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Problem description

Using model order reduction to compute...
What is model order reduction?

= mathematical technique to reduce the complexity of dynamical systems.

First used in control (controller's complexity same as that of the
system to be controlled). Problems:

I storage
I accuracy
I computational speed

Later used for speeding up simulations and decrease the
time-to-market of products when parallelization is not feasible

MOR o�ers a trade-o� between accuracy and complexity
I For non-minimal systems, the reduction to minimal system is error-free
I There are systems for which MOR is not suitable.
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Problem description

Using MOR to compute fast frequency sweeps...
Why frequency, why frequency sweeps and why fast sweeps?

Analyzing systems in the frequency domain allows one to infer properties
regarding resonances (e.g., vibro-acoustic systems), �ltering properties
(e.g., electrical systems), etc.

A frequency sweep amounts to solving a linear system A(f )x(f ) = b(f )
(e.g., A(f ) = j2πf I − A) at many frequencies.

A fast frequency sweep avoids solving the large linear system for each
frequency by using extrapolation.
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Problem description

Using... of vibro-acoustic systems...
What are vibro-acoustic systems?

Vibro-acoustics or structural acoustics is the study of the acoustic waves in
structures and how they interact with and radiate into adjacent media.

The steady-state acoustic pressure generated by harmonic excitations at
wavenumber k is described by the wave (Helmholtz) equation:

∇2p + k2p = 0 in the domain Ω, where

∇2p = ∂2p
∂x2

+ ∂2p
∂y2

+ ∂2p
∂z2

p denotes the complex amplitude of the pressure representing a time
harmonic variation given by p′ = Re(peiωt)

k = ω/c , with ω the angular frequency, c the speed of sound

domain Ω containing an inviscid compressible �uid.
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Problem description

Using ... by indirect boundary element models
What is IBEM?

Indirect formulation is employed for interior and exterior problems.

In IBEM, the unknowns are σ = ∂p+

∂n+−
∂p−

∂n− (single layer potential) and
µ = p+−p− (double layer potential). Acoustic pressure at �eld point X is

p(X ) =

∫
S

(
G (X ,Y )σ(Y )− ∂G (X ,Y )

∂n(Y )
µ(Y )

)
dS .

G (X ,Y ) = exp(−ikR)
4πR , R = |X − Y | is the 3D Green's function.
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Problem description

What is IBEM?

The surface S is discretized into boundary elements S ∼=
∑

e S
e . The

unknowns are expressed at the discretization points (nodes) as

µ(X ) = Nµ · µ, σ(X ) = Nσ · σ

with µ and σ, vectors of nodal double and single layer potentials, and Nµ

and Nσ, shape functions. This yields the system of equations of size NDOF:[
Aσσ Aσµ

A
H
σµ Aµµ

]
︸ ︷︷ ︸

A(f )

[
σ
µ

]
︸ ︷︷ ︸
x(f )

=

[
0

bµ

]
︸ ︷︷ ︸
b(f )

with the matrix A being complex and symmetric.
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Problem description

Challenges and goals

Challenges for IBEM:

system matrix A(f ) is dense

assembling and solving are equally expensive

complicated frequency dependency because of G (X ,Y ) = exp(−ikR)
4πR .

Goals for FFS:

avoid assembling the system matrices at each frequency: perform
polynomial interpolation on appropriate frequency scaled matrices

avoid solving a linear system at each frequency: employ Padé
approximations
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System assembly: an e�cient interpolation approach Frequency dependency of the system matrices

Frequency dependency of the system matrices

Motivation: understand this to be able to design well-suited strategies to
approximate A(f ) by interpolating appropriate frequency-scaled quantities.

Figure : Frequency behavior of various entries
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System assembly: an e�cient interpolation approach Frequency dependency of the system matrices

Scaling the system matrices

The scaled entries are Â[m,n] =

{
e ikR[m,n]A[m,n]

kA[m,n]
, m, n = 1, . . . ,NDOF .

Figure : The e�ect of applying the scaling factor on two matrix entries

Sanda Lefteriu FFS for IBEM November 28, 2014 12 / 39



Douai.jpg Douai.jpg

System assembly: an e�cient interpolation approach Frequency interpolation of the system matrices

Outline

1 Problem description

2 System assembly: an e�cient interpolation approach

Frequency dependency of the system matrices
Frequency interpolation of the system matrices
Determining the frequency windows

3 System solving: computing Padé approximants

4 Proposed algorithm

5 Numerical examples

Exterior application
Interior/exterior application

6 Conclusion

Sanda Lefteriu FFS for IBEM November 28, 2014 13 / 39



Douai.jpg Douai.jpg

System assembly: an e�cient interpolation approach Frequency interpolation of the system matrices

Frequency interpolation of the system matrices

The scaled matrices are interpolated by Lagrange polynomials:

Ǎ[m,n](k) =
N+1∑
j=1

Pj(k)Â[m,n](kj), Pj(k) =
N+1∏
i=1
i 6=j

k − ki

kj − ki

with Pj(k) = 1, for k = kj , and Pj(k) = 0, for k 6= kj .
We call the Lagrange nodes kj the master wavenumbers (frequencies).

The interpolation order N can be 1 (linear interpolation as in
[Benthien, 1989]), 2, or higher. This approach requires assembling and
storing N + 1 system matrices, so one needs to �nd a trade-o�.
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System assembly: an e�cient interpolation approach Frequency interpolation of the system matrices

Inverse scaling of the system matrices

The approximated system matrix entries are obtained by multiplying
Ǎ[m,n](k) with the inverse of the scaling factor:

Ã[m,n](k) =


e−ikR[m,n]Ǎ[m,n](k) =

N+1∑
j=1

Pj(k)e i(kj−k)R[m,n]A[m,n](kj)

1
k
Ǎ[m,n](k) =

N+1∑
j=1

Pj(k)
kj

k
A[m,n](kj).

RemarkThe approximated matrix is equal to the original at kj :Ã(kj)=A(kj).

Recap To avoid assembling the system matrix at each f [Benthien, 1989]:

assemble & store matrices @ master frequencies

perform the interpolation described above @ slave frequencies.
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System assembly: an e�cient interpolation approach Determining the frequency windows

Determining the frequency windows

Motivation: A large polynomial order N required when performing
interpolation over entire frequency band ⇒ smaller intervals.

A few representative matrix entries are carefully chosen and assembled at
all frequencies. These entries are interpolated simultaneously by an order N
polynomial with an a-priori or user-de�ned accuracy.

Windows determined as intervals which contain highest possible number of
frequencies in ascending order such that the �tting error for the
representative entries inside the interval is below the tolerance.
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System solving: computing Padé approximants

Taylor series

The Taylor series for x(f ) around f0, the expansion frequency:

x(f ) = x(f0) + x′(f0)(f − f0) + . . .+ x(q)(f0)
(f − f0)q

q!
+ . . . .
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System solving: computing Padé approximants

Taylor series for vector functions

Recall that we wish to solve A(f )x(f ) = b(f ) for many f .

Notation: wq+1 =
x(q)(f0)

q!
, Aq =

A
(q)(f0)

q!
, bq =

b
(q)(f0)

q!
.

x(f ) = A
−1
0 b0 = w1,

x′(f ) = A
−1
0 (b1 − A1w1) = w2,

...

x(q)(f0)

q!
= A

−1
0

(
bq −

q∑
i=1

Aiwq−i+1

)
= wq+1.

This moments-computation process is ill-conditioned.
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System solving: computing Padé approximants

Padé approximants

A Padé approximant of order [q1/q2] of a scalar g(f ) is a rational function

a0 + a1(f − f0) + . . .+ aq1(f − f0)q1

1 + b1(f − f0) + . . .+ bq2(f − f0)q2
,

whose Taylor expansion around f0 matches the �rst q = q1 + q2 + 1 terms
in the Taylor series of g(f ).

Asymptotic Waveform Evaluation(AWE)
Given derivatives of g(f ) up to order q, a linear system with a Hankel
matrix is solved for the coe�cients a0, . . . , aq1 and b1, . . . , bq2 .
For vector functions, such an approximant must be computed for each
component of the solution vector x(f ).

Very ill-conditioned and time consuming!
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Douai.jpg Douai.jpg

System solving: computing Padé approximants

Padé approximants

A Padé approximant of order [q1/q2] of a scalar g(f ) is a rational function

a0 + a1(f − f0) + . . .+ aq1(f − f0)q1

1 + b1(f − f0) + . . .+ bq2(f − f0)q2
,

whose Taylor expansion around f0 matches the �rst q = q1 + q2 + 1 terms
in the Taylor series of g(f ).

Asymptotic Waveform Evaluation(AWE)
Given derivatives of g(f ) up to order q, a linear system with a Hankel
matrix is solved for the coe�cients a0, . . . , aq1 and b1, . . . , bq2 .
For vector functions, such an approximant must be computed for each
component of the solution vector x(f ).

Very ill-conditioned and time consuming!

Sanda Lefteriu FFS for IBEM November 28, 2014 21 / 39



Douai.jpg Douai.jpg

System solving: computing Padé approximants

Galerkin Asymptotic Waveform Evaluation

Galerkin AWE amounts to forming the moment-matching subspace
W q = [w1w2 . . .wq] ∈ CNDOF×q and imposing that the residual is
perpendicular to W q, yielding the following solution vector

xq(f ) = W q

(
W

H
q A(f )W q

)−1 (
W

H
q b(f )

)
.

It can be proven that the approximated vector xq(f ) matches the solution,
as well as the value of q − 1 derivatives around f0.

Advantages of GAWE:

a much smaller linear system needs to be solved, namely(
W

H
q A(f )W q

)−1 (
W

H
q b(f )

)
where WH

q A(f )W q is of size q × q

yields the Padé approximant of the entire vector x(f ).
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System solving: computing Padé approximants

WCAWE [Slone et al., 2003]

Uses GAWE with the moments computed in a well conditioned manner.

Before: wq+1 = A
−1
0

(
bq −

∑q
i=1Aiwq−i+1

)
.

WCAWE: w̃q+1 =A
−1
0

(
q∑

i=1

bici−A1wq−
q∑

i=2

AjW q−i+1d i

)
,

where ci , d i are correction factors.

Moreover, they are orthonormalized via a modi�ed Gram-Schmidt process:

for i = 1, . . . , q − 1
U[i ,q] = wH

i ~wq

~wq = ~wq − U[i ,q]wj

U[q,q] = ‖~wq‖, wq = ~wqU
−1
[q,q].
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System solving: computing Padé approximants

Derivatives of the system matrix

The qth derivative at the expansion wave number k0:

∂qÃ[m,n](k)

∂kq

∣∣∣∣∣
k=k0

=
N+1∑
j=1

∂q

∂kq

(
Pj(k)

k

)∣∣∣∣
k=k0

kjA[m,n](kj),

for entries scaled by k , and

∂qÃ[m,n](k)

∂kq

∣∣∣∣∣
k=k0

=
N+1∑
j=1

∂q

∂kq

(
Pj(k)e−ikR[m,n]

)∣∣∣∣
k=k0

e ikjR[m,n]A[m,n](kj)

otherwise.
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Proposed algorithm

Proposed algorithm

1 Choose a few representative matrix entries, assemble at all frequencies

2 Apply polynomial interpolation of order N to scaled entries with
deviation dtol = 10−4 ⇒ frequency windows

3 Each frequency window contains N + 1 master frequencies ⇒ set the
middle one as the expansion frequency

4 Apply WCAWE inside each window by matching moments at the
expansion frequency

1 Start with a small moment subspace
2 Add new vectors to the moments subspace as long as residual

r(f ) =
‖Ã(f )xq(f )−b(f )‖

2

‖b(f )‖
2

is larger than εtol = 10−3
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Numerical examples Exterior application

Sphere with rigid cap

The pressure outside the sphere veri�es:

p(r , θ) =
−iρcv0(f )

2

∞∑
n=0

[
P̃n−1 (cosα)− P̃n+1 (cosα)

] hn(kr)

h
′
n(ka)

P̃n(cos θ),

r , distance to evaluation point, hn, spherical Hankel functions of �rst kind,
P̃n, Legendre polynomials, v0(f ), uniform normal velocity of spherical cap,
and a, radius of sphere. The in�nite summation truncated at 2k .
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Numerical examples Exterior application

Parameters for the problem

sphere radius a = 0.6 m, angle de�ning the vibrating cap α = π/3 rad

sound speed is c = 340 m/s, �uid density is ρ = 1.225 kg/m3

cap normal velocity v0(f ) is taken as the response of a classical 3 DOF
mass-spring-damper: M1 = 60, M2 = 40, M3 = 20 (kg);
K1,2,3 = 2.7× 105 (N/m); C1,2,3 = 20 (Ns/m) ⇒ 3 resonances

mesh with 8 653 nodes, 17 302 triangular elements ⇒ NDOF = 15 136

F = [200, 1000] Hz with 1 Hz increment (1101 individual frequencies)

N = 2 interpolation for 8 representative matrix entries ⇒ 10 frequency
windows (4 min, 95% on assembly)
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Numerical examples Exterior application

Results

2 h 07 min vs 58 h ⇒ speed up factor of 27.4
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Numerical examples Interior/exterior application

Car engine compartment

Motivation:

Vehicles should comply with noise emission regulations

Engine is a major contributor to vehicle pass by noise

Acoustic treatments in various locations of engine compartment (e.g.,
under-bonnet, dash, �rewall, �oor, etc) are employed

Interior/exterior acoustics problem: cavity with interior resonances and
acoustic radiation in free �eld.
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Numerical examples Interior/exterior application

Parameters for the problem

Mesh with 9 326 nodes, 18 408 elements ⇒ NDOF = 10 151
Discontinuous impedance is applied on the internal sides of the bonnet
(light grey elements) and the �rewall (dark grey elements)
Remaining elements in white are considered acoustically rigid
6 �eld points measured by microphones
A spherical point source is located at (x = 3 m, y = 7 m, z = 0 m)
F = [100, 1000] Hz with 1 Hz frequency increment (901 frequencies)
29 frequency windows
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Numerical examples Interior/exterior application

Results

5 h 07 min vs 55 h ⇒ speed up factor of 10
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Conclusion

MOR for computing FFS for IBEM:

avoids assembling and storing the system matrix at each frequency

avoids solving the linear system at each frequency

Current work: compute moments at several expansion frequencies per
window and combine these subspaces (multi-point or rational approach).
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Thank you for your attention!
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