varphi_{j}, \varphi_{i}\right\rangle_{\rho}}_{A_{i j}} \cdot \alpha_{\mathrm{TD}}^{(j)}=0 \quad \Longrightarrow \quad A \alpha_{\mathrm{TD}}=b
$$

Least-Squares Temporal-Difference Learning (LSTD)

When the fixed-point of $\Pi_{\rho} \mathcal{T}^{\pi}$ exists, we call it the LSTD solution

$$
V_{\mathrm{TD}}=\Pi_{\rho} \mathcal{T}^{\pi} V_{\mathrm{TD}}
$$

- Problem: In general, $\Pi_{\rho} \mathcal{T}^{\pi}$ is not a contraction and does not have a fixed-point.
- Solution: If $\rho=\rho^{\pi}$ (stationary dist. of π) then $\Pi_{\rho^{\pi}} \mathcal{T}^{\pi}$ has a unique fixed-point.

Least-Squares Temporal-Difference Learning (LSTD)

When the fixed-point of $\Pi_{\rho} \mathcal{T}^{\pi}$ exists, we call it the LSTD solution

$$
V_{\mathrm{TD}}=\Pi_{\rho} \mathcal{T}^{\pi} V_{\mathrm{TD}}
$$

- Problem: In general, $\Pi_{\rho} \mathcal{T}^{\pi}$ cannot be computed (because unknown)
- Solution: Use samples coming from a "trajectory" of π.

Least-Squares Policy Iteration (LSPI)

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n

Least-Squares Policy Iteration (LSPI)

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n Initial policy π_{0}

Least-Squares Policy Iteration (LSPI)

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n
Initial policy π_{0}
For $k=1, \ldots, K$

Least-Squares Policy Iteration (LSPI)

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n
Initial policy π_{0}
For $k=1, \ldots, K$

- Generate a trajectory of length n from the stationary dist. $\rho^{\pi_{k}}$

$$
\left(x_{1}, \pi_{k}\left(x_{1}\right), r_{1}, x_{2}, \pi_{k}\left(x_{2}\right), r_{2}, \ldots, x_{n-1}, \pi_{k}\left(x_{n-1}\right), r_{n-1}, x_{n}\right)
$$

Least-Squares Policy Iteration (LSPI)

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n
Initial policy π_{0}
For $k=1, \ldots, K$

- Generate a trajectory of length n from the stationary dist. $\rho^{\pi_{k}}$

$$
\left(x_{1}, \pi_{k}\left(x_{1}\right), r_{1}, x_{2}, \pi_{k}\left(x_{2}\right), r_{2}, \ldots, x_{n-1}, \pi_{k}\left(x_{n-1}\right), r_{n-1}, x_{n}\right)
$$

- Compute the empirical matrix \widehat{A}_{k} and the vector \widehat{b}_{k} and solve the linear system $\alpha_{k}=\widehat{A}_{k}^{-1} \widehat{b}_{k}$

Least-Squares Policy Iteration (LSPI)

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n
Initial policy π_{0}
For $k=1, \ldots, K$

- Generate a trajectory of length n from the stationary dist. $\rho^{\pi_{k}}$

$$
\left(x_{1}, \pi_{k}\left(x_{1}\right), r_{1}, x_{2}, \pi_{k}\left(x_{2}\right), r_{2}, \ldots, x_{n-1}, \pi_{k}\left(x_{n-1}\right), r_{n-1}, x_{n}\right)
$$

- Compute the empirical matrix \widehat{A}_{k} and the vector \widehat{b}_{k} and solve the linear system $\alpha_{k}=\widehat{A}_{k}^{-1} \widehat{b}_{k}$
- Compute the greedy policy π_{k+1} w.r.t. $\widehat{V}_{k}=f_{\alpha_{k}}$

Least-Squares Policy Iteration (LSPI)

Input: space \mathcal{F}, iterations K, sampling distribution ρ, num of samples n
Initial policy π_{0}
For $k=1, \ldots, K$

- Generate a trajectory of length n from the stationary dist. $\rho^{\pi_{k}}$

$$
\left(x_{1}, \pi_{k}\left(x_{1}\right), r_{1}, x_{2}, \pi_{k}\left(x_{2}\right), r_{2}, \ldots, x_{n-1}, \pi_{k}\left(x_{n-1}\right), r_{n-1}, x_{n}\right)
$$

- Compute the empirical matrix \widehat{A}_{k} and the vector \widehat{b}_{k} and solve the linear system $\alpha_{k}=\widehat{A}_{k}^{-1} \widehat{b}_{k}$
- Compute the greedy policy π_{k+1} w.r.t. $\widehat{V}_{k}=f_{\alpha_{k}}$

Return the last policy π_{K}

LSTD Algorithm

When $n \rightarrow \infty$ then $\widehat{A} \rightarrow A$ and $\widehat{b} \rightarrow b$, and thus,

$$
\widehat{\alpha}_{\mathrm{TD}} \rightarrow \alpha_{\mathrm{TD}} \text { and } \widehat{V}_{\mathrm{TD}} \rightarrow V_{\mathrm{TD}}
$$

Proposition (LSTD Performance)

If LSTD is used to estimate the value of π with an infinite number of samples drawn from the stationary distribution ρ^{π} then

$$
\left\|V^{\pi}-V_{\mathrm{TD}}\right\|_{\rho^{\pi}} \leq \frac{1}{\sqrt{1-\gamma^{2}}} \inf _{V \in \mathcal{F}}\left\|V^{\pi}-V\right\|_{\rho^{\pi}}
$$

LSTD Algorithm

When $n \rightarrow \infty$ then $\widehat{A} \rightarrow A$ and $\widehat{b} \rightarrow b$, and thus,

$$
\widehat{\alpha}_{\mathrm{TD}} \rightarrow \alpha_{\mathrm{TD}} \text { and } \widehat{V}_{\mathrm{TD}} \rightarrow V_{\mathrm{TD}}
$$

Proposition (LSTD Performance)

If LSTD is used to estimate the value of π with an infinite number of samples drawn from the stationary distribution ρ^{π} then

$$
\left\|V^{\pi}-V_{\mathrm{TD}}\right\|_{\rho^{\pi}} \leq \frac{1}{\sqrt{1-\gamma^{2}}} \inf _{V \in \mathcal{F}}\left\|V^{\pi}-V\right\|_{\rho^{\pi}}
$$

Problem: we don't have an infinite number of samples...

LSTD Algorithm

When $n \rightarrow \infty$ then $\widehat{A} \rightarrow A$ and $\widehat{b} \rightarrow b$, and thus,

$$
\widehat{\alpha}_{\mathrm{TD}} \rightarrow \alpha_{\mathrm{TD}} \text { and } \widehat{V}_{\mathrm{TD}} \rightarrow V_{\mathrm{TD}}
$$

Proposition (LSTD Performance)

If LSTD is used to estimate the value of π with an infinite number of samples drawn from the stationary distribution ρ^{π} then

$$
\left\|V^{\pi}-V_{\mathrm{TD}}\right\|_{\rho^{\pi}} \leq \frac{1}{\sqrt{1-\gamma^{2}}} \inf _{V \in \mathcal{F}}\left\|V^{\pi}-V\right\|_{\rho^{\pi}}
$$

Problem: we don't have an infinite number of samples... Problem 2: $V_{T D}$ is a fixed point solution and not a standard machine learning problem...

LSTD Error Bound

Assumption: The Markov chain induced by the policy π_{k} has a stationary distribution $\rho^{\pi_{k}}$ and it is ergodic and β-mixing.

LSTD Error Bound

Assumption: The Markov chain induced by the policy π_{k} has a stationary distribution $\rho^{\pi_{k}}$ and it is ergodic and β-mixing.

Theorem (LSTD Error Bound)

At any iteration k, if LSTD uses n samples obtained from a single trajectory of π and a d-dimensional space, then with probability $1-\delta$

$$
\left\|V^{\pi_{k}}-\widehat{V}_{k}\right\|_{\rho^{\pi_{k}}} \leq \frac{c}{\sqrt{1-\gamma^{2}}} \inf _{f \in \mathcal{F}}\left\|V^{\pi_{k}}-f\right\|_{\rho^{\pi_{k}}}+O\left(\sqrt{\frac{d \log (d / \delta)}{n \nu}}\right)
$$

LSTD Error Bound

$$
\left\|V^{\pi}-\hat{V}\right\|_{\rho^{\pi}} \leq \frac{c}{\sqrt{1-\gamma^{2}}} \underbrace{i \inf _{f}\left\|V^{\pi}-f\right\|_{\sigma^{\pi}}}_{\text {approximation error }}+\underbrace{o\left(\sqrt{\frac{d \log (d / \delta)}{n \nu}}\right)}_{\text {estimation error }}
$$

- Approximation error: it depends on how well the function space \mathcal{F} can approximate the value function V^{π}
- Estimation error: it depends on the number of samples n, the dim of the function space d, the smallest eigenvalue of the Gram matrix ν, the mixing properties of the Markov chain (hidden in O)

LSTD Error Bound

- n number of samples and d dimensionality

LSTD Error Bound

$$
\left\|V^{\pi_{k}}-\widehat{V}_{k}\right\|_{\rho^{\pi_{k}}} \leq \frac{c}{\sqrt{1-\gamma^{2}}} \underbrace{\inf _{f \in \mathcal{F}}\left\|V^{\pi_{k}}-f\right\|_{\rho^{\pi_{k}}}}_{\text {approximation error }}+\underbrace{O\left(\sqrt{\frac{d \log (d / \delta)}{n \nu_{k}}}\right)}_{\text {estimation error }}
$$

- $\nu_{k}=$ the smallest eigenvalue of the Gram matrix $\left(\int \varphi_{i} \varphi_{j} d \rho^{\pi_{k}}\right)_{i, j}$ (Assumption: eigenvalues of the Gram matrix are strictly positive - existence of the model-based LSTD solution)
- β-mixing coefficients are hidden in the $O(\cdot)$ notation

LSPI Error Bound

Theorem (LSPI Error Bound)

If LSPI is run over K iterations, then the performance loss policy π_{K} is

$$
\left\|V^{*}-V^{\pi_{K}}\right\|_{\mu} \leq \frac{4 \gamma}{(1-\gamma)^{2}}\left\{\sqrt{C C_{\mu, \rho}}\left[E_{0}(\mathcal{F})+O\left(\sqrt{\frac{d \log (d K / \delta)}{n \nu_{\rho}}}\right)\right]+\gamma^{K} R_{\max }\right\}
$$

with probability $1-\delta$.

LSPI Error Bound

Theorem (LSPI Error Bound)

If LSPI is run over K iterations, then the performance loss policy π_{K} is

$$
\left\|V^{*}-V^{\pi_{K}}\right\|_{\mu} \leq \frac{4 \gamma}{(1-\gamma)^{2}}\left\{\sqrt{C C_{\mu, \rho}}\left[c E_{0}(\mathcal{F})+O\left(\sqrt{\frac{d \log (d K / \delta)}{n \nu_{\rho}}}\right)\right]+\gamma^{K} R_{\max }\right\}
$$

with probability $1-\delta$.

- Approximation error: $E_{0}(\mathcal{F})=\sup _{\pi \in \mathcal{G}(\tilde{\mathcal{F}})} \inf _{f \in \mathcal{F}}\left\|V^{\pi}-f\right\|_{\rho^{\pi}}$

LSPI Error Bound

Theorem (LSPI Error Bound)

If LSPI is run over K iterations, then the performance loss policy π_{K} is

$$
\left\|V^{*}-V^{\pi_{K}}\right\|_{\mu} \leq \frac{4 \gamma}{(1-\gamma)^{2}}\left\{\sqrt{C C_{\mu, \rho}}\left[c E_{0}(\mathcal{F})+O\left(\sqrt{\frac{d \log (d K / \delta)}{n \nu_{\rho}}}\right)\right]+\gamma^{K} R_{\max }\right\}
$$

with probability $1-\delta$.

- Approximation error: $E_{0}(\mathcal{F})=\sup _{\pi \in \mathcal{G}(\widetilde{\mathcal{F}})} \inf _{f \in \mathcal{F}}\left\|V^{\pi}-f\right\|_{\rho^{\pi}}$
- Estimation error: depends on n, d, ν_{ρ}, K

LSPI Error Bound

Theorem (LSPI Error Bound)

If LSPI is run over K iterations, then the performance loss policy π_{K} is

$$
\left\|V^{*}-V^{\pi_{K}}\right\|_{\mu} \leq \frac{4 \gamma}{(1-\gamma)^{2}}\left\{\sqrt{C C_{\mu, \rho}}\left[c E_{0}(\mathcal{F})+O\left(\sqrt{\frac{d \log (d K / \delta)}{n \nu_{\rho}}}\right)\right]+\gamma^{K} R_{\max }\right\}
$$

with probability $1-\delta$.

- Approximation error: $E_{0}(\mathcal{F})=\sup _{\pi \in \mathcal{G}(\widetilde{\mathcal{F}})} \inf _{f \in \mathcal{F}}\left\|V^{\pi}-f\right\|_{\rho^{\pi}}$
- Estimation error: depends on n, d, ν_{ρ}, K
- Initialization error: error due to the choice of the initial value function or initial policy $\left|V^{*}-V^{\pi_{0}}\right|$

LSPI Error Bound

LSPI Error Bound

$$
\left\|V^{*}-V^{\pi_{K}}\right\|_{\mu} \leq \frac{4 \gamma}{(1-\gamma)^{2}}\left\{\sqrt{C C_{\mu, \rho}}\left[c E_{0}(\mathcal{F})+O\left(\sqrt{\frac{d \log (d K / \delta)}{n \nu_{\rho}}}\right)\right]+\gamma^{K} R_{\max }\right\}
$$

Lower-Bounding Distribution

There exists a distribution ρ such that for any policy $\pi \in \mathcal{G}(\widetilde{\mathcal{F}})$, we have $\rho \leq C \rho^{\pi}$, where $C<\infty$ is a constant and ρ^{π} is the stationary distribution of π. Furthermore, we can define the concentrability coefficient $C_{\mu, \rho}$ as before.

LSPI Error Bound

LSPI Error Bound

$$
\left\|V^{*}-V^{\pi_{K}}\right\|_{\mu} \leq \frac{4 \gamma}{(1-\gamma)^{2}}\left\{\sqrt{C C_{\mu, \rho}}\left[c E_{0}(\mathcal{F})+O\left(\sqrt{\frac{d \log (d K / \delta)}{n \nu_{\rho}}}\right)\right]+\gamma^{K} R_{\max }\right\}
$$

Lower-Bounding Distribution

There exists a distribution ρ such that for any policy $\pi \in \mathcal{G}(\widetilde{\mathcal{F}})$, we have $\rho \leq C \rho^{\pi}$, where $C<\infty$ is a constant and ρ^{π} is the stationary distribution of π. Furthermore, we can define the concentrability coefficient $C_{\mu, \rho}$ as before.

- $\nu_{\rho}=$ the smallest eigenvalue of the Gram matrix $\left(\int \varphi_{i} \varphi_{j} d \rho\right)_{i, j}$

Outline

Preliminaries
Approximate Dynamic Programming

Linear Fitted Q-Iteration

Least-Squares Policy Iteration (LSPI)

Discussion

Inría

Other Finite-Sample Analysis Results in ADP

Approximate Value Iteration

- Fitted value iteration (Munos \& Szepesvari 2008)
- L_{2}-Regularized Fitted Q-Iteration (Farahmand et al. 2009)
- Transfer of samples in Fitted Q-Iteration (L, Restelli, 2010)
- Multi-task Sparse Fitted Q-Iteration (Calandriello, L, Restelli, 2014)

Other Finite-Sample Analysis Results in ADP

Approximate Policy Iteration

- LSTD and LSPI (L, Ghavamzadeh, Munos 2010, 2012)
- Bellman Residual Minimization (Maillard, Munos, L, Ghavamzadeh 2010)
- Modified Bellman Residual Minimization (Antos et al. 2008)
- Classification-based Policy Iteration (Fern et al. 2006; L, Ghavamzadeh, Munos et al. 2010; Gabillon, L, Ghavamzadeh, Scherrer 2011)
- Conservative Policy Iteration (Kakade \& Langford 2002; Kakade 2003)
- ℓ_{1}-regularize LSTD (Ghavamzadeh, L, Munos, 2011, Hoffman, L, Ghavamzadeh, Munos, 2012, Geist, Scherrer, L, Ghavamzadeh, 2012)
- LSTD (LSPI) with Random Projections (Ghavamzadeh, L, Maillard, Munos, 2010)

Comparison to Supervised Learning

Similarity: The convergence rate is the same (optimal) rate of statistical learning theory.

Difference

- dependency on $1 /(1-\gamma)$ (sequential nature of the problem)
- the approximation error is more complex (iterative nature of the algorithms)
- the propagation of error (concentrability) (control problem)
- the sampling problem (how to choose ρ - exploration problem)

Practical Lessons

- Tuning the parameters (given a fixed accuracy ϵ)
- number of samples (inverting the bound)

$$
\begin{array}{r}
n \geq \widetilde{\Omega}\left(\frac{d}{\epsilon}\right) \\
K \approx \epsilon /(1-\gamma)
\end{array}
$$

- choice of function \mathcal{F} and/or policy space Π
- features $\left\{\varphi_{i}\right\}_{i=1}^{d}$ to be linearly independent given the sampling distribution ρ (on-policy - off-policy sampling)
- tradeoff between approximation and estimation errors

Open Problems

Control the propagation of error

- Improve the sampling distribution
- Refine the analysis of concentrability terms
- Off-policy learning
- No-regret algorithms
- Find "easier" MDPs

Control the approximation error

- Non-parametric approaches
- Smooth MDPs
- Automatic construction of basis functions
- Representation learning

Approximate Dynamic Programming meets
Statistical Learning Theory

A. Lazaric
\{alessandro.lazaric\} @inria.fr
sequel. Iille.inria.fr

