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Control of complex systems – Context

Some issues. . .

more and more complex systems. Example of
fluid flows: > 107 spatial DOFs, > 105

temporal DOFs
3-D unsteady and turbulent,
high Reynolds number flows,
coupled physics (e.g., fluid / structure /
thermal).

strict specifications→ calls for efficient
control algorithms and not just crude ones,

real-time control. . .

Several non-cooperative players:

Efficiency→ should rely on some optimality principles (costly !),

Real-time→ should rely on a very simple model (high Reynolds number flows
require high actuation frequency, > kHz).
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Control of fluid flows (cont’d)

−→ closed-loop control

One hence needs

estimate the state of the system (filter),

a low complexity, yet accurate, framework for (nonlinear) control.
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Context

Context

High-dimensional spatial field.
Limited number of sensors located at
the surface of a bluff body.
Real-time (closed-loop) control.

Parameters

Number of Sensors
Sensor locations
Reconstruction method
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Formulation

Goal
Control a functional of the state of the system from a few wall-mounted sensors.

−→ Severely ill-posed problem
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Standard approach — POD-based state estimation
Derived a reduced-order model: y ≈ ŷ = DPOD x .{

D(i)
POD

}nD

i=1
typically are POD modes (topos). x is the associated coefficients vector.

From a “learning” (unsorted) sequence Y =
(

y (1) . . . y (nsnap)
)
∈ Rn×nsnap :

DPOD Σ V∗
thin SVD
≈ Y .

For a given number nD of retained modes, leads to the best approximation in the
following sense:

Ŷ = DPOD Xest = arg min
Ỹ∈Rn×nsnap

rank
[
Ỹ
]
≤nD

∥∥∥Y − Ỹ
∥∥∥

F
with Xest = Σ V∗.

D ∈ Rn×nD the approximation basis [Dictionary],
Xest ∈ RnD×nsnap the basis coefficients as estimated from the ns sensors,
s ∈ Rns , sensor information,
C ∈ Rns×n, restriction matrix such that s = C y .
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Standard approach — POD-based state estimation
When online, what is measured is s = C y ∈ Rns only.

Observer such that
x̂ ∈ arg min

x̃∈RnD

∥∥s − C DPOD x̃
∥∥

F ,

or simply x̂ = (C DPOD)+ s.

←− requires ns ≥ nD!

The reconstructed field is finally:

ŷ = DPOD x̂ = DPOD (C DPOD)+ s.

LPOD := DPOD (C DPOD)+ is the POD-based lift-up operator.

D ∈ Rn×nD the approximation basis [Dictionary],
Xest ∈ RnD×nsnap the basis coefficients as estimated from the ns sensors,
s ∈ Rns , sensor information,
C ∈ Rns×n, restriction matrix such that s = C y .
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Formulation

−→ reformulate in a framework amenable to estimation from a few sensors,
−→ basis learning approach.

Formulation

Find {D,Xest ,C} ∈ arg min
D̃,C̃,X̃est

∥∥∥Y − Ŷ
(

D̃, C̃, X̃est

)∥∥∥
F
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A dictionary learning algorithm

−→ derive an over-complete dictionary for sparse representation:

Find {D,X} ∈ arg min
D̃,X̃

∥∥∥Y − D̃ X̃
∥∥∥

F
s.t.

∥∥∥x̃(i)
∥∥∥

0
≤ nS , ∀i ,

X =
(

x(1) . . . x(nsnap)
)

.

Use the K-SVD algorithm
D, nS , nD (number of K-SVD modes)

Repeat

Sparse Coding : X = arg min
X̃

∥∥∥Y − D X̃
∥∥∥

F
s.t.

∥∥∥x(i)
∥∥∥

0
≤ nS , ∀i .

CodeBook Update : Update D and X in order to lower ‖Y − D X‖F while
maintaining the support of

{
x(i)}

i .

But typically x(i) ∈ RnD cannot be estimated from measurements.
−→ determine D given a set of sensors for estimating x(i) from s(i) instead of y (i) .
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−→ Observability-oriented K-SVD: K-SVDC

Iteratively solve for

Sparse coding

Xest = arg min
X̃

∥∥∥s − C D X̃
∥∥∥

F
s.t.

∥∥∥x̃(i)
∥∥∥

0
≤ nS , ∀i.

CodeBook Update
Determine D and X in order to lower the learning error while maintaining the
support of

{
x(i)}

i :

{D,X} = arg min
D̃,X̃

∥∥∥Y − D̃ X̃
∥∥∥

F
s.t. suppε

(
X̃
)

= suppε (Xest ) .

−→ consistent and as realistic as possible
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Test System : Flow around a circular cylinder
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Command - Learning Sequence

Drag - Learning Sequence

The learning snapshots sequence must contain information on the dynamics that we
want to reconstruct (some a priori knowledge is required).
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Algorithm

1 Basis learning (K-SVDC) [offline]
Form a snapshot matrix Y of the QoI.
Use K-SVDC to obtain the dictionary D with the sensor matrix C.

2 Field reconstruction [online]
Use sparse recovery with the measure s to obtain x̂ .
Reconstruct the total field from ŷ = D x̂ .

Online (real time) field estimation [filtering] is possible since sparse recovery algorithms

are fast (recursive compressed sensing).
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K-SVDC performance – Full information: C ≡ In

−→ The K-SVD algorithm provides significantly better L2-reconstruction performance
than POD despite the Eckart-Young theorem.



Motivation Observability-oriented Dictionary Learning Sensor placement

K-SVDC performance – Sensor information only

−→ The K-SVDC algorithm provides significantly better L2-reconstruction performance
than POD.

−→ POD coefficients are not accurately estimated from the sensors.
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Reconstruction

Relative pressure field. Exact (left), estimated from POD (middle), estimated from
K-SVDC (right).

nS = 5 −→ n = 3, 000+

−→ Much better reconstruction performance with K-SVDC.
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Choosing the sensors location

The sensor location is of pivotal importance for estimation performance.

The best sensor location is the solution of a combinatorial (NP-hard) problem.

−→ Heuristics and greedy algorithms
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Choosing the sensors location
The sensor placement problem is formalized as

Find D,C ∈ arg min
D̃,C̃∈MC

∥∥∥Y − D X̂SR

(
C̃,Y

)∥∥∥
F

with X̂SR ← Sparse Recovery
(

C̃,Y
)

For a given D and, say, OMP for the sparse recovery, no closed form solution for C.

−→ Relax the recovery class −→ sensor space.

Find {C, L} = arg min
C̃,L̃

∥∥∥Y − L̃ C̃ Y
∥∥∥

F
.

L : RnS → Rny is the linear lift-up operator from the measurements to the field
estimation. For a given C, it yields L = Y (C Y )+ and C now solves:

C ∈ arg min
C̃∈MC

∥∥∥∥Y − Y
(

C̃ Y
)+

C̃ Y
∥∥∥∥

F
,

or, equivalently ∈ arg min
C̃∈MC

∥∥∥∥R − R
(

C̃ Y
)+

C̃ Y
∥∥∥∥

F
, with Q R

thin QR
≈ Y [faster]

−→ Constrained optimization problem solved with a greedy technique.
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Finally: sensor-based estimation [offline step]
Iteratively solve for

Sensor-based Sparse Coding

Xest = arg min
X̃

∥∥∥C Y − D X̃
∥∥∥

F
s.t.

∥∥∥x̃(i)
∥∥∥

0
≤ nS , ∀i.

CodeBook Update
Determine D in order to lower the learning error in C Y :

D = arg min
D̃

∥∥∥C Y − D̃ Xest

∥∥∥
F
.

Goal-oriented CodeBook Update

{DQoI ,XQoI} = arg min
D̃QoI ,X̃QoI

∥∥∥QoI (Y )− D̃QoI X̃QoI

∥∥∥
F

s.t. suppε

(
X̃QoI

)
= suppε (Xest ) .

Sensor learning
Update sensors position:

C = arg min
C̃∈MC

∥∥∥∥R − R
(

C̃ Y
)+

C̃ Y
∥∥∥∥

F
s.t.

∥∥c̃i
∥∥

0 = 1, 1 ≤ i ≤ ns, Q R
thin QR
≈ Y .
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Effective Independence vs Sensor Space

Effective Independence (top row) vs Sensor Space (bottom
row).
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Sensor Space – Noiseless environment

−→ Significantly better performance than Effective Independence (EI, based on Fisher
Information Matrix).
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Sensor Space – Noisy environment – nS = 4

−→With a suitably chosen robustness target σn, the present SS method allows better
performance than EI in both noiseless and noisy environments.
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Closing remarks

Estimation/observation is a critical ingredient for the control of complex systems,

Offline/Online strategy for deriving an observer. First learn about the system at
hand, then exploit,

Sparsity-exploitation / dictionary learning technique is one of the pivotal tools for
a realistic and successful approach.
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Wrapping-up

Sparsity must be exploited whenever possible!

Many (Most?) physics-related signals are compressible in standard functional
bases,

The interaction with the signal at hand is often very limited −→ strong
restrictions on the sensing operator!

Basis learning philosophy is the key to achieve realistic and efficient applications.
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