Introduction 0000000 Optimal ModRed

Projection framework

Interpolation framework

Stability estimation

Conclusions

Model reduction of infinite dimensional systems: An application to TDS and linear PDE cases

I. Pontes Duff, P. Vuillemin, C. Poussot-Vassal, C. Seren & C. Briat

Séminaire MOSAR Novembre 2014

I. Pontes Duff et al. [Onera]

Model reduction of infinite dimensional systems: , An application to TDS and linear PDE cases

Introd	luction	
000	0000	

ONERA

Optimal ModRee

Projection framework

Interpolation framework

tability estimation

Conclusions

TABLE OF CONTENTS

Introduction

- Optimal model approximation
- Projection-based approximation framework
- Rational interpolation Loewner framework
- Stability regions estimation
- Conclusions

roduction	Optimal ModRed	
00000	000000	
ONERA		

Int

Projection framework

Interpolation framewor

Stability estimation

Conclusions

TABLE OF CONTENTS

Introduction Context Considered benchmarks

Optimal model approximation

Projection-based approximation framework

Rational interpolation Loewner framework

Stability regions estimation

Conclusions

I. Pontes Duff et al. [Onera]

ONERA			LARGE-SCALE D	YNAMICAL N	10
Introduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	

... some motivating examples in the simulation & control domains

DELS

Large-scale systems are present in many engineering fields: aerospace, computational biology, building structure, VLI circuits, automotive, weather forecasting, fluid flow...

- difficulties with simulation & memory management (e.g. ODE solvers)
- difficulties with analysis (e.g. frequency response, μ_{ssv} and \mathcal{H}_{∞} computation ...)
- difficulties with controller design (e.g. robust, optimal, predictive, ...)

Context

Topics addressed in this presentation about model approximation:

- Some projection based methods in the finite dimensional case where a realization is available : IRKA/ITIA¹, IETIA²...
- Interpolation method using Loewner framework ^{3 4}
- Approximation of stability regions for large-scale time-delay systems ^{5 6}

¹ S. Gugercin and A C. Antoulas and C. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), 2008, pp. 609-638.

² C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.

³ A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", Linear Algebra and its Applications 425(2-3), 2007, pp. 634-662.

⁴ [€] C. Beattie and S. Gugercin, "*Realization-independent* H₂-approximation", IEEE Conference on Decision and Control, 2012, pp. 4953-4958.

⁵ V. I. Pontes Duff, P. Vuillemin, C. Poussot-Vassal, C. Seren and C. Briat, "Approximation of stability regions for large-scale time-delay systems using model reduction techniques", submitted to ECC 2015.

⁶ V. I. Pontes Duff, P. Vuillemin, C. Poussot-Vassal, C. Seren and C. Briat, "Stability and Performance Analysis of a Large-Scale Aircraft Anti-Vibration Control Subject to Delays Using Model Reduction Techniques", submitted to EuroGNC 2015.

Benchmark NSS : Navier-Stokes equation in a open cavity flow : discretization and linearisation for different Reynolds Numbers⁷

$$\begin{aligned} E\dot{x}(t) &= A(Re)x(t) + Bu(t) \\ y(t) &= Cx(t) \end{aligned}$$
 (1)

- Two Reynolds cases (Re = 7000 and Re = 7500)
- ▶ SISO DAE, 8 unstable modes, order \approx 700,000 states

⁷ A. Barbagallo, D. Sipp and P. Schmid, "Closed-loop control of an open cavity flow using reduced order models", Journal of Fluid Mechanics, 641, 2009, pp. 1-50.

Benchmark TDS-#1: Feedback delay and controller gain⁸ Let us consider

$$\dot{x}(t) = Ax(t) + Bu(t); \ y(t) = Cx(t),$$
(2)

where

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -10 & 10 & 0 & 0 \\ 5 & -15 & 0 & -0.25 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, C = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}^{T}.$$
 (3)

We add to this model the delayed static output feedback $u(t)=-ky(t)+ky(t-\tau)$ The resulted model ${\bf H_{TDS1}}$ is governed by

$$\dot{x}(t) = A_0 x(t) + A_1 x(t - \tau)$$
(4)

where A - BCk and $A_1 = BCk$.

Question: Given (k, τ) , what is the stability of (4)?

⁸ A. Seuret and F. Gouaisbaut, "Hierarchy of LMI conditions for the stability analysis of time delay systems", Repport LAAS 14429.

Benchmark TDS-#2: Multiple delays (in feedback) large-scale system 9

Question: Stability function of $\{\tau_1, \tau_2, \tau_3\}$? How to measure loss of performance ?

- Vibration control of aircraft model.
- order(\mathbf{H}) ≈ 600 states.
- Controller H designed without taking into account time-delays.
- Three output delays $\{\tau_1, \tau_2, \tau_3\}$.

⁹ C. Poussot-Vassal and T. Loquen and P. Vuillemin and O. Cantinaud and J-P. Lacoste, "Business Jet Large-Scale Model Approximation and Vibration Control", IFAC ALCOSP, 2013, pp. 199-204.

Benchmark PDE: Example string vibration with dissipation¹⁰

Vibrating string of length L = 1 whose ends are fixed with control and observation are both distributed along the string.

$$\begin{split} \frac{\partial^2 z(x,t)}{\partial t^2} + \varepsilon \langle \frac{\partial z(x,t)}{\partial t}, \mathbf{1}_{[0,\frac{1}{2}]} \rangle \mathbf{1}_{[0,\frac{1}{2}]}(x) &= \frac{\partial^2 z(x,t)}{\partial x^2} + \mathbf{1}_{[0,\frac{1}{2}]}(x)u(t), \quad 0 < x < 1, \ t \ge 0 \end{split} \tag{5}$$
where, $\mathbf{1}_{[0,\frac{1}{2}]}(x) = \begin{cases} 1 = & 0 \le x \le 1/2 \\ 0 = & 1/2 < x \le 1 \end{cases}$, with $z(0,t) = 0, z(1,t) = 0$

, and

$$y(t) = \int_0^1 \frac{\partial z(x,t)}{\partial t} \mathbf{1}_{[0,\frac{1}{2}]}(x) dx.$$

¹⁰ R. Curtain and K. Morris, "Transfer functions of distributed parameter systems: A tutorial", Automatica, 45(5), 2009, pp. 1101-1116.

I. Pontes Duff et al. [Onera]

Model reduction of infinite dimensional systems: , An application to TDS and linear PDE cases

Benchmark PDE: Example string vibration with dissipation

The transfer function of this model is given by

$$H(s) = \frac{\frac{s}{2}\sinh(s) + 2\cosh(\frac{s}{2}) - 3\cosh^2(\frac{s}{2}) + 1}{s(s + \frac{1}{2})\sinh(s) + 2\cosh(\frac{s}{2}) - 3\cosh^2(\frac{s}{2}) + 1}$$
(6)

Introduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	Cor
	_		Та	BLE OF CONTI	ENTS

Introduction

Optimal model approximation

Approximation in the \mathcal{H}_2 , $\mathcal{H}_{2,\Omega}$ and \mathcal{L}_2 -norm \mathcal{H}_2 and \mathcal{L}_2 optimality conditions

Projection-based approximation framework

Rational interpolation Loewner framework

Stability regions estimation

Conclusions

Optimal ModRed 00000 ONERA

OPTIMAL MODEL APPROXIMATION

Approximation in the $\mathcal{H}_2, \mathcal{H}_{2,\Omega}$ and \mathcal{L}_2 -norm¹¹

\mathcal{L}_2 model approximation

$$\hat{H} := \arg \min_{\substack{G \in \mathcal{L}_2^{n_y \times n_u} \\ \dim(G) = r}} ||H - G||_{\mathcal{L}_2}$$
(7)

$$||H||_{\mathcal{L}_{2}}^{2} := \operatorname{trace}\left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\overline{H(i\nu)}H(i\nu)\right)d\nu\right)$$
(8)

▶ $\mathcal{L}_2(i\mathbb{R})$ the Hilbert space of matrix-valued functions $\mathbb{C} \to \mathbb{C}^{n_y \times n_u}$ satisfying $\int_{\mathbb{T}} \operatorname{trace}[\overline{F(i\omega)}F(i\omega)^T] d\omega < \infty.$

•
$$\mathcal{L}_2(i\mathbb{R}) = \mathcal{H}_2(\mathbb{C}^-) \bigoplus \mathcal{H}_2(\mathbb{C}^+)$$

^{11 🎥} C. Magruder and C A. Beattie and S. Gugercin, "Rational Krylov methods for optimal \mathcal{L}_2 model reduction", IEEE Conference on Decision and Control, 2010.

 Optimal ModRed
 Projection

 000000
 00000
 0000

 0NERA
 00000
 00000

Interpolation framewo

Stability estimation

Conclusions

OPTIMAL MODEL APPROXIMATION

Approximation in the $\mathcal{H}_2, \mathcal{H}_{2,\Omega}$ and \mathcal{L}_2 -norm¹² ¹³

\mathcal{H}_2 model approximation

$$\hat{H} := \arg \min_{\substack{G \in \mathcal{H}_2^{n_y \times n_u} \\ \dim(G) = r}} ||H - G||_{\mathcal{H}_2}$$
(9)

$$||H||_{\mathcal{H}_{2}}^{2} := \operatorname{trace}\left(\frac{1}{2\pi} \int_{-\infty}^{\infty} (\overline{H(i\nu)}H(i\nu))d\nu\right)$$

$$:= \operatorname{trace}\left(C\mathcal{P}C^{T}\right) = \operatorname{trace}\left(B^{T}\mathcal{Q}B\right)$$

$$:= \sum_{i=1}^{n}\operatorname{trace}\left(\phi_{i}H(-\lambda_{i})^{T}\right)$$
(10)

¹² S. Gugercin and A C. Antoulas and C A. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

¹³ K. A. Gallivan, A. Vanderope, and P. Van-Dooren, "Model reduction of MIMO systems via tangential interpolation", SIAM Journal of Matrix Analysis and Application, vol. 26(2), February 2004, pp. 328-349.

I. Pontes Duff et al. [Onera]

Assume that H and \hat{H} have semi-simple poles and suppose that \hat{H} is a r^{th} -order finite-dimensional model with transfer function

$$\hat{H}(s) = \sum_{k=1}^{r} \frac{\hat{c}_k \hat{b}_k^T}{s - \hat{\lambda}_k}.$$
(11)

\mathcal{H}_2 -optimality conditions

If $H, \hat{H} \in \mathcal{H}_2$ and \hat{H} is a local minimum of the \mathcal{H}_2 approximation problem, then the following interpolations equations hold

$$H(-\hat{\lambda}_{k})\hat{b}_{k} = \hat{H}(-\hat{\lambda}_{k})\hat{b}_{k}, \ \hat{c}_{k}^{T}H(-\hat{\lambda}_{k}) = \hat{c}_{k}^{T}\hat{H}(-\hat{\lambda}_{k})$$
(12)

$$\hat{c}_{k}^{T} \left. \frac{dH}{ds} \right|_{s=-\hat{\lambda}_{k}} \hat{b}_{k} = \hat{c}_{k}^{T} \left. \frac{d\hat{H}}{ds} \right|_{s=-\hat{\lambda}_{k}} \hat{b}_{k}, \tag{13}$$

for all $k = 1, \ldots, r$ where $\hat{\lambda}_k$ are the poles of $\hat{\mathbf{H}}$ and \hat{b}_k and \hat{c}_k are its tangential directions, respectively.

¹⁴ S. Gugercin and A C. Antoulas and C. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), 2008, pp. 609-638.

Introduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	Conclusions
0000000	000000	000000	00000	0000000	
	_		\mathcal{L}_2 OPTIMAL		<mark>IS</mark> ¹⁵

In the case where $\mathbf{H} \in \mathcal{L}_2(i\mathbb{R})$ is a SISO LTI system and $\mathbf{H} = \mathbf{H}^+ + \mathbf{H}^-$ where $\mathbf{H}^+ \in \mathcal{H}(\mathbb{C}^+)$ and $\mathbf{H}^- \in \mathcal{H}(\mathbb{C}^-)$, it is possible to state the following result:

\mathcal{L}_2 optimality conditions

Given $\mathbf{H} \in \mathcal{L}_2(i\mathbb{R})$ and its decomposition $\mathbf{H} = \mathbf{H}^+ + \mathbf{H}^-$ where $\mathbf{H}^+ \in \mathcal{H}(\mathbb{C}^+)$ and $\mathbf{H}^- \in \mathcal{H}(\mathbb{C}^-)$. Let $\hat{\mathbf{H}}$ be the local minimizer of order r whose poles are all simple $\{\hat{\lambda}_1, \dots, \hat{\lambda}_k\} \in \mathbb{C}^-$ and $\{\hat{\lambda}_{k+1}, \dots, \hat{\lambda}_r\} \in \mathbb{C}^+$. If $\hat{H}(s)$ is given as (11) and if it is a local minimal of the \mathcal{L}_2 approximation problem, then following hold for $i = 1, \dots, k$

$$H^{+}(-\hat{\lambda}_{i}) = \hat{H}^{+}(-\hat{\lambda}_{i}), \left. \frac{dH^{+}}{ds} \right|_{s=-\hat{\lambda}_{i}} = \left. \frac{d\hat{H}^{+}}{ds} \right|_{s=-\hat{\lambda}_{i}}$$
(14)

and for i = k + 1, ..., r,

$$H^{-}(-\hat{\lambda}_{i}) = \hat{H}^{-}(\hat{\lambda}_{i}), \left. \frac{dH^{-}}{ds} \right|_{s=-\hat{\lambda}_{i}} = \left. \frac{d\hat{H}^{-}}{ds} \right|_{s=-\hat{\lambda}_{i}}.$$
(15)

¹⁵ C. Magruder and C A. Beattie and S. Gugercin, "Rational Krylov methods for optimal L₂ model reduction", IEEE Conference on Decision and Control, 2010.

Introduction	Optimal ModRed	Projection framework	Interpolat
ONERA		000000	Орті

Interpolation framework

Stability estimation

Conclusions

OPTIMAL MODEL APPROXIMATION

Approximation in the $\mathcal{H}_{2,\Omega}$ -norm ¹⁶ ¹⁷

$\mathcal{H}_{2,\Omega}$ model approximation

$$\hat{H} := \arg \min_{\substack{G \in \mathcal{H}_{\infty}^{n_{\mathcal{Y}} \times n_u} \\ \dim(G) = r}} ||H - G||_{\mathcal{H}_{2,\Omega}}$$
(16)

$$\begin{aligned} ||H||^{2}_{\mathcal{H}_{2,\Omega}} &:= \operatorname{trace}\left(\frac{1}{\pi} \int_{\Omega} (\overline{H(i\nu)}H(i\nu))d\nu\right) \\ &:= \operatorname{trace}\left(C\mathcal{P}_{\Omega}C^{T}\right) = \operatorname{trace}\left(B^{T}\mathcal{Q}_{\Omega}B\right) \\ &:= \sum_{i=1}^{n} \operatorname{trace}\left(\phi_{i}H(-\lambda_{i})^{T}\right) \left[-\frac{2}{\pi}\operatorname{atan}\left(\frac{\omega}{\lambda_{i}}\right)\right] \end{aligned}$$
(17)

¹⁶ P. Vuillemin, C. Poussot-Vassal and D. Alazard, "A Spectral Expression for the Frequency-Limited H₂-norm", Available as http://arxiv.org/abs/1211.1858, 2012.

¹⁷ P. Vuillemin, C. Poussot-Vassal and D. Alazard, "Spectral expression for the Frequency-Limited H₂-norm of LTI Dynamical Systems with High Order Poles", European Control Conference, 2014, pp. 55-60.

 Optimal ModRed
 Projection

 ○○○○○○○
 ○○○○○○
 ○○○○○○

 ○○○○○○○○○
 ○○○○○○○
 ○○○○○○

Interpolation framework

tability estimation

Conclusions

OPTIMAL MODEL APPROXIMATION

Approximation in the $\mathcal{H}_{2,\Omega}$ -norm ¹⁶ ¹⁷

$\mathcal{H}_{2,\Omega}$ model approximation

$$\hat{H} := \arg \min_{\substack{G \in \mathcal{H}_{\infty}^{n_{\mathcal{Y}} \times n_u} \\ \dim(G) = r}} ||H - G||_{\mathcal{H}_{2,\Omega}}$$
(16)

$$|H||_{\mathcal{H}_{2,\Omega}}^{2} := \operatorname{trace}\left(\frac{1}{\pi} \int_{\Omega} (\overline{H(i\nu)}H(i\nu))d\nu\right)$$

$$:= \operatorname{trace}\left(C\mathcal{P}_{\Omega}C^{T}\right) = \operatorname{trace}\left(B^{T}\mathcal{Q}_{\Omega}B\right)$$

$$:= \sum_{i=1}^{n}\operatorname{trace}\left(\phi_{i}H(-\lambda_{i})^{T}\right)\left[-\frac{2}{\pi}\operatorname{atan}\left(\frac{\omega}{\lambda_{i}}\right)\right]$$
(17)

¹⁶ P. Vuillemin, C. Poussot-Vassal and D. Alazard, "A Spectral Expression for the Frequency-Limited H₂-norm", Available as http://arxiv.org/abs/1211.1858, 2012.

¹⁷ ♥ P. Vuillemin, C. Poussot-Vassal and D. Alazard, "Spectral expression for the Frequency-Limited H₂-norm of LTI Dynamical Systems with High Order Poles", European Control Conference, 2014, pp. 55-60.

I. Pontes Duff et al. [Onera]

Introduction	Optimal ModRed ○○○○○●	Projection framework	Interpolation framework	Stability estimation	Conclusions
	_		OPTIMAL MODE	L APPROXIMA	TION

 \mathcal{H}_2 and \mathcal{L}_2 optimality conditions 18

Mismatch objective and eigenvector preservation

 $\hat{H} := \arg \min_{\substack{G \in \mathcal{L}_{2}^{n_{y} \times n_{u}} \\ \dim(G) = r \ll n \\ \lambda_{k}(G) \subseteq \lambda(H) \ k = 1, \dots, q_{1} < r}} ||H - G||_{\mathcal{H}_{2}}$ (18)

• More than a \mathcal{H}_2 (sub-optimal) criteria

► Keep some user defined eigenvalues... e.g. the unstable ones

¹⁸ C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.

Introduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	Concl
	_		Та	BLE OF CONTE	NTS

Optimal model approximation

Projection-based approximation framework Projectors MIMO IRKA (or ITIA) IETIA Fluid flow dynamical model approximation

Rational interpolation Loewner framework

Stability regions estimation

Conclusions

Projectors

Let $H : \mathbb{C} \to \mathbb{C}^{n_y \times n_u}$ be a n_u inputs n_y outputs, full order $\mathcal{H}_2^{n_y \times n_u}$ (or $\mathcal{L}_2^{n_y \times n_u}$) complex-valued function describing a LTI dynamical system as a DAE of order n, with realization H:

$$\mathbf{H}: \begin{cases} E\dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{cases}$$
(19)

Projectors

Let $H : \mathbb{C} \to \mathbb{C}^{n_y \times n_u}$ be a n_u inputs n_y outputs, full order $\mathcal{H}_2^{n_y \times n_u}$ (or $\mathcal{L}_2^{n_y \times n_u}$) complex-valued function describing a LTI dynamical system as a DAE of order n, with realization H:

$$\mathbf{H}: \begin{cases} E\dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{cases}$$
(19)

the approximation problem consists in finding $V, W \in \mathbb{R}^{n \times r}$ (with $r \ll n$) spanning \mathcal{V} and \mathcal{W} subspaces and forming a projector $\Pi_{V,W} = VW^T$, such that

$$\hat{\mathbf{H}}: \begin{cases} W^T E V \dot{\hat{x}}(t) &= W^T A V \hat{x}(t) + W^T B u(t) \\ \hat{y}(t) &= C V \hat{x}(t) \end{cases}$$
(20)

well approximates H.

Projectors

Let $H : \mathbb{C} \to \mathbb{C}^{n_y \times n_u}$ be a n_u inputs n_y outputs, full order $\mathcal{H}_2^{n_y \times n_u}$ (or $\mathcal{L}_2^{n_y \times n_u}$) complex-valued function describing a LTI dynamical system as a DAE of order n, with realization H:

$$\mathbf{H}: \begin{cases} E\dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{cases}$$
(19)

the approximation problem consists in finding $V, W \in \mathbb{R}^{n \times r}$ (with $r \ll n$) spanning \mathcal{V} and \mathcal{W} subspaces and forming a projector $\Pi_{V,W} = VW^T$, such that

$$\hat{\mathbf{H}}: \begin{cases} W^T E V \hat{x}(t) = W^T A V \hat{x}(t) + W^T B u(t) \\ \hat{y}(t) = C V \hat{x}(t) \end{cases}$$
(20)

well approximates H.

- Small approximation error and/or global error bound
- Stability / passivity preservation
- Numerically stable & efficient procedure

ONERA		PROJECTION-I	BASED APPROXIM	ATION FRAMEW	ORK
0000000	000000	00000	00000	00000000	
Introduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	Conclusi

MIMO IRKA (or ITIA) - \mathcal{H}_2 optimality conditions (Tangential subspace approach) ^{19 20}

Given H(s), let $V \in \mathbb{C}^{n \times r}$ and $W \in \mathbb{C}^{n \times r}$ be matrices of full column rank $r = q_2$ such that $W^*V = I_r$. If, for $j = 1, \ldots, q_2$,

$$\left[(\sigma_j E - A)^{-1} B \hat{b}_j \right] \in \operatorname{span}(V) \text{ and } \left[(\sigma_j E - A^T)^{-1} C^T \hat{c}_j^* \right] \in \operatorname{span}(W)$$
(21)

where $\sigma_j \in \mathbb{C}$, $\hat{b}_j \in \mathbb{C}^{n_u}$ and $\hat{c}_j \in \mathbb{C}^{n_y}$, be given sets of interpolation points and left and right tangential directions, respectively.

¹⁹ P. Van-Dooren, K. A. Gallivan, and P. A. Absil, "*H*₂-optimal model reduction of MIMO systems", Applied Mathematics Letters, vol. 21(12), December 2008, pp. 53-62.

²⁰ S. Gugercin and A C. Antoulas and C A. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

ONERA		PROJECTION-	BASED APPROXIM	ATION FRAMEW	ORK
0000000	000000	00000	00000	00000000	
Introduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	Conclusi

MIMO IRKA (or ITIA) - \mathcal{H}_2 optimality conditions (Tangential subspace approach) ^{19 20}

Given H(s), let $V \in \mathbb{C}^{n \times r}$ and $W \in \mathbb{C}^{n \times r}$ be matrices of full column rank $r = q_2$ such that $W^*V = I_r$. If, for $j = 1, \ldots, q_2$,

$$\left[(\sigma_j E - A)^{-1} B \hat{b}_j \right] \in \operatorname{span}(V) \text{ and } \left[(\sigma_j E - A^T)^{-1} C^T \hat{c}_j^* \right] \in \operatorname{span}(W)$$
(21)

where $\sigma_j \in \mathbb{C}$, $\hat{b}_j \in \mathbb{C}^{n_u}$ and $\hat{c}_j \in \mathbb{C}^{n_y}$, be given sets of interpolation points and left and right tangential directions, respectively. Then, the reduced order system $\hat{H}(s)$ satisfies the tangential interpolation conditions

$$H(-\hat{\sigma}_{j})\hat{b}_{j} = \hat{H}(-\hat{\sigma}_{j})\hat{b}_{j}$$

$$\hat{c}_{j}^{*}H(-\hat{\sigma}_{j}) = \hat{c}_{j}^{*}\hat{H}(-\hat{\sigma}_{j})$$

$$\hat{c}_{j}^{*}\frac{d}{ds}H(s)\bigg|_{s=-\hat{\sigma}_{j}}\hat{b}_{j} = \hat{c}_{j}^{*}\frac{d}{ds}\hat{H}(s)\bigg|_{s=-\hat{\sigma}_{j}}\hat{b}_{j}$$
(22)

¹⁹ P. Van-Dooren, K. A. Gallivan, and P. A. Absil, "*H*₂-optimal model reduction of MIMO systems", Applied Mathematics Letters, vol. 21(12), December 2008, pp. 53-62.

²⁰ S. Gugercin and A C. Antoulas and C A. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

I. Pontes Duff et al. [Onera]

ONERA	000000	PRO JECTION-P			OBK
ntroduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	Conclusio

Require:
$$\mathbf{H} = (E, A, B, C), \{\sigma_1^{(0)}, \dots, \sigma_{q_2}^{(0)}\} \in \mathbb{C}^{q_2}, \{\hat{b}_1, \dots, \hat{b}_{q_2}\} \in \mathbb{C}^{n_u \times q_2}, \{\hat{c}_1, \dots, \hat{c}_{q_2}\} \in \mathbb{C}^{n_y \times q_2} \text{ and } r = q_2 \in \mathbb{N}$$

1: Construct.

$$\operatorname{span}(\boldsymbol{V}(\sigma_j^{(0)}, \hat{b}_j)) \text{ and } \operatorname{span}(\boldsymbol{W}(\sigma_j^{(0)}, \hat{c}_j^*))$$
(23)

2: Compute $W \leftarrow W(V^T W)^{-1}$

3: while Stopping criteria do

4:
$$k \leftarrow k+1$$

5:
$$\hat{E} = W^T E V, \hat{A} = W^T A V, \hat{B} = W^T B, \hat{C} = C V$$

6: Compute $\hat{A}R = \Lambda(\hat{A}, \hat{E})R$ and $L\hat{A} = \Lambda(\hat{A}, \hat{E})L$

7: Compute
$$\{\hat{b}_1, \dots, \hat{b}_{q_2}\} = \hat{B}^T L$$
 and $\{\hat{c}_1^*, \dots, \hat{c}_{q_2}^*\} = \hat{C}R$

8: Set
$$\sigma^{(i)} = -\Lambda(\hat{A}, \hat{E})$$

9: Construct,

span
$$\left(V(\sigma_j^{(k)}, \hat{b}_j)\right)$$
 and span $\left(W(\sigma_j^{(k)}, \hat{c}_j^*)\right)$ (24

10: Compute
$$W \leftarrow W(V^T W)^{-1}$$

12: Construct $\hat{\mathbf{H}} := (W^T E V, W^T A V, W^T B, CV)$ Ensure: $V, W \in \mathbb{R}^{n \times r}, W^T V = I_r$

ONFRA	000000	00000	00000	0000000	
GITERI		PROJECTION-B	ASED APPROXIM	ATION FRAMEW	ORK

Require:
$$\mathbf{H} = (E, A, B, C), \{\sigma_1^{(0)}, \dots, \sigma_{q_2}^{(0)}\} \in \mathbb{C}^{q_2}, \{\hat{b}_1, \dots, \hat{b}_{q_2}\} \in \mathbb{C}^{n_u \times q_2}, \{\hat{c}_1, \dots, \hat{c}_{q_2}\} \in \mathbb{C}^{n_y \times q_2} \text{ and } r = q_2 \in \mathbb{N}$$

$$\operatorname{span}(\boldsymbol{V}(\sigma_j^{(0)}, \hat{b}_j)) \text{ and } \operatorname{span}(\boldsymbol{W}(\sigma_j^{(0)}, \hat{c}_j^*))$$
(23)

- 2: Compute $W \leftarrow W(V^T W)^{-1}$
- 3: while Stopping criteria do

4:
$$k \leftarrow k+1$$

5: $\hat{E} = W^T E V$, $\hat{A} = W^T A V$, $\hat{B} = W^T B$, $\hat{C} = C V$

- 6: Compute $\hat{A}R = \Lambda(\hat{A}, \hat{E})R$ and $L\hat{A} = \Lambda(\hat{A}, \hat{E})L$
- 7: Compute $\{\hat{b}_1, \dots, \hat{b}_{q_2}\} = \hat{B}^T L$ and $\{\hat{c}_1^*, \dots, \hat{c}_{q_2}^*\} = \hat{C}R$
- 8: Set $\sigma^{(i)} = -\Lambda(\hat{A}, \hat{E})$
- 9: Construct,

$$\operatorname{span}\left(V(\sigma_j^{(k)}, \hat{b}_j)\right) \text{ and } \operatorname{span}\left(W(\sigma_j^{(k)}, \hat{c}_j^*)\right)$$
(24)

- 10: Compute $W \leftarrow W(V^T W)^{-1}$
- 11: end while

12: Construct $\hat{\mathbf{H}} := (\boldsymbol{W}^T \boldsymbol{E} \boldsymbol{V}, \boldsymbol{W}^T \boldsymbol{A} \boldsymbol{V}, \boldsymbol{W}^T \boldsymbol{B}, \boldsymbol{C} \boldsymbol{V})$ Ensure: $V, W \in \mathbb{R}^{n \times r}, W^T V = I_r$

ONERA		PROJECTION-B	ASED APPROXIM	ATION FRAMEW	ORK
0000000	000000	00000	00000	00000000	
Introduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	

IETIA - \mathcal{H}_2 & spectral optimality conditions (Tangential subspace approach) ²¹

Given H(s), let $V \in \mathbb{C}^{n \times r}$ and $W \in \mathbb{C}^{n \times r}$ be matrices of full column rank $r = q_1 + q_2$ such that $W^*V = I_r$. If, for $i = 1, ..., q_1$ and $j = 1, ..., q_2$,

$$\left[r_i^{\star} \ (\sigma_j E - A)^{-1} B \hat{b}_j\right] \in \operatorname{span}(V) \text{ and } \left[l_i^{\star} \ (\sigma_j E - A^T)^{-1} C^T \hat{c}_j^{\star}\right] \in \operatorname{span}(W)$$
(25)

 $l_i^{\star} \in \mathbb{C}^n$ and $r_i^{\star} \in \mathbb{C}^n$ are left and right eigenvectors associated to $\lambda_i^{\star} \in \mathbb{C}$ eigenvalues associated to A, E and $\sigma_j \in \mathbb{C}, \hat{b}_j \in \mathbb{C}^{n_u}$ and $\hat{c}_j \in \mathbb{C}^{n_y}$, be given sets of interpolation points and left and right tangential directions, respectively.

²¹ C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.

Model reduction of infinite dimensional systems: , An application to TDS and linear PDE cases

ONERA		PROJECTION-B	ASED APPROXIM	ATION FRAMEW	ORK
0000000	000000	00000	00000	00000000	
Introduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	Conclusio

IETIA - H₂ & spectral optimality conditions (Tangential subspace approach)²¹

Given H(s), let $V \in \mathbb{C}^{n \times r}$ and $W \in \mathbb{C}^{n \times r}$ be matrices of full column rank $r = q_1 + q_2$ such that $W^*V = I_r$. If, for $i = 1, ..., q_1$ and $j = 1, ..., q_2$,

$$\left[r_i^{\star} \ (\sigma_j E - A)^{-1} B \hat{b}_j\right] \in \operatorname{span}(V) \text{ and } \left[l_i^{\star} \ (\sigma_j E - A^T)^{-1} C^T \hat{c}_j^{\star}\right] \in \operatorname{span}(W)$$
(25)

 $l_i^{\star} \in \mathbb{C}^n$ and $r_i^{\star} \in \mathbb{C}^n$ are left and right eigenvectors associated to $\lambda_i^{\star} \in \mathbb{C}$ eigenvalues associated to A, E and $\sigma_j \in \mathbb{C}, \hat{b}_j \in \mathbb{C}^{n_u}$ and $\hat{c}_j \in \mathbb{C}^{n_y}$, be given sets of interpolation points and left and right tangential directions, respectively. Then, the reduced order system $\hat{H}(s)$ satisfies the eigenvalue conditions,

$$\{\lambda_1^{\star}, \dots, \lambda_{q_1}^{\star}\} \subset \Lambda(\hat{A}, \hat{E})$$
⁽²⁶⁾

and the tangential interpolation conditions

$$H(-\hat{\sigma}_{j})\hat{b}_{j} = \hat{H}(-\hat{\sigma}_{j})\hat{b}_{j}$$

$$\hat{c}_{j}^{*}H(-\hat{\sigma}_{j}) = \hat{c}_{j}^{*}\hat{H}(-\hat{\sigma}_{j})$$

$$\hat{c}_{j}^{*}\frac{d}{ds}H(s)\bigg|_{s=-\hat{\sigma}_{j}}\hat{b}_{j} = \hat{c}_{j}^{*}\frac{d}{ds}\hat{H}(s)\bigg|_{s=-\hat{\sigma}_{j}}\hat{b}_{j}$$
(27)

²¹ C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.

0000000	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	Conclusion
	_	PROJECTION-BA	SED APPROXIM	ATION FRAMEW	ORK

Require:
$$\mathbf{H} = (E, A, B, C), \{\lambda_1^{\star}, \dots, \lambda_{q_1}^{\star}\} \in \mathbb{C}^{q_1}, \{\sigma_1^{(0)}, \dots, \sigma_{q_2}^{(0)}\} \in \mathbb{C}^{q_2}, \{\hat{b}_1, \dots, \hat{b}_{q_2}\} \in \mathbb{C}^{n_u \times q_2}, \{\hat{c}_1, \dots, \hat{c}_{q_2}\} \in \mathbb{C}^{n_y \times q_2} \text{ and } r = q_1 + q_2 \in \mathbb{N}$$

1: Compute $\{l_1^{\star}, \dots, l_{q_1}^{\star}\}$ and $\{r_1^{\star}, \dots, r_{q_1}^{\star}\}$, eigenvectors of $\{\lambda_1^{\star}, \dots, \lambda_{q_1}^{\star}\}$

2: Construct,

 $\operatorname{span}\left(V(l_i^{\star}, \sigma_j^{(0)}, \hat{b}_j)\right) \text{ and } \operatorname{span}\left(W(r_i^{\star}, \sigma_j^{(0)}, \hat{c}_j^{\star})\right)$ (28)

3: Compute $W \leftarrow W(V^T W)^{-1}$

4: while Stopping criteria do

5:
$$k \leftarrow k + 1$$

6:
$$\hat{E} = W^T E V, \, \hat{A} = W^T A V, \, \hat{B} = W^T B, \, \hat{C} = C V$$

7: Compute $\hat{A}R = \hat{E}\Lambda(\hat{A},\hat{E})R$ and $L\hat{A} = \Lambda(\hat{A})R$

8: Compute
$$\{\hat{b}_1, \dots, \hat{b}_{q_2}\} = \hat{B}^T L$$
 and $\{\hat{c}_1^*, \dots, \hat{c}_{q_2}^*\} = \hat{C}R$

- 9: Set $\sigma^{(i)} = -\Lambda(\hat{A}, \hat{E})$
- 10: Construct,

$$\operatorname{span}\left(V(l_i^\star,\sigma_j^{(k)},\hat{b}_j)\right)$$
 and $\operatorname{span}\left(W(r_i^\star,\sigma_j^{(k)},\hat{c}_j^\star)\right)$ (2

- 11: Compute $W \leftarrow W(V^T W)^{-1}$
- 12: end while
- 13: Construct $\hat{\mathbf{H}} := (W^T E V, W^T A V, W^T B, C V)$

Ensure:
$$V, W \in \mathbb{R}^{n \times r}, W^T V = I_r, \{\lambda_1^{\star}, \dots, \lambda_{q_1}^{\star}\} \subset \Lambda(\hat{A}, \hat{E})$$

Introduction 0000000	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	Conclusion
	-	PROJECTION-BA	SED APPROXIM	ATION FRAMEW	ORK

Require:
$$\mathbf{H} = (E, A, B, C), \{\lambda_1^{\star}, \dots, \lambda_{q_1}^{\star}\} \in \mathbb{C}^{q_1}, \{\sigma_1^{(0)}, \dots, \sigma_{q_2}^{(0)}\} \in \mathbb{C}^{q_2}, \{\hat{b}_1, \dots, \hat{b}_{q_2}\} \in \mathbb{C}^{n_u \times q_2}, \{\hat{c}_1, \dots, \hat{c}_{q_2}\} \in \mathbb{C}^{n_y \times q_2} \text{ and } r = q_1 + q_2 \in \mathbb{N}$$

1: Compute $\{l_1^{\star}, \dots, l_{q_1}^{\star}\}$ and $\{r_1^{\star}, \dots, r_{q_1}^{\star}\}$, eigenvectors of $\{\lambda_1^{\star}, \dots, \lambda_{q_1}^{\star}\}$
2: Construct,
 $\mathbf{span}(V(l_i^{\star}, \sigma_j^{(0)}, \hat{b}_j)) \text{ and } \mathbf{span}(W(r_i^{\star}, \sigma_j^{(0)}, \hat{c}_j^{\star}))$ (28)
3: Compute $W \leftarrow W(V^TW)^{-1}$
4: while Stopping criteria do
5: $k \leftarrow k + 1$

6:
$$\hat{E} = W^T E V, \hat{A} = W^T A V, \hat{B} = W^T B, \hat{C} = C V$$

7: Compute
$$\hat{A}R = \hat{E}\Lambda(\hat{A},\hat{E})R$$
 and $L\hat{A} = \Lambda(\hat{A})L$

8: Compute
$$\{\hat{b}_1, \dots, \hat{b}_{q_2}\} = \hat{B}^T L$$
 and $\{\hat{c}_1^*, \dots, \hat{c}_{q_2}^*\} = \hat{C}R$

9: Set
$$\sigma^{(i)} = -\Lambda(\hat{A}, \hat{E})$$

$$\operatorname{span}\left(\boldsymbol{V}(l_i^{\star}, \sigma_j^{(k)}, \hat{b}_j)\right) \text{ and } \operatorname{span}\left(\boldsymbol{W}(r_i^{\star}, \sigma_j^{(k)}, \hat{c}_j^{\star})\right)$$
(29)

- 11: Compute $W \leftarrow W(V^T W)^{-1}$
- 12: end while
- 13: Construct $\mathbf{\hat{H}} := (W^T E V, W^T A V, W^T B, CV)$

Ensure:
$$V, W \in \mathbb{R}^{n \times r}, W^T V = I_r, \{\lambda_1^{\star}, \dots, \lambda_{q_1}^{\star}\} \subset \Lambda(\hat{A}, \hat{E})$$

Introduction	
0000000	

ONERA

Optimal ModRed

Projection framework

Interpolation framework

Stability estimation

Conclusions

PROJECTION-BASED APPROXIMATION FRAMEWORK

Fluid flow dynamical model approximation - Re=7000 and Re=7500

In	tro	bd	u	cti	or	٦
0	0	0	0	0	0	0

ONERA

Optimal ModRed

Projection framework

Interpolation framework

Stability estimation

Conclusions

TABLE OF CONTENTS

Introduction

Optimal model approximation

Projection-based approximation framework

Rational interpolation Loewner framework

Rational interpolation Loewner approach TF-IRKA algorithm Examples TDS and DPS

Stability regions estimation

Conclusions

Rational interpolation

Given H(s), complex points $\sigma_1, \ldots, \sigma_n$, and tangential directions $\hat{b}_1, \ldots, \hat{b}_n$, $\hat{c}_1, \ldots, \hat{c}_n$, one constructs $(\hat{E}, \hat{A}, \hat{B}, \hat{C})$ such that the transfer function $\hat{H}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}$ satisfies the tangential interpolation conditions :

$$\begin{array}{rcl}
H(\sigma_j)\hat{b}_j &=& \hat{H}(\sigma_j)\hat{b}_j \\
\hat{c}_j^T H(\sigma_j) &=& \hat{c}_j^T \hat{H}(\sigma_j) \\
\hat{c}_j^T \left. \frac{d}{ds} H(s) \right|_{s=\sigma_j} \hat{b}_j &=& \hat{c}_j^T \left. \frac{d}{ds} \hat{H}(s) \right|_{s=\sigma_j} \hat{b}_j
\end{array} \tag{30}$$

This is possible thanks to Loewner matrices.

Loewner approach²²

The rational function $\hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}$ interpolates H(s) at points σ_i and directions \hat{b}_i and \hat{c}_i iff.

$$(\hat{E})_{ij} = \begin{cases} -\frac{\hat{c}_i^T (H(\sigma_i) - H(\sigma_j))\hat{b}_j}{\sigma_i - \sigma_j} & i \neq j \\ -\hat{c}_i^T H'(\sigma_i)\hat{b}_i & i = j \end{cases}$$

$$(\hat{A})_{ij} = \begin{cases} -\frac{\hat{c}_i^T(\sigma_i H(\sigma_i) - \sigma_j H(\sigma_j))\hat{b}_j}{\sigma_i - \sigma_j} & i \neq j \\ -\hat{c}_i^T(sH(s))'|_{s=\sigma_i}\hat{b}_i & i = j \end{cases}$$

$$\hat{C} = [H(\sigma_1)\hat{b}_1, \dots, H(\sigma_r)\hat{b}_r] \text{ and } \hat{B} = \begin{bmatrix} \hat{c}_1^T H(\sigma_1) \\ \vdots \\ \hat{c}_r^T H(\sigma_r) \end{bmatrix}.$$

An analogous to IRKA iterative method was proposed.

²² A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", Linear Algebra and its Applications 425(2-3) 634 - 662, 2007.

TF-IRKA algorithm²³

- 1: **Initialization:** transfer function H(s), dimension r, $\sigma^0 = \{\sigma_1^0, \ldots, \sigma_r^0\} \in \mathbb{C}$ initial interpolation points and tangential directions $\{b_1, \ldots, b_r\} \in \mathbb{C}^{n_u \times 1}$ and $\{c_1, \ldots, c_r\} \in \mathbb{C}^{n_y \times 1}$.
- 2: while not convergence do
- 3: **Build** \hat{E} , \hat{A} , \hat{B} and \hat{C} using *Loewner Matrices*.
- 4: Solve the generalized eigenvalue problem $\hat{A}^{(k)}x_i^{(k)} = \lambda_i^{(k)}\hat{E}^{(k)}x_i^{(k)}$ and $y_i^{(k)}$ such that $y_i^{(k)*}\hat{E}^{(k)}x_j^{(k)} = \delta_{i,j}$.
- 5: Set $\sigma_i^{(k+1)} \leftarrow -\lambda_i^{(k)}$, $b_i^{(k+1)T} \leftarrow y_i^{(k)} \hat{B}^{(k)}$ and $c_i^{(k+1)} \leftarrow \hat{C}^{(k)} x_i^{(k)}$, for $i = 1, \dots, r$.
- 6: end while
- 7: Ensure conditions (31) are satisfied.
- 8: **Build** \hat{E} , \hat{A} , \hat{B} and \hat{C} .

²³ C. Beattie and S. Gugercin, "*Realization-independent H₂-approximation*", Proceedings of the 51st IEEE Conference on Decision and Control, 2012.

Examples TDS and DPS

Example DPS

Model reduction of infinite dimensional systems: , An application to TDS and linear PDE cases

In	tro	bd	u	cti	01	٦
0	0	0	0	0	0	0

ONERA

Optimal ModRed

Projection framework

Interpolation framework

Stability estimation

Conclusions

TABLE OF CONTENTS

Introduction

Optimal model approximation

Projection-based approximation framework

Rational interpolation Loewner framework

Stability regions estimation

Proposed Strategy - Approximation & Eigenvalues Results about stability approximation in \mathcal{L}_2 Application to TDS

Conclusions

ONERA			STABILITY BE	GIONS ESTIMA	ΓΙΟΝ
Introduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	Conclusio

Proposed Strategy - Approximation & Eigenvalues (accompanied with proofs)

- Procedure: Estimating stability regions using model approximation & eigenvalues
- Arguments for proof: Provide some arguments why this procedure is valid

Proposed Strategy - Approximation & Eigenvalues (accompanied with proofs)

- Procedure: Estimating stability regions using model approximation & eigenvalues
- Arguments for proof: Provide some arguments why this procedure is valid

Example: Let us consider the model described by the transfer function $H(s) = \frac{1}{1+e^{\tau s}+2e^{\gamma s}}$, with $\tau, \gamma \in [0, 2]$. After discretizing [0, 2] and finding LTI approximation via TF-IRKA, the stability of the reduced model is plotted

Results about stability approximation in \mathcal{L}_2

▶ $\mathcal{L}_2(i\mathbb{R})$ the Hilbert space of matrix-valued functions $\mathbb{C} \to \mathbb{C}^{n_y \times n_u}$ satisfying $\int_{\mathbb{R}} \operatorname{trace}[\overline{F(i\omega)}F(i\omega)^T] d\omega < \infty.$

$$\blacktriangleright \ \ \langle \mathbf{H},\mathbf{G}\rangle_{\mathcal{L}_2} = \tfrac{1}{2\pi}\int_{-\infty}^\infty \mathrm{trace}\Big(\overline{H(i\omega)}G(i\omega)^T\Big)d\omega.$$

▶ $\mathcal{H}_2(\mathbb{C}^+)$ ($\mathcal{H}_2(\mathbb{C}^-)$) closed subspace of $\mathcal{L}_2(i\mathbb{R})$ containing the matrix functions F(s) analytic in the open right-half plane (open left-half plane).

•
$$\mathcal{L}_2(i\mathbb{R}) = \mathcal{H}_2(\mathbb{C}^-) \bigoplus \mathcal{H}_2(\mathbb{C}^+)$$

- $\mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+)$ set of unstable LTI systems
- Remark: TF-IRKA allows us to obtain a system of order r which satisfies the interpolation conditions :

$$H(-\hat{\lambda}_k)\hat{b}_k = \hat{H}(-\hat{\lambda}_k)\hat{b}_k, \ \hat{c}_k^T H(-\hat{\lambda}_k) = \hat{c}_k^T \hat{H}(-\hat{\lambda}_k)$$
(31)

$$\hat{c}_{k}^{T} \left. \frac{dH}{ds} \right|_{s=-\hat{\lambda}_{k}} \hat{b}_{k} = \hat{c}_{k}^{T} \left. \frac{d\hat{H}}{ds} \right|_{s=-\hat{\lambda}_{k}} \hat{b}_{k},$$
(32)

oduction	Optimal ModR
00000	000000

Projection framework

Interpolation framework

Stability estimation

Conclusions

STABILITY REGIONS ESTIMATION

Results about stability approximation in \mathcal{L}_2

Proposition 1

If $\mathbf{H} \in \mathcal{H}_2(\mathbb{C}^+)$ and there exists a global minimizer $\hat{\mathbf{H}} \in \mathcal{L}_2(i\mathbb{R})$ of the \mathcal{L}_2 approximation problem, then $\hat{\mathbf{H}} \in \mathcal{H}_2(\mathbb{C}^+)$. Similarly, if $\mathbf{H} \in \mathcal{H}_2(\mathbb{C}^-)$ and there exists a global minimizer $\hat{\mathbf{H}} \in \mathcal{L}_2(i\mathbb{R})$ of the \mathcal{L}_2 approximation problem, then $\hat{\mathbf{H}} \in \mathcal{H}_2(\mathbb{C}^-)$.

Proof.

Let $\hat{\mathbf{H}} \in \mathcal{L}_2(i\mathbb{R})$ be the global minimizer of \mathcal{L}_2 approximation problem. Since $\mathbf{H} \in \mathcal{H}_2(\mathbb{C}^+)$, one has $\mathbf{H}^- = \mathbf{0}$. Seeing that $\mathcal{L}_2(i\mathbb{R}) = \mathcal{H}_2(\mathbb{C}^-) \bigoplus \mathcal{H}_2(\mathbb{C}^+)$ and this an orthogonal decomposition, thus

$$\|\mathbf{H} - \hat{\mathbf{H}}\|_{\mathcal{L}_{2}}^{2} = \|\mathbf{H}^{+} - \hat{\mathbf{H}}^{+}\|_{\mathcal{L}_{2}}^{2} + \|\mathbf{0} - \hat{\mathbf{H}}^{-}\|_{\mathcal{L}_{2}}^{2}$$
(33)

Thus, $\hat{\mathbf{H}}^- = \mathbf{0}$, otherwise $\hat{\mathbf{H}}$ is not a global minimizer.

ONERA			STABILITY RE	GIONS EST
Introduction 0000000	Optimal ModRed	Projection framework	Interpolation framework	Stability estimatio

Results about stability approximation in \mathcal{L}_2

MATION

Proposition 1

If $\mathbf{H} \in \mathcal{H}_2(\mathbb{C}^+)$ and there exists a global minimizer $\hat{\mathbf{H}} \in \mathcal{L}_2(i\mathbb{R})$ of the \mathcal{L}_2 approximation problem, then $\hat{\mathbf{H}} \in \mathcal{H}_2(\mathbb{C}^+)$. Similarly, if $\mathbf{H} \in \mathcal{H}_2(\mathbb{C}^-)$ and there exists a global minimizer $\hat{\mathbf{H}} \in \mathcal{L}_2(i\mathbb{R})$ of the \mathcal{L}_2 approximation problem, then $\hat{\mathbf{H}} \in \mathcal{H}_2(\mathbb{C}^-)$.

Proof.

Let $\hat{\mathbf{H}} \in \mathcal{L}_2(i\mathbb{R})$ be the global minimizer of \mathcal{L}_2 approximation problem. Since $\mathbf{H} \in \mathcal{H}_2(\mathbb{C}^+)$, one has $\mathbf{H}^- = \mathbf{0}$. Seeing that $\mathcal{L}_2(i\mathbb{R}) = \mathcal{H}_2(\mathbb{C}^-) \bigoplus \mathcal{H}_2(\mathbb{C}^+)$ and this an orthogonal decomposition, thus

$$\|\mathbf{H} - \hat{\mathbf{H}}\|_{\mathcal{L}_{2}}^{2} = \|\mathbf{H}^{+} - \hat{\mathbf{H}}^{+}\|_{\mathcal{L}_{2}}^{2} + \|\mathbf{0} - \hat{\mathbf{H}}^{-}\|_{\mathcal{L}_{2}}^{2}$$
(33)

Thus, $\hat{\mathbf{H}}^- = \mathbf{0}$, otherwise $\hat{\mathbf{H}}$ is not a global minimizer.

Introduction	
0000000	

ONERA

Optimal ModRe

Projection framework

Interpolation framework

Stability estimation

Conclusions

STABILITY REGIONS ESTIMATION

Results about stability approximation in \mathcal{L}_2

Proposition 2

For every unstable system H, there exists a neighborhood V of H such that if $\mathbf{G} \in V$, G is also unstable. In order words, the set of unstable systems $(\mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+))$ is open for the \mathcal{L}_2 norm.

Proof.

Since $\mathcal{H}_2(\mathbb{C}^+)$ is a closed set, its complement $(\mathcal{H}_2(\mathbb{C}^+))^c = \mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+)$ is open.

roduction	Optima
000000	0000
ONERA	

ptimal ModRed

Projection framework

Interpolation framework

Stability estimation

Conclusions

STABILITY REGIONS ESTIMATION

Results about stability approximation in \mathcal{L}_2

Proposition 2

For every unstable system H, there exists a neighborhood V of H such that if $\mathbf{G} \in V$, G is also unstable. In order words, the set of unstable systems $(\mathcal{L}_2(i\mathbb{R})\setminus\mathcal{H}_2(\mathbb{C}^+))$ is open for the \mathcal{L}_2 norm.

Proof.

Since $\mathcal{H}_2(\mathbb{C}^+)$ is a closed set, its complement $(\mathcal{H}_2(\mathbb{C}^+))^c = \mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+)$ is open.

Introduction	
0000000	

ONERA

Optimal ModRe

Projection framework

Interpolation framework

Stability estimation

Conclusions

STABILITY REGIONS ESTIMATION

Results about stability approximation in \mathcal{L}_2

Theorem 1

Given a unstable system $\mathbf{H} \in \mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+)$, there exists $n \in \mathbb{N}^*$ for which the minimizer G_k of order $k \in \mathbb{N}^*$, k > n, obtained from the \mathcal{L}_2 -approximation problem is also unstable.

Proof.

Proposition 2 states that if a system is sufficiently close to a unstable system in the $\mathcal{L}_2(i\mathbb{R})$ norm, it is also unstable. Furthermore, the subspace of rational functions which represents the finite LTI systems is dense in $\mathcal{L}_2(i\mathbb{R})$. Hence, for a given LTI unstable system $\mathbf{H} \in \mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+)$, a sequence \mathbf{G}_k of systems of order k which satisfies the tangential interpolation conditions, will converge to \mathbf{H} . Thus, due to Proposition proposition 2, there exists an order $n \in \mathbb{N}^*$ such that if $k \ge n$, G_k will be unstable as well.

Introduction	
0000000	
ONERA	

Optimal ModRed

Projection framework

Interpolation framework

Stability estimation

Conclusions

STABILITY REGIONS ESTIMATION

Results about stability approximation in \mathcal{L}_2

Theorem 1

Given a unstable system $\mathbf{H} \in \mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+)$, there exists $n \in \mathbb{N}^*$ for which the minimizer G_k of order $k \in \mathbb{N}^*$, k > n, obtained from the \mathcal{L}_2 -approximation problem is also unstable.

Proof.

Proposition 2 states that if a system is sufficiently close to a unstable system in the $\mathcal{L}_2(i\mathbb{R})$ norm, it is also unstable. Furthermore, the subspace of rational functions which represents the finite LTI systems is dense in $\mathcal{L}_2(i\mathbb{R})$. Hence, for a given LTI unstable system $\mathbf{H} \in \mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+)$, a sequence \mathbf{G}_k of systems of order k which satisfies the tangential interpolation conditions, will converge to \mathbf{H} . Thus, due to Proposition proposition 2, there exists an order $n \in \mathbb{N}^*$ such that if $k \ge n$, G_k will be unstable as well.

Introducti	on
00000	00

ONERA

Optimal ModRe

Projection framework

Interpolation framework

Stability estimation

Conclusions

STABILITY REGIONS ESTIMATION

Results about stability approximation in \mathcal{L}_2

Proposition 3

For every stable system $\mathbf{H} \in \mathcal{H}_2(\mathbb{C}^+)$, there exists a sequence of unstable systems $\mathbf{G}_{\mathbf{k}} \in \mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+)$, $k \in \mathbb{N}^*$, such that

$$\|\mathbf{H} - \mathbf{G}_{\mathbf{k}}\|_{\mathcal{L}_2(i\mathbb{R})} \to 0, \text{ when } k \to \infty$$
 (34)

In other words, the set $\mathcal{H}_2(\mathbb{C}^+)$ is not an open set of $\mathcal{L}_2(i\mathbb{R})$.

Proof.

Given $\mathbf{H} \in \mathcal{H}_2(\mathbb{C}^+)$, let $\mathbf{h} \in \mathcal{H}_2(\mathbb{C}^-)$ be an element such that $\|\mathbf{h}\|_{\mathcal{L}_2(i\mathbb{R})} = 1$. The system $\mathbf{G}_{\mathbf{k}} = \mathbf{H} + \frac{1}{k}\mathbf{h} \in \mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+)$ and $\|\mathbf{H} - \mathbf{G}_{\mathbf{k}}\|_{\mathcal{L}_2(i\mathbb{R})} = \frac{1}{k}\|\mathbf{h}\|_{\mathcal{L}_2(i\mathbb{R})} \to 0$ when $k \to \infty$.

Introduction	
0000000	

ONERA

Optimal ModRe

Projection framework

Interpolation framework

Stability estimation

Conclusions

STABILITY REGIONS ESTIMATION

Results about stability approximation in \mathcal{L}_2

Proposition 3

For every stable system $\mathbf{H} \in \mathcal{H}_2(\mathbb{C}^+)$, there exists a sequence of unstable systems $\mathbf{G}_{\mathbf{k}} \in \mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+)$, $k \in \mathbb{N}^*$, such that

$$\|\mathbf{H} - \mathbf{G}_{\mathbf{k}}\|_{\mathcal{L}_2(i\mathbb{R})} \to 0, \text{ when } k \to \infty$$
 (34)

In other words, the set $\mathcal{H}_2(\mathbb{C}^+)$ is not an open set of $\mathcal{L}_2(i\mathbb{R})$.

Proof.

Given $\mathbf{H} \in \mathcal{H}_2(\mathbb{C}^+)$, let $\mathbf{h} \in \mathcal{H}_2(\mathbb{C}^-)$ be an element such that $\|\mathbf{h}\|_{\mathcal{L}_2(i\mathbb{R})} = 1$. The system $\mathbf{G}_{\mathbf{k}} = \mathbf{H} + \frac{1}{k}\mathbf{h} \in \mathcal{L}_2(i\mathbb{R}) \setminus \mathcal{H}_2(\mathbb{C}^+)$ and $\|\mathbf{H} - \mathbf{G}_{\mathbf{k}}\|_{\mathcal{L}_2(i\mathbb{R})} = \frac{1}{k}\|\mathbf{h}\|_{\mathcal{L}_2(i\mathbb{R})} \to 0$ when $k \to \infty$.

Introduction	Optimal ModRed
0000000	000000

Projection framework

Interpolation framework

Stability estimation

Conclusions

STABILITY REGIONS ESTIMATION

Benchmark TDS-#1

- ▶ ≈ 0.13 s for each approximation
- Approximation of order r = 6.

ONERA	_		STABILITY RE	EGIONS ESTIMA	ΓΙΟΝ
Introduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation ○○○○○○●	Con

Benchmark TDS-#2

- τ_1 fixed as 17ms.
- ▶ ≈ 30 s for approximation
- Approximation of order r = 12.

Introductio	n
000000	00

ONERA

Optimal ModRec

Projection framework

Interpolation framework

tability estimation

Conclusions

TABLE OF CONTENTS

Introduction

- Optimal model approximation
- Projection-based approximation framework
- Rational interpolation Loewner framework
- Stability regions estimation

Conclusions

ONERA				CONCLUS	IONS
000000	000000	000000	00000	00000000	
ntroduction	Optimal ModRed	Projection framework	Interpolation framework	Stability estimation	Conclusions

Conclusion

- Projection model approximation method using realization.
- Loewner interpolation method using transfer function.
- Method to estimate the stability of large-scale TDS and PDE is proposed.
- Some arguments are given to justify this method
- No borne of estimation error.

Perspectives

- Algorithm 'branch and bound' to find borders.
- *H*₂-LPV model reduction.
- LSS reduction to TDS-system.

Optimal ModRed

Projection framework

Interpolation framework

Stability estimation

Conclusions

CONCLUSIONS

²⁴ C. Poussot-Vassal and P. Vuillemin, "Introduction to MORE: a MOdel REduction Toolbox", IEEE Multi Systems Conference, pp. 776-781.

I. Pontes Duff et al. [Onera]