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Preliminaries

The Reinforcement Learning Model (Glossary)

Agent

Environment

Learning

reward perception

Critic

actuation
action / state /

I Environment = system to
control

I Agent = controller
I State = fully observable

state
I Action = control
I Reward = cost
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Preliminaries

Markov Decision Process

Definition (Markov decision process)
A discounted Markov decision process is a tuple M = (X,A, p, r, γ):

I X is the state space,
I A is the action space,
I p(y|x, a) is the (stationary and Markov) transition probability

p(y|x, a) = P(xt+1 = y|xt = x, at = a),

I r(x, a, y) is the reward of transition (x, a, y).
I γ ∈ (0, 1) is the discount factor

Definition (Policy)
A policy is a (stationary and deterministic) mapping

π : X → A
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Preliminaries

Infinite Time Horizon with Discount

Definition (Value functions)
For any policy π, the (action-) state value function V π : X 7→ R
(Qπ : X ×A 7→ R) is

V π(x) = E
[ ∞∑

t=0

γtr(xt, π(xt)) |x0 = x;π

]

Qπ(x, a) = E
[ ∞∑

t=0

γtr(xt, at)|x0 = x, a0 = a, at = π(xt),∀t ≥ 1
]

Definition (Optimal policy and optimal value function)

The solution to an MDP is an optimal policy π∗ satisfying
π∗ ∈ arg max

π∈Π
V π

and its value function is the optimal value function V ∗ = V π
∗ .
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Preliminaries

The Bellman Operators

Notation. w.l.o.g. a discrete state space |X| = N and V π ∈ RN .

Definition
For any W ∈ RN , the Bellman operator T π : RN → RN is

T πW (x) = r(x, π(x)) + γ
∑

y

p(y|x, π(x))W (y),

and the optimal Bellman operator is

TW (x) = max
a∈A

[
r(x, a) + γ

∑

y

p(y|x, a)W (y)
]
.

With abuse of notation T π and T will be used for Q-functions as well.
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Preliminaries

The Bellman Operators

The Bellman operators are γ-Contraction in L∞-norm: for any
W1,W2 ∈ RN

||T πW1 − T πW2||∞ ≤ γ||W1 −W2||∞,
||TW1 − TW2||∞ ≤ γ||W1 −W2||∞.

Thus

V π is the unique fixed point of T π,
V ∗ is the unique fixed point of T .
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Approximate Dynamic Programming

Exact Value Iteration

1. Let Q0 be any Q-function

2. At each iteration k = 1, 2, . . . ,K
I Compute Qk+1 = T Qk

3. Return the greedy policy

πK(x) ∈ arg max
a∈A

QK(x, a)

From the contraction property of T

||Qk+1 −Q∗||∞ = ||T Qk − T Q∗||∞ ≤ γ||Qk −Q∗||∞
≤ γk+1||Q0 −Q∗||∞ → 0
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Approximate Dynamic Programming

Exact Policy Iteration

1. Let π0 be any stationary policy

2. At each iteration k = 1, 2, . . . ,K
I Policy evaluation: given πk, compute Qπk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg max
a∈A

Qπk(x, a).

3. Return the last policy πK
From the Bellman operators

V πk+1≥V πk
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Approximate Dynamic Programming

Limitation of Exact Dynamic Programming

Dynamic programming algorithms require
I Explicit definition of transition probabilities p(·|x, a) and

reward function r(x, a),
I Exact representation of action-value functions Q in X ×A.

Approximate DP relaxes these requirements by using
I Samples {xi, ai, x′i, ri}i obtained from a generative model

(e.g., a simulator) of the MDP,
I An approximation space F = {f : X ×A→ R} to

approximate Q-functions.
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Approximate Dynamic Programming

Approximate Value Iteration

Input: samples D = {xi, ai, x′i, ri}ni=1, approximation space F
1. Let Q0 be any Q-function
2. At each iteration k = 1, 2, . . . ,K

I Compute Q̂k+1≈T Qk (using D and F)
3. Return the greedy policy

πK(x) ∈ arg max
a∈A

Q̂K(x, a)

Problem: ||Q∗ − Q̂k+1||
?
≤ γ||Q∗ −Qk||
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Approximate Dynamic Programming

Approximate Policy Iteration

Input: samples D = {xi, ai, x′i, ri}ni=1, approximation space F
1. Let π0 be any stationary policy
2. At each iteration k = 1, 2, . . . ,K

I Policy evaluation given πk, compute Q̂πk ≈ Qπk (using D and F).
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈AQ̂
πk(x, a).

3. Return the last policy πK

Problem: V πk
?
≥ V πk−1
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Approximate Dynamic Programming

Performance Bounds

Question: what is the performance of the policy πK returned by
an ADP algorithm?
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Approximate Dynamic Programming

Performance Bounds

Question: what is the performance of the policy πK returned by
an ADP algorithm?

||V ∗ − V πK ||p,µ ≤ bound(MDP, alg,D,F) w.h.p.
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Approximate Dynamic Programming

Statistical Learning Theory in ADP

Solution:
I supervised learning methods (regression, classification) appear in

the inner-loop of ADP algorithms
I SLT tools used to analyze supervised learning methods can be

used in ADP!

The specific nature of ADP makes things not so
straightforward...
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Linear Fitted Q-Iteration

Linear Fitted Q-iteration

Linear space (used to approximate action–value functions)

F =
{
f(x, a) =

d∑

j=1

αjϕj(x, a), α ∈ Rd
}

with features

ϕj : X ×A → [0, L] φ(x, a) = [ϕ1(x, a) . . . ϕd(x, a)]>
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Linear Fitted Q-Iteration

Linear Fitted Q-iteration

Input: space F , iterations K, sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F
For k = 1, . . . ,K

I Draw n samples (xi, ai)
i.i.d∼ ρ

I Sample x′i ∼ p(·|xi, ai) and ri = r(xi, ai)

I Compute yi = ri + γmaxa Q̂k−1(x′i, a)

I Build training set
{(

(xi, ai), yi
)}n
i=1

I Solve the least squares problem

fα̂k = arg min
fα∈F

1

n

n∑

i=1

(
fα(xi, ai)− yi

)2

I Return Q̂k = fα̂k (truncation may be needed)

Return πK(·) = arg maxa Q̂K(·, a) (greedy policy)
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Linear Fitted Q-Iteration

Sketch of the Analysis

Q3

greedy πK

· · ·

Q2

Q0

Q1

T

T

T Q̂2

Q̂2
ǫ2

Q̂3
ǫ3

T Q̂3

ǫ1
Q̂1

T Q̂1

T

T

Q4

· · ·

final error
Q∗

T

Q̂K

QπK
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Linear Fitted Q-Iteration

Theoretical Objectives

Objective: derive a bound on the performance (quadratic) loss
w.r.t. a testing distribution µ

||Q∗ −QπK ||µ ≤ ???

Sub-Objective 1: derive an intermediate bound on the prediction
error at any iteration k w.r.t. to the sampling distribution ρ

||T Q̂k−1 − Q̂k||ρ ≤ ???

Sub-Objective 2: analyze how the error at each iteration is
propagated through iterations

||Q∗ −QπK ||µ ≤ propagation(||T Q̂k−1 − Q̂k||ρ)

A. Lazaric – SLT in ADP November 17, 2014 - 26/72



Linear Fitted Q-Iteration

Theoretical Objectives

Objective: derive a bound on the performance (quadratic) loss
w.r.t. a testing distribution µ

||Q∗ −QπK ||µ ≤ ???

Sub-Objective 1: derive an intermediate bound on the prediction
error at any iteration k w.r.t. to the sampling distribution ρ

||T Q̂k−1 − Q̂k||ρ ≤ ???

Sub-Objective 2: analyze how the error at each iteration is
propagated through iterations

||Q∗ −QπK ||µ ≤ propagation(||T Q̂k−1 − Q̂k||ρ)

A. Lazaric – SLT in ADP November 17, 2014 - 26/72



Linear Fitted Q-Iteration

Theoretical Objectives

Objective: derive a bound on the performance (quadratic) loss
w.r.t. a testing distribution µ

||Q∗ −QπK ||µ ≤ ???

Sub-Objective 1: derive an intermediate bound on the prediction
error at any iteration k w.r.t. to the sampling distribution ρ

||T Q̂k−1 − Q̂k||ρ ≤ ???

Sub-Objective 2: analyze how the error at each iteration is
propagated through iterations

||Q∗ −QπK ||µ ≤ propagation(||T Q̂k−1 − Q̂k||ρ)

A. Lazaric – SLT in ADP November 17, 2014 - 26/72



Linear Fitted Q-Iteration

The Sources of Error

I Desired solution
Qk = T Q̂k−1

I Best solution (wrt sampling distribution ρ)

fα∗k = arg inf
fα∈F

||fα −Qk||ρ

⇒ Error from the approximation space F
I Returned solution

fα̂k = arg min
fα∈F

1

n

n∑

i=1

(
fα(xi, ai)− yi

)2

⇒ Error from the (random) samples
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Linear Fitted Q-Iteration

Per-Iteration Error

Theorem
At each iteration k, Linear-FQI returns an approximation Q̂k such
that (Sub-Objective 1)

||Qk − Q̂k||ρ ≤ 4||Qk − fα∗k ||ρ

+O

((
Vmax + L||α∗k||

)
√

log 1/δ

n

)

+O

(
Vmax

√
d log n/δ

n

)
,

with probability 1− δ.

Tools: concentration of measure inequalities, covering space, linear algebra, union
bounds, special tricks for linear spaces, ...
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Linear Fitted Q-Iteration

Per-Iteration Error

||Qk − Q̂k||ρ ≤ 4||Qk − fα∗k ||ρ
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√

log 1/δ

n
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Vmax
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d log n/δ
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Linear Fitted Q-Iteration

Per-Iteration Error

||Qk − Q̂k||ρ ≤ 4||Qk − fα∗k ||ρ

+O

((
Vmax + L||α∗k||

)
√

log 1/δ

n

)

+O

(
Vmax

√
d log n/δ

n

)

Remarks
I No algorithm can do better
I Constant 4

I Depends on the space F
I Changes with the iteration k
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Linear Fitted Q-Iteration

Per-Iteration Error

||Qk − Q̂k||ρ ≤ 4||Qk − fα∗k ||ρ

+O

((
Vmax + L||α∗k||

)
√

log 1/δ

n

)

+O

(
Vmax

√
d log n/δ

n

)

Remarks
I Vanishing to zero as O(n−1/2)

I Depends on the features (L) and on the best solution (||α∗k||)
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Linear Fitted Q-Iteration

Per-Iteration Error

||Qk − Q̂k||ρ ≤ 4||Qk − fα∗k ||ρ

+O

((
Vmax + L||α∗k||

)
√

log 1/δ

n

)

+O

(
Vmax

√
d log n/δ

n

)

Remarks
I Vanishing to zero as O(n−1/2)

I Depends on the dimensionality of the space (d) and the
number of samples (n)
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Linear Fitted Q-Iteration

Error Propagation

Objective

||Q∗ −QπK ||µ

I Problem 1: the test norm µ is different from the sampling
norm ρ

I Problem 2: we have bounds for Q̂k not for the performance
of the corresponding πk

I Problem 3: we have bounds for one single iteration
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Linear Fitted Q-Iteration

Error Propagation

Transition kernel for a fixed policy Pπ .

I m-step (worst-case) concentration of future state distribution

c(m) = sup
π1...πm

∣∣∣∣∣

∣∣∣∣∣
d(µPπ1 . . . Pπm)

dρ

∣∣∣∣∣

∣∣∣∣∣
∞

<∞

I Average (discounted) concentration
Cµ,ρ = (1− γ)2

∑

m≥1

mγm−1c(m) < +∞
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Linear Fitted Q-Iteration

Error Propagation

Remark: relationship to top-Lyapunov exponent

L+ = sup
π

lim sup
m→∞

1

m
log+

(
||ρPπ1Pπ2 · · ·Pπm ||

)

If L+ ≤ 0 (stable system), then c(m) has a growth rate which is
polynomial and Cµ,ρ <∞ is finite
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Linear Fitted Q-Iteration

Error Propagation

Proposition

Let εk = Qk − Q̂k be the propagation error at each iteration, then
after K iteration the performance loss of the greedy policy πK is

||Q∗ −QπK ||2µ ≤
[

2γ

(1− γ)2

]2

Cµ,ρ max
k
||εk||2ρ +O

(
γK

(1− γ)3
V 2

max

)
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Linear Fitted Q-Iteration

The Final Bound

Bringing everything together...

||Q∗ −QπK ||2µ ≤
[

2γ

(1− γ)2

]2

Cµ,ρ max
k
||εk||2ρ +O

(
γK

(1− γ)3
V 2

max

)

||εk||ρ = ||Qk − Q̂k||ρ ≤ 4||Qk − fα∗
k
||ρ

+O

((
Vmax + L||α∗k||

)
√

log 1/δ

n

)

+O

(
Vmax

√
d log n/δ

n

)
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Linear Fitted Q-Iteration

The Final Bound

Theorem (see e.g., Munos,’03)
LinearFQI with a space F of d features, with n samples at each iteration
returns a policy πK after K iterations such that

||Q∗ −QπK ||µ ≤
2γ

(1− γ)2
√
Cµ,ρ

(
4d(F , T F) +O

(
Vmax

(
1 +

L
√
ω

)√d logn/δ

n

))

+O

(
γK

(1− γ)3
V 2
max

)
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Linear Fitted Q-Iteration

The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ −QπK ||µ ≤
2γ

(1− γ)2
√
Cµ,ρ

(
4d(F , T F) +O

(
Vmax

(
1 +

L
√
ω

)√d logn/δ

n

))

+O

(
γK

(1− γ)3
V 2
max

)

The propagation (and different norms) makes the problem more complex
⇒ how do we choose the sampling distribution?

A. Lazaric – SLT in ADP November 17, 2014 - 39/72



Linear Fitted Q-Iteration

The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ −QπK ||µ ≤
2γ

(1− γ)2
√
Cµ,ρ

(
4d(F , T F) +O

(
Vmax

(
1 +

L
√
ω

)√d logn/δ

n

))

+O

(
γK

(1− γ)3
V 2
max

)

The approximation error is worse than in regression
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Linear Fitted Q-Iteration

The Final Bound

The inherent Bellman error

||Qk − fα∗
k
||ρ = inf

f∈F
||Qk − f ||ρ

= inf
f∈F
||T Q̂k−1 − f ||ρ

≤ inf
f∈F
||T fαk−1

− f ||ρ

≤ sup
g∈F

inf
f∈F
||T g − f ||ρ = d(F , T F)

Question: how to design F to make it “compatible” with the Bellman
operator?
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Linear Fitted Q-Iteration

The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ −QπK ||µ ≤
2γ

(1− γ)2
√
Cµ,ρ

(
4d(F , T F) +O

(
Vmax

(
1 +

L
√
ω

)√d logn/δ

n

))

+O

(
γK

(1− γ)3
V 2
max

)

The dependency on γ is worse than at each iteration
⇒ is it possible to avoid it?
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Linear Fitted Q-Iteration

The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ −QπK ||µ ≤
2γ

(1− γ)2
√
Cµ,ρ

(
4d(F , T F) +O

(
Vmax

(
1 +

L
√
ω

)√d logn/δ

n

))

+O

(
γK

(1− γ)3
V 2
max

)

The error decreases exponentially in K
⇒ K ≈ ε/(1− γ)
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Linear Fitted Q-Iteration

The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ −QπK ||µ ≤
2γ

(1− γ)2
√
Cµ,ρ

(
4d(F , T F) +O

(
Vmax

(
1 +

L
√
ω

)√d logn/δ

n

))

+O

(
γK

(1− γ)3
V 2
max

)

The smallest eigenvalue of the Gram matrix
⇒ design the features so as to be orthogonal w.r.t. ρ
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Linear Fitted Q-Iteration

The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ −QπK ||µ ≤
2γ

(1− γ)2
√
Cµ,ρ

(
4d(F , T F) +O

(
Vmax

(
1 +

L
√
ω

)√d logn/δ

n

))

+O

(
γK

(1− γ)3
V 2
max

)

The asymptotic rate O(d/n) is the same as for regression
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Linear Fitted Q-Iteration

Summary

Approximation

space

Samples

algorithm

process

Performance
Markov decision

Dynamic programming
Approximation

algorithm

(sampling strategy, number)

Range Vmax

Concentrability Cµ,ρ

d(F , T F)
size d, features ω

number n, sampling dist. ρ

Qk − Q̂k
Propagation
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Linear Fitted Q-Iteration

Summary

The STL recipe for ADP:
1. Take your favorite learning algorithm.

2. Integrate it into approximate value iteration.
3. Find a paper proving bounds for the learning algorithm (or

prove it yourself)
4. Plug it in the error propagation bound.
5. Enjoy your final bound!

Not always so easy...
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Least-Squares Policy Iteration (LSPI)

Least-Squares Policy Iteration (LSPI)

LSPI uses
I Linear space to approximate value functions

F =
{
f(x) =

d∑

j=1

αjϕj(x), α ∈ Rd
}

I Least-Squares Temporal Difference (LSTD) algorithm for
policy evaluation.
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Least-Squares Policy Iteration (LSPI)

Least-Squares Temporal-Difference Learning (LSTD)

I V π is the fixed-point of T π V π = T πV π

I V π may not belong to F V π /∈ F

I Best approximation of V π in F is

ΠV π = arg min
f∈F

||V π − f || (Π is the projection onto F)

F

V π
T π

ΠV π
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Least-Squares Policy Iteration (LSPI)

Least-Squares Temporal-Difference Learning (LSTD)

I LSTD searches for the fixed-point of Π?T π instead (Π? is a
projection into F w.r.t. L?-norm)

I Π∞T π is a contraction in L∞-norm

I L∞-projection is numerically expensive when the number of
states is large or infinite

I LSTD searches for the fixed-point of Π2,ρT π

Π2,ρ g = arg min
f∈F

||g − f ||2,ρ
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Least-Squares Policy Iteration (LSPI)

Least-Squares Temporal-Difference Learning (LSTD)
When the fixed-point of ΠρT π exists, we call it the LSTD solution

VTD = ΠρT πVTD

F

V π

T πVTDT π

T π

ΠρV
π VTD = ΠρT πVTD

〈T πVTD − VTD, ϕi〉ρ = 0, i = 1, . . . , d

〈rπ, ϕi〉ρ︸ ︷︷ ︸
bi

−
d∑
i=1

〈ϕj − γPπϕj , ϕi〉ρ︸ ︷︷ ︸
Aij

· α(j)
TD = 0 =⇒ A αTD = b
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Least-Squares Policy Iteration (LSPI)

Least-Squares Temporal-Difference Learning (LSTD)
When the fixed-point of ΠρT π exists, we call it the LSTD solution

VTD = ΠρT πVTD

F

V π

T πVTDT π

T π

ΠρV
π VTD = ΠρT πVTD

I Problem: In general, ΠρT π is not a contraction and does not
have a fixed-point.

I Solution: If ρ = ρπ (stationary dist. of π) then ΠρπT π has a
unique fixed-point.
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Least-Squares Temporal-Difference Learning (LSTD)

When the fixed-point of ΠρT π exists, we call it the LSTD solution

VTD = ΠρT πVTD

F

V π

T πVTDT π

T π

ΠρV
π VTD = ΠρT πVTD

I Problem: In general, ΠρT π cannot be computed (because
unknown)

I Solution: Use samples coming from a “trajectory” of π.
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Least-Squares Policy Iteration (LSPI)

Least-Squares Policy Iteration (LSPI)

Input: space F , iterations K, sampling distribution ρ, num of samples n

Initial policy π0

For k = 1, . . . ,K
I Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

I Compute the empirical matrix Âk and the vector b̂k and solve the
linear system αk = Â−1

k b̂k

I Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Return the last policy πK
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k b̂k

I Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Return the last policy πK

A. Lazaric – SLT in ADP November 17, 2014 - 54/72



Least-Squares Policy Iteration (LSPI)

Least-Squares Policy Iteration (LSPI)

Input: space F , iterations K, sampling distribution ρ, num of samples n

Initial policy π0

For k = 1, . . . ,K
I Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)
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Least-Squares Policy Iteration (LSPI)

LSTD Algorithm

When n→∞ then Â→ A and b̂→ b, and thus,

α̂TD → αTD and V̂TD → VTD

Proposition (LSTD Performance)

If LSTD is used to estimate the value of π with an infinite number
of samples drawn from the stationary distribution ρπ then

||V π − VTD||ρπ ≤
1√

1− γ2
inf
V ∈F
||V π − V ||ρπ

Problem: we don’t have an infinite number of samples...
Problem 2: VTD is a fixed point solution and not a standard
machine learning problem...
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Least-Squares Policy Iteration (LSPI)

LSTD Error Bound

Assumption: The Markov chain induced by the policy πk has a
stationary distribution ρπk and it is ergodic and β-mixing.

Theorem (LSTD Error Bound)

At any iteration k, if LSTD uses n samples obtained from a single
trajectory of π and a d-dimensional space, then with probability 1− δ

||V πk − V̂k||ρπk ≤
c√

1− γ2
inf
f∈F
||V πk − f ||ρπk +O

(√
d log(d/δ)

n ν

)
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Least-Squares Policy Iteration (LSPI)

LSTD Error Bound

||V π − V̂ ||ρπ ≤
c√

1− γ2
inf
f∈F
||V π − f ||ρπ

︸ ︷︷ ︸
approximation error

+ O

(√
d log(d/δ)

n ν

)

︸ ︷︷ ︸
estimation error

I Approximation error: it depends on how well the function space F
can approximate the value function V π

I Estimation error: it depends on the number of samples n, the dim of
the function space d, the smallest eigenvalue of the Gram matrix ν, the
mixing properties of the Markov chain (hidden in O)

A. Lazaric – SLT in ADP November 17, 2014 - 57/72



Least-Squares Policy Iteration (LSPI)

LSTD Error Bound

||V πk − V̂k||ρπk ≤
c√

1− γ2
inf
f∈F
||V πk − f ||ρπk

︸ ︷︷ ︸
approximation error

+ O



√
d log(d/δ)

n νk




︸ ︷︷ ︸
estimation error

I n number of samples and d dimensionality
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Least-Squares Policy Iteration (LSPI)

LSTD Error Bound

||V πk − V̂k||ρπk ≤
c√

1− γ2
inf
f∈F
||V πk − f ||ρπk

︸ ︷︷ ︸
approximation error

+ O



√
d log(d/δ)

n νk




︸ ︷︷ ︸
estimation error

I νk = the smallest eigenvalue of the Gram matrix (
∫
ϕi ϕj dρ

πk )i,j
(Assumption: eigenvalues of the Gram matrix are strictly positive - existence of
the model-based LSTD solution)

I β-mixing coefficients are hidden in the O(·) notation
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Least-Squares Policy Iteration (LSPI)

LSPI Error Bound

Theorem (LSPI Error Bound)
If LSPI is run over K iterations, then the performance loss policy πK is

||V ∗−V πK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
E0(F) +O

(√
d log(dK/δ)

n νρ

)]
+ γKRmax

}

with probability 1− δ.
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Least-Squares Policy Iteration (LSPI)

LSPI Error Bound

Theorem (LSPI Error Bound)
If LSPI is run over K iterations, then the performance loss policy πK is

||V ∗−V πK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) +O

(√
d log(dK/δ)

n νρ

)]
+ γKRmax

}

with probability 1− δ.

I Approximation error: E0(F) = supπ∈G(F̃) inff∈F ||V
π − f ||ρπ
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Least-Squares Policy Iteration (LSPI)

LSPI Error Bound

Theorem (LSPI Error Bound)
If LSPI is run over K iterations, then the performance loss policy πK is

||V ∗−V πK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) +O

(√
d log(dK/δ)

n νρ

)]
+ γKRmax

}

with probability 1− δ.

I Approximation error: E0(F) = supπ∈G(F̃) inff∈F ||V
π − f ||ρπ

I Estimation error: depends on n, d, νρ,K
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Least-Squares Policy Iteration (LSPI)

LSPI Error Bound

Theorem (LSPI Error Bound)
If LSPI is run over K iterations, then the performance loss policy πK is

||V ∗−V πK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) +O

(√
d log(dK/δ)

n νρ

)]
+ γKRmax

}

with probability 1− δ.

I Approximation error: E0(F) = supπ∈G(F̃) inff∈F ||V
π − f ||ρπ

I Estimation error: depends on n, d, νρ,K

I Initialization error: error due to the choice of the initial value function or
initial policy |V ∗ − V π0 |
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Least-Squares Policy Iteration (LSPI)

LSPI Error Bound

LSPI Error Bound

||V ∗−V πK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) +O

(√
d log(dK/δ)

n νρ

)]
+ γKRmax

}

Lower-Bounding Distribution
There exists a distribution ρ such that for any policy π ∈ G(F̃), we have
ρ ≤ Cρπ, where C <∞ is a constant and ρπ is the stationary distribution of
π. Furthermore, we can define the concentrability coefficient Cµ,ρ as before.
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Least-Squares Policy Iteration (LSPI)

LSPI Error Bound

LSPI Error Bound

||V ∗−V πK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) +O

(√
d log(dK/δ)

n νρ

)]
+ γKRmax

}

Lower-Bounding Distribution
There exists a distribution ρ such that for any policy π ∈ G(F̃), we have
ρ ≤ Cρπ, where C <∞ is a constant and ρπ is the stationary distribution of
π. Furthermore, we can define the concentrability coefficient Cµ,ρ as before.

I νρ = the smallest eigenvalue of the Gram matrix (
∫
ϕi ϕj dρ)i,j
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Discussion

Other Finite-Sample Analysis Results in ADP

Approximate Value Iteration
I Fitted value iteration (Munos & Szepesvari 2008)

I L2-Regularized Fitted Q-Iteration (Farahmand et al. 2009)

I Transfer of samples in Fitted Q-Iteration (L, Restelli, 2010)

I Multi-task Sparse Fitted Q-Iteration (Calandriello, L, Restelli, 2014)
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Discussion

Other Finite-Sample Analysis Results in ADP
Approximate Policy Iteration

I LSTD and LSPI (L, Ghavamzadeh, Munos 2010, 2012)

I Bellman Residual Minimization (Maillard, Munos, L, Ghavamzadeh 2010)

I Modified Bellman Residual Minimization (Antos et al. 2008)

I Classification-based Policy Iteration (Fern et al. 2006; L, Ghavamzadeh,
Munos et al. 2010; Gabillon, L, Ghavamzadeh, Scherrer 2011)

I Conservative Policy Iteration (Kakade & Langford 2002; Kakade 2003)

I `1-regularize LSTD (Ghavamzadeh, L, Munos, 2011, Hoffman, L,
Ghavamzadeh, Munos, 2012, Geist, Scherrer, L, Ghavamzadeh, 2012)

I LSTD (LSPI) with Random Projections (Ghavamzadeh, L, Maillard,
Munos, 2010)
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Discussion

Comparison to Supervised Learning

Similarity: The convergence rate is the same (optimal) rate of statistical
learning theory.

Difference

I dependency on 1/(1− γ) (sequential nature of the problem)

I the approximation error is more complex (iterative nature of the
algorithms)

I the propagation of error (concentrability) (control problem)

I the sampling problem (how to choose ρ – exploration problem)
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Discussion

Practical Lessons

I Tuning the parameters (given a fixed accuracy ε)

I number of samples (inverting the bound) n ≥ Ω̃(dε )

I number of iterations (inverting the bound) K ≈ ε/(1− γ)

I choice of function F and/or policy space Π

I features {ϕi}di=1 to be linearly independent given the sampling
distribution ρ (on-policy – off-policy sampling)

I tradeoff between approximation and estimation errors
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Discussion

Open Problems

Control the propagation of error
I Improve the sampling distribution
I Refine the analysis of concentrability terms
I Off-policy learning
I No-regret algorithms
I Find “easier” MDPs

Control the approximation error
I Non-parametric approaches
I Smooth MDPs
I Automatic construction of basis functions
I Representation learning
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