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LARGE-SCALE DYNAMICAL MODELS

... some motivating examples in the simulation & control domains

Large-scale systems are present in many engineering fields: aerospace, computational
biology, building structure, VLI circuits, automotive, weather forecasting, fluid flow. . .

I difficulties with simulation & memory management (e.g. ODE solvers)
I difficulties with analysis (e.g. frequency response, µssv and H∞ computation . . . )
I difficulties with controller design (e.g. robust, optimal, predictive, . . . )

I. Pontes Duff et al. [Onera] Model reduction of infinite dimensional systems: , An application to TDS and linear PDE cases
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INTRODUCTION

Context

Topics addressed in this presentation about model approximation:

I Some projection based methods in the finite dimensional case where a realization
is available : IRKA/ITIA1, IETIA2 . . .

I Interpolation method using Loewner framework 3 4

I Approximation of stability regions for large-scale time-delay systems 5 6

1 S. Gugercin and A C. Antoulas and C. Beattie, "H2 Model Reduction for Large Scale Linear Dynamical
Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), 2008, pp. 609-638.

2 C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for
Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.

3 A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", Linear
Algebra and its Applications 425(2-3), 2007, pp. 634-662.

4 C. Beattie and S. Gugercin, "Realization-independentH2-approximation", IEEE Conference on Decision
and Control, 2012, pp. 4953-4958.

5 I. Pontes Duff, P. Vuillemin, C. Poussot-Vassal, C. Seren and C. Briat, "Approximation of stability regions for
large-scale time-delay systems using model reduction techniques", submitted to ECC 2015.

6 I. Pontes Duff, P. Vuillemin, C. Poussot-Vassal, C. Seren and C. Briat, "Stability and Performance Analysis
of a Large-Scale Aircraft Anti-Vibration Control Subject to Delays Using Model Reduction Techniques", submitted to
EuroGNC 2015.
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INTRODUCTION

Considered benchmarks

Benchmark NSS : Navier-Stokes equation in a open cavity flow : discretization and
linearisation for different Reynolds Numbers7

Eẋ(t) = A(Re)x(t) +Bu(t)
y(t) = Cx(t)

(1)
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Open cavity flow model (at Re=7000)
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Open cavity flow model (at Re=7500)

I Two Reynolds cases (Re = 7000 and Re = 7500)
I SISO DAE, 8 unstable modes, order ≈ 700,000 states

7 A. Barbagallo, D. Sipp and P. Schmid, "Closed-loop control of an open cavity flow using reduced order
models", Journal of Fluid Mechanics, 641, 2009, pp. 1-50.
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INTRODUCTION

Considered benchmarks

Benchmark TDS-#1: Feedback delay and controller gain8

Let us consider

ẋ(t) = Ax(t) +Bu(t); y(t) = Cx(t), (2)

where

A =


0 0 1 0
0 0 0 1
−10 10 0 0

5 −15 0 −0.25

 , B =


0
0
1
0

 , C =


1
0
0
0


T

. (3)

We add to this model the delayed static output feedback u(t) = −ky(t) + ky(t− τ)
The resulted model HTDS1 is governed by

ẋ(t) = A0x(t) +A1x(t− τ) (4)

where A−BCk and A1 = BCk.

Question: Given (k, τ), what is the stability of (4)?

8 A. Seuret and F. Gouaisbaut, "Hierarchy of LMI conditions for the stability analysis of time delay systems",
Repport LAAS 14429.
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INTRODUCTION

Considered benchmarks

Benchmark TDS-#2: Multiple delays (in feedback) large-scale system 9

Natural
aircraft

Actuator

Sensors y(t− τi) =

acont(t− τ1)
qcont(t− τ2)
apil(t− τ3)


ua(t)

wa(t)

Nominal flight
controller

Aeroelastic
controller (K)

Large-scale generic aircraft model (H)

Question: Stability function of {τ1, τ2, τ3}?
How to measure loss of performance ?

I Vibration control of aircraft model.
I order(H) ≈ 600 states.
I Controller H designed without taking

into account time-delays.
I Three output delays {τ1, τ2, τ3}.
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9 C. Poussot-Vassal and T. Loquen and P. Vuillemin and O. Cantinaud and J-P. Lacoste, "Business Jet
Large-Scale Model Approximation and Vibration Control", IFAC ALCOSP, 2013, pp. 199-204.
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INTRODUCTION

Considered benchmarks

Benchmark PDE: Example string vibration with dissipation10

Vibrating string of length L = 1 whose ends are fixed with control and observation are
both distributed along the string.

∂2z(x, t)

∂t2
+ε〈

∂z(x, t)

∂t
, 1[0, 1

2
]〉1[0, 1

2
](x) =

∂2z(x, t)

∂x2
+1[0, 1

2
](x)u(t), 0 < x < 1, t ≥ 0

(5)

where, 1[0, 1
2

](x) =

{
1 = 0 ≤ x ≤ 1/2
0 = 1/2 < x ≤ 1

, with

z(0, t) = 0, z(1, t) = 0

, and

y(t) =

∫ 1

0

∂z(x, t)

∂t
1[0, 1

2
](x)dx.

10 R. Curtain and K. Morris, "Transfer functions of distributed parameter systems: A tutorial", Automatica,
45(5), 2009, pp. 1101-1116.
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INTRODUCTION

Considered benchmarks

Benchmark PDE: Example string vibration with dissipation
The transfer function of this model is given by

H(s) =
s
2

sinh(s) + 2 cosh( s
2

)− 3 cosh2( s
2

) + 1

s(s+ 1
2

) sinh(s) + 2 cosh( s
2

)− 3 cosh2( s
2

) + 1
(6)
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OPTIMAL MODEL APPROXIMATION

Approximation in theH2,H2,Ω and L2-norm11

L2 model approximation

Ĥ := arg min
G ∈ Lny×nu2
dim(G) = r

||H −G||L2
(7)

||H||2L2
:= trace

(
1

2π

∫ ∞
−∞

(
H(iν)H(iν)

)
dν

)
(8)

I L2(iR) the Hilbert space of matrix-valued functions C→ Cny×nu satisfying∫
R trace[F (iω)F (iω)T ]dω <∞.

I L2(iR) = H2(C−)
⊕
H2(C+)

11 C. Magruder and C A. Beattie and S. Gugercin, "Rational Krylov methods for optimal L2 model reduction",
IEEE Conference on Decision and Control, 2010.
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OPTIMAL MODEL APPROXIMATION

Approximation in theH2,H2,Ω and L2-norm12 13

H2 model approximation

Ĥ := arg min
G ∈ Hny×nu2
dim(G) = r

||H −G||H2
(9)

||H||2H2
:= trace

(
1

2π

∫ ∞
−∞

(
H(iν)H(iν)

)
dν

)
:= trace

(
CPCT

)
= trace

(
BTQB

)
:=

n∑
i=1

trace
(
φiH(−λi)T

) (10)

12 S. Gugercin and A C. Antoulas and C A. Beattie, "H2 Model Reduction for Large Scale Linear Dynamical
Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

13 K. A. Gallivan, A. Vanderope, and P. Van-Dooren, "Model reduction of MIMO systems via tangential
interpolation", SIAM Journal of Matrix Analysis and Application, vol. 26(2), February 2004, pp. 328-349.
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H2 OPTIMALITY CONDITIONS 14

Assume that H and Ĥ have semi-simple poles and suppose that Ĥ is a rth-order
finite-dimensional model with transfer function

Ĥ(s) =
r∑
k=1

ĉk b̂
T
k

s− λ̂k
. (11)

H2-optimality conditions

If H, Ĥ ∈ H2 and Ĥ is a local minimum of the H2 approximation problem, then the
following interpolations equations hold

H(−λ̂k)b̂k = Ĥ(−λ̂k)b̂k, ĉ
T
kH(−λ̂k) = ĉTk Ĥ(−λ̂k) (12)

ĉTk
dH

ds

∣∣∣∣
s=−λ̂k

b̂k = ĉTk
dĤ

ds

∣∣∣∣∣
s=−λ̂k

b̂k, (13)

for all k = 1, . . . , r where λ̂k are the poles of Ĥ and b̂k and ĉk are its tangential direc-
tions, respectively.

14 S. Gugercin and A C. Antoulas and C. Beattie, "H2 Model Reduction for Large Scale Linear Dynamical
Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), 2008, pp. 609-638.
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L2 OPTIMALITY CONDITIONS 15

In the case where H ∈ L2(iR) is a SISO LTI system and H = H+ + H− where
H+ ∈ H(C+) and H− ∈ H(C−), it is possible to state the following result:

L2 optimality conditions
Given H ∈ L2(iR) and its decomposition H = H+ + H− where H+ ∈ H(C+) and
H− ∈ H(C−). Let Ĥ be the local minimizer of order r whose poles are all simple
{λ̂1, . . . , λ̂k} ∈ C− and {λ̂k+1, . . . , λ̂r} ∈ C+. If Ĥ(s) is given as (11) and if it is a
local minimal of the L2 approximation problem, then following hold for i = 1, . . . , k

H+(−λ̂i) = Ĥ+(−λ̂i),
dH+

ds

∣∣∣∣
s=−λ̂i

=
dĤ+

ds

∣∣∣∣∣
s=−λ̂i

(14)

and for i = k + 1, . . . , r,

H−(−λ̂i) = Ĥ−(λ̂i),
dH−

ds

∣∣∣∣
s=−λ̂i

=
dĤ−

ds

∣∣∣∣∣
s=−λ̂i

. (15)

15 C. Magruder and C A. Beattie and S. Gugercin, "Rational Krylov methods for optimal L2 model reduction",
IEEE Conference on Decision and Control, 2010.
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OPTIMAL MODEL APPROXIMATION

Approximation in theH2,Ω-norm 16 17

H2,Ω model approximation

Ĥ := arg min
G ∈ Hny×nu∞
dim(G) = r

||H −G||H2,Ω
(16)

||H||2H2,Ω
:= trace

(
1

π

∫
Ω

(
H(iν)H(iν)

)
dν

)
:= trace

(
CPΩC

T

)
= trace

(
BTQΩB

)
:=

n∑
i=1

trace
(
φiH(−λi)T

)[
−

2

π
atan

(
ω

λi

)] (17)

16 P. Vuillemin, C. Poussot-Vassal and D. Alazard, "A Spectral Expression for the Frequency-Limited
H2-norm", Available as http://arxiv.org/abs/1211.1858, 2012.

17 P. Vuillemin, C. Poussot-Vassal and D. Alazard, "Spectral expression for the Frequency-LimitedH2-norm
of LTI Dynamical Systems with High Order Poles", European Control Conference, 2014, pp. 55-60.
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OPTIMAL MODEL APPROXIMATION

Approximation in theH2,Ω-norm 16 17

H2,Ω model approximation

Ĥ := arg min
G ∈ Hny×nu∞
dim(G) = r

||H −G||H2,Ω
(16)

||H||2H2,Ω
:= trace

(
1

π

∫
Ω

(
H(iν)H(iν)

)
dν

)
:= trace

(
CPΩC

T

)
= trace

(
BTQΩB

)
:=

n∑
i=1

trace
(
φiH(−λi)T

)[
−

2

π
atan

(
ω

λi

)] (17)

16 P. Vuillemin, C. Poussot-Vassal and D. Alazard, "A Spectral Expression for the Frequency-Limited
H2-norm", Available as http://arxiv.org/abs/1211.1858, 2012.

17 P. Vuillemin, C. Poussot-Vassal and D. Alazard, "Spectral expression for the Frequency-LimitedH2-norm
of LTI Dynamical Systems with High Order Poles", European Control Conference, 2014, pp. 55-60.
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OPTIMAL MODEL APPROXIMATION

H2 and L2 optimality conditions18

Mismatch objective and eigenvector preservation

Ĥ := arg min
G ∈ Lny×nu2

dim(G) = r � n
λk(G) ⊆ λ(H) k = 1, . . . , q1 < r

||H −G||H2 (18)

I More than a H2 (sub-optimal) criteria
I Keep some user defined eigenvalues... e.g. the unstable ones

18 C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for
Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.
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PROJECTION-BASED APPROXIMATION FRAMEWORK

Projectors

Let H : C→ Cny×nu be a nu inputs ny outputs, full order Hny×nu2 (or Lny×nu2 )
complex-valued function describing a LTI dynamical system as a DAE of order n, with
realization H:

H :

{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(19)

I. Pontes Duff et al. [Onera] Model reduction of infinite dimensional systems: , An application to TDS and linear PDE cases
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PROJECTION-BASED APPROXIMATION FRAMEWORK

Projectors

Let H : C→ Cny×nu be a nu inputs ny outputs, full order Hny×nu2 (or Lny×nu2 )
complex-valued function describing a LTI dynamical system as a DAE of order n, with
realization H:

H :

{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(19)

the approximation problem consists in finding V,W ∈ Rn×r (with r � n) spanning V
andW subspaces and forming a projector ΠV,W = VWT , such that

Ĥ :

{
WTEV ˙̂x(t) = WTAV x̂(t) +WTBu(t)

ŷ(t) = CV x̂(t)
(20)

well approximates H.

I. Pontes Duff et al. [Onera] Model reduction of infinite dimensional systems: , An application to TDS and linear PDE cases
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ΠV,W =⇒
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Ê,Â B̂
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PROJECTION-BASED APPROXIMATION FRAMEWORK

Projectors

Let H : C→ Cny×nu be a nu inputs ny outputs, full order Hny×nu2 (or Lny×nu2 )
complex-valued function describing a LTI dynamical system as a DAE of order n, with
realization H:

H :

{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(19)

the approximation problem consists in finding V,W ∈ Rn×r (with r � n) spanning V
andW subspaces and forming a projector ΠV,W = VWT , such that

Ĥ :

{
WTEV ˙̂x(t) = WTAV x̂(t) +WTBu(t)

ŷ(t) = CV x̂(t)
(20)

well approximates H.

I Small approximation error and/or global error bound
I Stability / passivity preservation
I Numerically stable & efficient procedure

I. Pontes Duff et al. [Onera] Model reduction of infinite dimensional systems: , An application to TDS and linear PDE cases
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PROJECTION-BASED APPROXIMATION FRAMEWORK

MIMO IRKA (or ITIA) -H2 optimality conditions (Tangential subspace approach) 19 20

Given H(s), let V ∈ Cn×r and W ∈ Cn×r be matrices of full column rank r = q2 such
that W ∗V = Ir . If, for j = 1, . . . , q2,[

(σjE −A)−1Bb̂j

]
∈ span(V ) and

[
(σjE −AT )−1CT ĉ∗j

]
∈ span(W ) (21)

where σj ∈ C, b̂j ∈ Cnu and ĉj ∈ Cny , be given sets of interpolation points and left
and right tangential directions, respectively.

19 P. Van-Dooren, K. A. Gallivan, and P. A. Absil, "H2-optimal model reduction of MIMO systems", Applied
Mathematics Letters, vol. 21(12), December 2008, pp. 53-62.

20 S. Gugercin and A C. Antoulas and C A. Beattie, "H2 Model Reduction for Large Scale Linear Dynamical
Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.
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PROJECTION-BASED APPROXIMATION FRAMEWORK

MIMO IRKA (or ITIA) -H2 optimality conditions (Tangential subspace approach) 19 20

Given H(s), let V ∈ Cn×r and W ∈ Cn×r be matrices of full column rank r = q2 such
that W ∗V = Ir . If, for j = 1, . . . , q2,[

(σjE −A)−1Bb̂j

]
∈ span(V ) and

[
(σjE −AT )−1CT ĉ∗j

]
∈ span(W ) (21)

where σj ∈ C, b̂j ∈ Cnu and ĉj ∈ Cny , be given sets of interpolation points and left
and right tangential directions, respectively. Then, the reduced order system Ĥ(s)
satisfies the tangential interpolation conditions

H(−σ̂j)b̂j = Ĥ(−σ̂j)b̂j
ĉ∗jH(−σ̂j) = ĉ∗j Ĥ(−σ̂j)

ĉ∗j
d

ds
H(s)

∣∣∣∣
s=−σ̂j

b̂j = ĉ∗j
d

ds
Ĥ(s)

∣∣∣∣
s=−σ̂j

b̂j

(22)

19 P. Van-Dooren, K. A. Gallivan, and P. A. Absil, "H2-optimal model reduction of MIMO systems", Applied
Mathematics Letters, vol. 21(12), December 2008, pp. 53-62.

20 S. Gugercin and A C. Antoulas and C A. Beattie, "H2 Model Reduction for Large Scale Linear Dynamical
Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.
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PROJECTION-BASED APPROXIMATION FRAMEWORK

Require: H = (E,A,B,C), {σ(0)
1 , . . . , σ

(0)
q2 } ∈ Cq2 , {b̂1, . . . , b̂q2} ∈ Cnu×q2 ,

{ĉ1, . . . , ĉq2} ∈ Cny×q2 and r = q2 ∈ N
1: Construct,

span
(
V (σ

(0)
j , b̂j)

)
and span

(
W (σ

(0)
j , ĉ∗j )

)
(23)

2: Compute W ←W (V TW )−1

3: while Stopping criteria do
4: k ← k + 1
5: Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV
6: Compute ÂR = Λ(Â, Ê)R and LÂ = Λ(Â, Ê)L

7: Compute {b̂1, . . . , b̂q2} = B̂TL and {ĉ∗1, . . . , ĉ∗q2} = ĈR

8: Set σ(i) = −Λ(Â, Ê)
9: Construct,

span
(
V (σ

(k)
j , b̂j)

)
and span

(
W (σ

(k)
j , ĉ∗j )

)
(24)

10: Compute W ←W (V TW )−1

11: end while
12: Construct Ĥ := (WTEV ,WTAV ,WTB,CV )
Ensure: V,W ∈ Rn×r , WTV = Ir

I. Pontes Duff et al. [Onera] Model reduction of infinite dimensional systems: , An application to TDS and linear PDE cases



Introduction Optimal ModRed Projection framework Interpolation framework Stability estimation Conclusions

PROJECTION-BASED APPROXIMATION FRAMEWORK

Require: H = (E,A,B,C), {σ(0)
1 , . . . , σ

(0)
q2 } ∈ Cq2 , {b̂1, . . . , b̂q2} ∈ Cnu×q2 ,

{ĉ1, . . . , ĉq2} ∈ Cny×q2 and r = q2 ∈ N
1: Construct,

span
(
V (σ

(0)
j , b̂j)

)
and span

(
W (σ

(0)
j , ĉ∗j )

)
(23)

2: Compute W ←W (V TW )−1

3: while Stopping criteria do
4: k ← k + 1
5: Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV
6: Compute ÂR = Λ(Â, Ê)R and LÂ = Λ(Â, Ê)L

7: Compute {b̂1, . . . , b̂q2} = B̂TL and {ĉ∗1, . . . , ĉ∗q2} = ĈR

8: Set σ(i) = −Λ(Â, Ê)
9: Construct,

span
(
V (σ

(k)
j , b̂j)

)
and span

(
W (σ

(k)
j , ĉ∗j )

)
(24)

10: Compute W ←W (V TW )−1

11: end while
12: Construct Ĥ := (WTEV ,WTAV ,WTB,CV )
Ensure: V,W ∈ Rn×r , WTV = Ir
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PROJECTION-BASED APPROXIMATION FRAMEWORK

IETIA -H2 & spectral optimality conditions (Tangential subspace approach) 21

Given H(s), let V ∈ Cn×r and W ∈ Cn×r be matrices of full column rank r = q1 + q2
such that W ∗V = Ir . If, for i = 1, . . . , q1 and j = 1, . . . , q2,[
r?i (σjE −A)−1Bb̂j

]
∈ span(V ) and

[
l?i (σjE −AT )−1CT ĉ∗j

]
∈ span(W ) (25)

l?i ∈ Cn and r?i ∈ Cn are left and right eigenvectors associated to λ?i ∈ C eigenvalues
associated to A,E and σj ∈ C, b̂j ∈ Cnu and ĉj ∈ Cny , be given sets of interpolation
points and left and right tangential directions, respectively.

21 C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for
Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.
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]
∈ span(V ) and

[
l?i (σjE −AT )−1CT ĉ∗j

]
∈ span(W ) (25)

l?i ∈ Cn and r?i ∈ Cn are left and right eigenvectors associated to λ?i ∈ C eigenvalues
associated to A,E and σj ∈ C, b̂j ∈ Cnu and ĉj ∈ Cny , be given sets of interpolation
points and left and right tangential directions, respectively. Then, the reduced order
system Ĥ(s) satisfies the eigenvalue conditions,

{λ?1, . . . , λ?q1} ⊂ Λ(Â, Ê) (26)

and the tangential interpolation conditions

H(−σ̂j)b̂j = Ĥ(−σ̂j)b̂j
ĉ∗jH(−σ̂j) = ĉ∗j Ĥ(−σ̂j)

ĉ∗j
d

ds
H(s)

∣∣∣∣
s=−σ̂j

b̂j = ĉ∗j
d

ds
Ĥ(s)

∣∣∣∣
s=−σ̂j

b̂j

(27)

21 C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for
Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.
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PROJECTION-BASED APPROXIMATION FRAMEWORK
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1 , . . . , σ
(0)
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span
(
V (l?i , σ

(0)
j , b̂j)

)
and span

(
W (r?i , σ

(0)
j , ĉ∗j )

)
(28)

3: Compute W ←W (V TW )−1

4: while Stopping criteria do
5: k ← k + 1
6: Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV
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)
(29)

11: Compute W ←W (V TW )−1

12: end while
13: Construct Ĥ := (WTEV ,WTAV ,WTB,CV )

Ensure: V,W ∈ Rn×r , WTV = Ir , {λ?1, . . . , λ?q1} ⊂ Λ(Â, Ê)
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PROJECTION-BASED APPROXIMATION FRAMEWORK

Fluid flow dynamical model approximation - Re=7000 and Re=7500
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RATIONAL INTERPOLATION LOEWNER FRAMEWORK

Rational interpolation

Given H(s), complex points σ1, . . . , σn, and tangential directions b̂1, . . . , b̂n,
ĉ1, . . . , ĉn, one constructs (Ê, Â, B̂, Ĉ) such that the transfer function
Ĥ(s) = Ĉ(sÊ − Â)−1B̂ satisfies the tangential interpolation conditions :

H(σj)b̂j = Ĥ(σj)b̂j
ĉTj H(σj) = ĉTj Ĥ(σj)

ĉTj
d

ds
H(s)

∣∣∣∣
s=σj

b̂j = ĉTj
d

ds
Ĥ(s)

∣∣∣∣
s=σj

b̂j

(30)

This is possible thanks to Loewner matrices.
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RATIONAL INTERPOLATION LOEWNER FRAMEWORK

Loewner approach22

The rational function Ĉ(sÊ − Â)−1B̂ interpolates H(s) at points σi and directions b̂i
and ĉi iff.

(Ê)ij =

 −
ĉTi (H(σi)−H(σj))b̂j

σi − σj
i 6= j

−ĉTi H′(σi)b̂i i = j

(Â)ij =

 −
ĉTi (σiH(σi)− σjH(σj))b̂j

σi − σj
i 6= j

−ĉTi (sH(s))′|s=σi b̂i i = j

Ĉ = [H(σ1)b̂1, . . . , H(σr)b̂r] and B̂ =


ĉT1 H(σ1)

...
ĉTr H(σr)

 .
I An analogous to IRKA iterative method was proposed.

22 A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", Linear
Algebra and its Applications 425(2-3) 634 - 662, 2007.
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RATIONAL INTERPOLATION LOEWNER FRAMEWORK

TF-IRKA algorithm23

1: Initialization: transfer function H(s), dimension r, σ0 = {σ0
1 , . . . , σ

0
r} ∈ C initial

interpolation points and tangential directions {b1, . . . , br} ∈ Cnu×1 and
{c1, . . . , cr} ∈ Cny×1.

2: while not convergence do
3: Build Ê, Â, B̂ and Ĉ using Loewner Matrices.
4: Solve the generalized eigenvalue problem Â(k)x

(k)
i = λ

(k)
i Ê(k)x

(k)
i and y(k)

i

such that y(k)∗
i Ê(k)x

(k)
j = δi,j .

5: Set σ(k+1)
i ← −λ(k)

i , b(k+1)T
i ← y

(k)
i B̂(k) and c(k+1)

i ← Ĉ(k)x
(k)
i , for

i = 1, . . . , r.
6: end while
7: Ensure conditions (31) are satisfied.
8: Build Ê, Â, B̂ and Ĉ.

23 C. Beattie and S. Gugercin, "Realization-independentH2-approximation", Proceedings of the 51st IEEE
Conference on Decision and Control, 2012.
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RATIONAL INTERPOLATION LOEWNER FRAMEWORK

Examples TDS and DPS

Example TDS-#1 for k = 1 and τ = 3
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RATIONAL INTERPOLATION LOEWNER FRAMEWORK

Example DPS
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Distributed Parameter System
LTI Approximation 12th Order
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Distributed Parameter System
LTI Approximation 16th Order
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STABILITY REGIONS ESTIMATION

Proposed Strategy - Approximation & Eigenvalues (accompanied with proofs)

I Procedure: Estimating stability regions using model approximation & eigenvalues
I Arguments for proof: Provide some arguments why this procedure is valid
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STABILITY REGIONS ESTIMATION

Proposed Strategy - Approximation & Eigenvalues (accompanied with proofs)

I Procedure: Estimating stability regions using model approximation & eigenvalues
I Arguments for proof: Provide some arguments why this procedure is valid

Example: Let us consider the model described by the transfer function
H(s) = 1

1+eτs+2eγs
, with τ, γ ∈ [0, 2]. After discretizing [0, 2] and finding LTI

approximation via TF-IRKA, the stability of the reduced model is plotted
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STABILITY REGIONS ESTIMATION

Results about stability approximation in L2

I L2(iR) the Hilbert space of matrix-valued functions C→ Cny×nu satisfying∫
R trace[F (iω)F (iω)T ]dω <∞.

I 〈H,G〉L2 = 1
2π

∫∞
−∞ trace

(
H(iω)G(iω)T

)
dω.

I H2(C+) (H2(C−)) closed subspace of L2(iR) containing the matrix functions
F (s) analytic in the open right-half plane (open left-half plane).

I L2(iR) = H2(C−)
⊕
H2(C+)

I L2(iR)\H2(C+) set of unstable LTI systems
I Remark: TF-IRKA allows us to obtain a system of order r which satisfies the

interpolation conditions :

H(−λ̂k)b̂k = Ĥ(−λ̂k)b̂k, ĉ
T
kH(−λ̂k) = ĉTk Ĥ(−λ̂k) (31)

ĉTk
dH

ds

∣∣∣∣
s=−λ̂k

b̂k = ĉTk
dĤ

ds

∣∣∣∣∣
s=−λ̂k

b̂k, (32)
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STABILITY REGIONS ESTIMATION

Results about stability approximation in L2

Proposition 1

If H ∈ H2(C+) and there exists a global minimizer Ĥ ∈ L2(iR) of the L2 approxima-
tion problem, then Ĥ ∈ H2(C+). Similarly, if H ∈ H2(C−) and there exists a global
minimizer Ĥ ∈ L2(iR) of the L2 approximation problem, then Ĥ ∈ H2(C−).

Proof.

Let Ĥ ∈ L2(iR) be the global minimizer of L2 approximation problem. Since H ∈
H2(C+), one has H− = 0. Seeing that L2(iR) = H2(C−)

⊕
H2(C+) and this an

orthogonal decomposition, thus

‖H− Ĥ‖2L2
= ‖H+ − Ĥ+‖2L2

+ ‖0− Ĥ−‖2L2
(33)

Thus, Ĥ− = 0, otherwise Ĥ is not a global minimizer.
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+ ‖0− Ĥ−‖2L2
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STABILITY REGIONS ESTIMATION

Results about stability approximation in L2

Proposition 2
For every unstable system H, there exists a neighborhood V of H such that if G ∈ V ,
G is also unstable. In order words, the set of unstable systems (L2(iR)\H2(C+)) is
open for the L2 norm.

Proof.
Since H2(C+) is a closed set, its complement (H2(C+))c = L2(iR)\H2(C+) is open.
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STABILITY REGIONS ESTIMATION

Results about stability approximation in L2

Theorem 1
Given a unstable system H ∈ L2(iR)\H2(C+), there exists n ∈ N∗ for which the
minimizer Gk of order k ∈ N∗, k > n, obtained from the L2-approximation problem is
also unstable.

Proof.
Proposition 2 states that if a system is sufficiently close to a unstable system in the
L2(iR) norm, it is also unstable. Furthermore, the subspace of rational functions which
represents the finite LTI systems is dense in L2(iR). Hence, for a given LTI unstable
system H ∈ L2(iR)\H2(C+), a sequence Gk of systems of order k which satisfies
the tangential interpolation conditions, will converge to H. Thus, due to Proposition
proposition 2, there exists an order n ∈ N∗ such that if k ≥ n, Gk will be unstable as
well.
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STABILITY REGIONS ESTIMATION

Results about stability approximation in L2

Proposition 3
For every stable system H ∈ H2(C+), there exists a sequence of unstable systems
Gk ∈ L2(iR)\H2(C+), k ∈ N∗, such that

‖H−Gk‖L2(iR) → 0, when k →∞ (34)

In other words, the set H2(C+) is not an open set of L2(iR).

Proof.
Given H ∈ H2(C+), let h ∈ H2(C−) be an element such that ‖h‖L2(iR) = 1. The
system Gk = H + 1

k
h ∈ L2(iR)\H2(C+) and ‖H −Gk‖L2(iR) = 1

k
‖h‖L2(iR) → 0

when k →∞.
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STABILITY REGIONS ESTIMATION

Benchmark TDS-#1

I ≈ 0.13s for each approximation
I Approximation of order r = 6.
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STABILITY REGIONS ESTIMATION

Benchmark TDS-#2
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I τ1 fixed as 17ms.
I ≈ 30s for approximation
I Approximation of order r = 12.
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CONCLUSIONS

Conclusion
I Projection model approximation method using realization.
I Loewner interpolation method using transfer function.
I Method to estimate the stability of large-scale TDS and PDE is proposed.
I Some arguments are given to justify this method
I No borne of estimation error.

Perspectives
I Algorithm ’branch and bound’ to find borders.
I H2-LPV model reduction.
I LSS reduction to TDS-system.
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CONCLUSIONS

- MORE toolbox 24

Thanks for your Attention. Questions ?

24 C. Poussot-Vassal and P. Vuillemin, "Introduction to MORE: a MOdel REduction Toolbox", IEEE Multi
Systems Conference, pp. 776-781.
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DAE/ODE

State x(t) ∈ Rn, n large or
infinite

Data PDEs

Infinite order equations
(require meshing)

Reduced
DAE/ODE

Reduced state x̂(t) ∈ Rr

with r � n
(+) Simulation
(+) Analysis
(+) Control
(+) Optimization

u(f) = [u(f1) . . . u(fi)]
y(f) = [y(f1) . . . y(fi)]

Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

H(s) = e−τs

∂
∂t
u(x, t) = ...

moremore
Σ

(A,B,C,D)i

Σ

Σ̂

(Â, B̂, Ĉ, D̂)i

model reduction toolbox

Kr(A,B)

AP + PAT + BBT = 0

WTV
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