

Control design

Conclusions

Fluid flow dynamical model approximation and control

- ... a case-study on an open cavity flow
- C. Poussot-Vassal & D. Sipp

Journée conjointe GT Contrôle de Décollement & GT MOSAR

Model approximation

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODELS

... some motivating examples in the simulation & control domains

Large-scale systems are present in many engineering fields: aerospace, computational biology, building structure, VLI circuits, automotive, weather forecasting, fluid flow...

- difficulties with simulation & memory management (e.g. ODE solvers)
- difficulties with analysis (e.g. frequency response, μ_{ssv} and \mathcal{H}_{∞} computation ...)
- difficulties with controller design (e.g. robust, optimal, predictive, ...)

Physical phenomena
000000
ONERA

Control design

Conclusions 000

LARGE-SCALE DYNAMICAL MODELS

... in fluid flow dynamical problems

Fluid flow dynamical models

- Complex phenomena describing the motion of fluid flows,
- described by Navier and Stokes equations,
- arising when modeling the weather, ocean currents, water flow in a pipe and air flow around a wing...

Some challenges arising

- Modeling and simulation
- Control turbulences

Model approximation

Control design

Conclusions

OPEN-CAVITY FLOW AND HOPF BIFURCATION

Physical	phenomena
	0

Control design

Conclusions

Physical model and dynamical modeling

Navier and Stokes equations and assumptions Linearisation and simplifications Reduce and control approach

Large-scale dynamical model approximation

Active closed-loop control design

Conclusions

Physical phenomena ••••••

Model approximation

Control design

Conclusions

PHYSICAL MODEL AND DYNAMICAL MODELING

Navier and Stokes equations and assumptions

Navier and Stokes equations

$$\partial_t u + u \cdot \nabla u = -\nabla p + \frac{1}{Re} \Delta u \tag{1}$$

$$\nabla \cdot u = 0 \tag{2}$$

or in a condensed way

$$\dot{x}(t) = f\left(x(t), \frac{Re}{2}\right) \tag{3}$$

Existence of equilibrium points for a range of Reynolds numbers

Family of base-flows parametrized by the **Reynolds** number: $f(x_0, Re) = 0$

C. Poussot-Vassal & D. Sipp [Onera]

Physical phenomena ••••••

Model approximation

Control design

Conclusions

PHYSICAL MODEL AND DYNAMICAL MODELING

Navier and Stokes equations and assumptions

Navier and Stokes equations

Existence of equilibrium points for a range of Reynolds numbers

Family of base-flows parametrized by the **Reynolds** number: $f(x_0, Re) = 0$

Model approximation

Control design

Conclusions

PHYSICAL MODEL AND DYNAMICAL MODELING

Linearisation and simplifications - Eigenvalues

Linearisation for different Reynolds Numbers

$$x(t) = x_0^{(Re)}(t) + \epsilon x_1^{(Re)}(t)$$
(1)

where ϵ is small

$$\dot{x}_1^{(Re)}(t) = \left. \frac{\partial f}{\partial x} \right|_{x_0^{(Re)}} x_1(t) = A(Re) x_1(t)$$
(2)

Model approximation

Control design

Conclusions

PHYSICAL MODEL AND DYNAMICAL MODELING

Linearisation and simplifications - Eigenvectors

Right and left eigenvectors

Model approximation

Control design

Conclusions

PHYSICAL MODEL AND DYNAMICAL MODELING

Linearisation and simplifications - Dynamical model and control setting

Actuator/sensor

$$\begin{aligned} E\dot{x}(t) &= A(Re)x(t) + Bu(t) \\ y(t) &= Cx(t) \end{aligned} \tag{3}$$

Actuator (volumic forcing in momentum equations) Sensor (shear stress)


```
Physical phenomena
```


Control design

PHYSICAL MODEL AND DYNAMICAL MODELING

Linearisation and simplifications - Dynamical model and control setting

Actuator/sensor

$$\begin{aligned} E\dot{x}(t) &= A(Re)x(t) + Bu(t) \\ y(t) &= Cx(t) \end{aligned} \tag{4}$$

- Two Reynolds cases (Re = 7000 and Re = 7500)
- Single Input Single Output Differential Algebraic Equations (SISO DAE)
- > 8 unstable modes, order pprox 650,000 states


```
Physical phenomena
```


Control design

Conclusions

PHYSICAL MODEL AND DYNAMICAL MODELING

Reduce and control approach

Proposed procedure

- Approximate the large-scale dynamical model
- Design a stabilizing active closed loop control strategy

Challenge of simulating and controlling such high complexity system...

```
Physical phenomena
```


Control design

Conclusions

PHYSICAL MODEL AND DYNAMICAL MODELING

Reduce and control approach

Proposed procedure

- Approximate the large-scale dynamical model
- Design a stabilizing active closed loop control strategy

Challenge of simulating and controlling such high complexity system...

Model approximation

Control design

Conclusions 000

Physical model and dynamical modeling

Large-scale dynamical model approximation Projection-based approximation framework Approximation in the \mathcal{H}_2 , $\mathcal{H}_{2,\Omega}$ and \mathcal{L}_2 -norm MIMO IRKA (or ITIA) IETIA Balanced Truncation POD Fluid flow dynamical model approximation

Active closed-loop control design

Conclusions

 Control design

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Projection-based approximation framework

Let $H : \mathbb{C} \to \mathbb{C}^{n_y \times n_u}$ be a n_u inputs n_y outputs, full order $\mathcal{H}_2^{n_y \times n_u}$ (or $\mathcal{L}_2^{n_y \times n_u}$) complex-valued function describing a LTI dynamical system as a DAE of order n, with realization H:

$$\mathbf{H}: \begin{cases} E\dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{cases}$$
(5)

Model approximation

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Projection-based approximation framework

Let $H : \mathbb{C} \to \mathbb{C}^{n_y \times n_u}$ be a n_u inputs n_y outputs, full order $\mathcal{H}_2^{n_y \times n_u}$ (or $\mathcal{L}_2^{n_y \times n_u}$) complex-valued function describing a LTI dynamical system as a DAE of order n, with realization H:

$$\mathbf{H}: \begin{cases} E\dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{cases}$$
(5)

the approximation problem consists in finding $V, W \in \mathbb{R}^{n \times r}$ (with $r \ll n$) spanning \mathcal{V} and \mathcal{W} subspaces and forming a projector $\Pi_{V,W} = VW^T$, such that

$$\hat{\mathbf{H}} : \begin{cases} W^T E V \dot{\hat{x}}(t) &= W^T A V \hat{x}(t) + W^T B u(t) \\ \hat{y}(t) &= C V \hat{x}(t) \end{cases}$$
(6)

well approximates H.

Model approximation

Control design

Conclusions 000

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Projection-based approximation framework

Let $H : \mathbb{C} \to \mathbb{C}^{n_y \times n_u}$ be a n_u inputs n_y outputs, full order $\mathcal{H}_2^{n_y \times n_u}$ (or $\mathcal{L}_2^{n_y \times n_u}$) complex-valued function describing a LTI dynamical system as a DAE of order n, with realization H:

$$\mathbf{H}: \begin{cases} E\dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{cases}$$
(5)

the approximation problem consists in finding $V, W \in \mathbb{R}^{n \times r}$ (with $r \ll n$) spanning \mathcal{V} and \mathcal{W} subspaces and forming a projector $\Pi_{V,W} = VW^T$, such that

$$\hat{\mathbf{H}}: \begin{cases} W^T E V \hat{x}(t) = W^T A V \hat{x}(t) + W^T B u(t) \\ \hat{y}(t) = C V \hat{x}(t) \end{cases}$$
(6)

well approximates H.

- Small approximation error and/or global error bound
- Stability / passivity preservation
- Numerically stable & efficient procedure

Physical phenomena 000000 ONERA

Control design

Approximation in the $\mathcal{H}_2, \mathcal{H}_{2,\Omega}$ and $\mathcal{L}_2\text{-norm}^{1\,2}$

$$\mathcal{H}_2 \text{ model approximation}$$

$$\hat{H} := \arg \min_{\substack{G \in \mathcal{H}_{2}^{n_{y} \times n_{u}} \\ \mathsf{rank}(G) = r \ll n}} ||H - G||_{\mathcal{H}_{2}}$$
(7)

¹ S. Gugercin and A C. Antoulas and C A. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

² K. A. Gallivan, A. Vanderope, and P. Van-Dooren, "Model reduction of MIMO systems via tangential interpolation", SIAM Journal of Matrix Analysis and Application, vol. 26(2), February 2004, pp. 328-349.

C. Poussot-Vassal & D. Sipp [Onera]

Model approximation

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in the $\mathcal{H}_2, \mathcal{H}_{2,\Omega}$ and \mathcal{L}_2 -norm^{1 2}

\mathcal{H}_2 model approximation

$$\hat{H} := \arg \min_{\substack{G \in \mathcal{H}_{2}^{n_{y} \times n_{u}} \\ \mathsf{rank}(G) = r \ll n}} ||H - G||_{\mathcal{H}_{2}}$$
(7)

¹ S. Gugercin and A C. Antoulas and C A. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

² K. A. Gallivan, A. Vanderope, and P. Van-Dooren, "Model reduction of MIMO systems via tangential interpolation", SIAM Journal of Matrix Analysis and Application, vol. 26(2), February 2004, pp. 328-349.

C. Poussot-Vassal & D. Sipp [Onera]

Model approximation

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in the $\mathcal{H}_2, \mathcal{H}_{2,\Omega}$ and \mathcal{L}_2 -norm^{3 4}

$\mathcal{H}_{2,\Omega}$ model approximation

$$\hat{H} := \arg \min_{\substack{G \in \mathcal{H}_{\infty}^{n_{y} \times n_{u}} \\ \operatorname{rank}(G) = r \ll n}} ||H - G||_{\mathcal{H}_{2,\Omega}}$$
(8)

³ P. Vuillemin, C. Poussot-Vassal and D. Alazard, "A Spectral Expression for the Frequency-Limited H₂-norm", Available as http://arxiv.org/abs/1211.1858, 2012.

⁴ [€] P. Vuillemin, C. Poussot-Vassal and D. Alazard, "Spectral expression for the Frequency-Limited H₂-norm of LTI Dynamical Systems with High Order Poles", European Control Conference, 2014, pp. 55-60.

C. Poussot-Vassal & D. Sipp [Onera]

Model approximation

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in the $\mathcal{H}_2, \mathcal{H}_{2,\Omega}$ and \mathcal{L}_2 -norm^{3 4}

$\mathcal{H}_{2,\Omega}$ model approximation

$$\hat{H} := \arg \min_{\substack{G \in \mathcal{H}^{n_y \times n_u}_{\infty} \\ \mathsf{rank}(G) = r \ll n}} ||H - G||_{\mathcal{H}_{2,\Omega}}$$
(8)

Energy (in a finite frequency) to an impulse input

$$\begin{split} ||H||^{2}_{\mathcal{H}_{2,\Omega}} &:= \operatorname{trace}\left(\frac{1}{\pi}\int_{\Omega}\left(\overline{H(i\nu)}H(i\nu)\right)d\nu\right) \\ &:= \operatorname{trace}\left(C\mathcal{P}_{\Omega}C^{T}\right) = \operatorname{trace}\left(B^{T}\mathcal{Q}_{\Omega}B\right) \\ &:= \sum_{i=1}^{n}\operatorname{trace}\left(\phi_{i}H(-\lambda_{i})^{T}\right)\left[-\frac{2}{\pi}\operatorname{atan}\left(\frac{\omega}{\lambda_{i}}\right)\right] \end{split}$$

³ P. Vuillemin, C. Poussot-Vassal and D. Alazard, "A Spectral Expression for the Frequency-Limited H₂-norm", Available as http://arxiv.org/abs/1211.1858, 2012.

⁴ [№] P. Vuillemin, C. Poussot-Vassal and D. Alazard, "Spectral expression for the Frequency-Limited H₂-norm of LTI Dynamical Systems with High Order Poles", European Control Conference, 2014, pp. 55-60.

Model approximation

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in the \mathcal{H}_2 , $\mathcal{H}_{2,\Omega}$ and \mathcal{L}_2 -norm⁵

\mathcal{H}_∞ model approximation

$$\hat{H} := \arg \min_{\substack{G \in \mathcal{H}_{\infty}^{n_{\mathcal{Y}} \times n_u} \\ \mathsf{rank}(G) = r \ll n}} ||H - G||_{\mathcal{H}_{\infty}}$$
(9)

C. Poussot-Vassal & D. Sipp [Onera]

⁵ ♥ P. Vuillemin, C. Poussot-Vassal, D. Alazard, "Two upper bounds on the H_∞ -norm of LTI dynamical systems", 19th IFAC World Congress, pp. 5562-5567, 2014.

Model approximation

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in the \mathcal{H}_2 , $\mathcal{H}_{2,\Omega}$ and \mathcal{L}_2 -norm⁵

\mathcal{H}_∞ model approximation

$$\hat{H} := \arg \min_{\substack{G \in \mathcal{H}^{n_y \times n_u}_{\infty} \\ \mathsf{rank}(G) = r \ll n}} ||H - G||_{\mathcal{H}_{\infty}}$$
(9)

Worst case to an impulse input (numerically complex to compute)

$$\begin{aligned} \|H\|_{\mathcal{H}_{\infty}} &:= \sup_{\omega \in \mathbb{R}} \overline{\sigma} \left(H(j\omega) \right) \\ &:= \max_{w \in L_2} \frac{||y||_2}{||u||_2} \end{aligned}$$

⁵ ♥ P. Vuillemin, C. Poussot-Vassal, D. Alazard, "Two upper bounds on the H_∞ -norm of LTI dynamical systems", 19th IFAC World Congress, pp. 5562-5567, 2014.

Control design

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in the \mathcal{H}_2 , $\mathcal{H}_{2,\Omega}$ and \mathcal{L}_2 -norm⁶

Mismatch objective and eigenvector preservation

$$\hat{H} := \arg \min_{\substack{G \in \mathcal{L}_{2}^{n_{y} \times n_{u}} \\ \mathsf{rank}(G) = r \ll n \\ \lambda_{k}(G) \subseteq \lambda(H) \ k = 1, \dots, q_{1} < r}} ||H - G||_{\mathcal{H}_{2}}$$
(10)

- More than a \mathcal{H}_2 (sub-optimal) criteria
- ► Keep some user defined eigenvalues... e.g. the unstable/well known ones

⁶ C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.

Physical	phenomena
00000	0

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in the \mathcal{H}_2 , $\mathcal{H}_{2,\Omega}$ and \mathcal{L}_2 -norm

MIMO Iterative Krylov Interpolation Algorithm (or ITIA)

- *H*₂-optimal, but still do not theoretically preserves stability
- Numerically very efficient (*e.g.* with sparse methods, Ax = b)

Iterative Eigenvector Tangential Interpolation Algorithm (IETIA)

- \mathcal{H}_2 sub-optimal, but still do not theoretically preserves stability
- ▶ Numerically very efficient (*e.g.* with sparse methods, Ax = b and $AV = EV\lambda$)
- Applicable to L₂ dynamical systems

Balanced Truncation Proper Orthogonal Decomposition (BT POD)

- ▶ Provides a \mathcal{H}_{∞} -norm mismatch error (not tight), preserves stability
- Costly to compute, but a Matrix free version alleviate this problem by replacing by simulation (direct and adjoint)

Control design

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

MIMO IRKA (or ITIA) - \mathcal{H}_2 optimality conditions (Tangential subspace approach) ^{7 8}

Given H(s), let $V \in \mathbb{C}^{n \times r}$ and $W \in \mathbb{C}^{n \times r}$ be matrices of full column rank r such that $W^*V = I_r$. If, for $j = 1, \ldots, r$,

$$\left[(\sigma_j E - A)^{-1} B \hat{b}_j \right] \in \operatorname{span}(V) \text{ and } \left[(\sigma_j E - A^T)^{-1} C^T \hat{c}_j^* \right] \in \operatorname{span}(W)$$
(11)

where $\sigma_j \in \mathbb{C}$, $\hat{b}_j \in \mathbb{C}^{n_u}$ and $\hat{c}_j \in \mathbb{C}^{n_y}$, be given sets of interpolation points and left and right tangential directions, respectively.

⁷ P. Van-Dooren, K. A. Gallivan, and P. A. Absil, "H₂-optimal model reduction of MIMO systems", Applied Mathematics Letters, vol. 21(12), December 2008, pp. 53-62.

⁸ S. Gugercin and A C. Antoulas and C A. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

MIMO IRKA (or ITIA) - \mathcal{H}_2 optimality conditions (Tangential subspace approach) ^{7 8}

Given H(s), let $V \in \mathbb{C}^{n \times r}$ and $W \in \mathbb{C}^{n \times r}$ be matrices of full column rank r such that $W^*V = I_r$. If, for $j = 1, \ldots, r$,

$$\left[(\sigma_j E - A)^{-1} B \hat{b}_j \right] \in \operatorname{span}(V) \text{ and } \left[(\sigma_j E - A^T)^{-1} C^T \hat{c}_j^* \right] \in \operatorname{span}(W)$$
(11)

where $\sigma_j \in \mathbb{C}$, $\hat{b}_j \in \mathbb{C}^{n_u}$ and $\hat{c}_j \in \mathbb{C}^{n_y}$, be given sets of interpolation points and left and right tangential directions, respectively. Then, the reduced order system $\hat{H}(s)$ satisfies the tangential interpolation conditions

$$H(-\hat{\sigma}_{j})\hat{b}_{j} = \hat{H}(-\hat{\sigma}_{j})\hat{b}_{j}$$

$$\hat{c}_{j}^{*}H(-\hat{\sigma}_{j}) = \hat{c}_{j}^{*}\hat{H}(-\hat{\sigma}_{j})$$

$$\hat{c}_{j}^{*}\frac{d}{ds}H(s)\bigg|_{s=-\hat{\sigma}_{j}}\hat{b}_{j} = \hat{c}_{j}^{*}\frac{d}{ds}\hat{H}(s)\bigg|_{s=-\hat{\sigma}_{j}}\hat{b}_{j}$$
(12)

⁷ P. Van-Dooren, K. A. Gallivan, and P. A. Absil, "*H*₂-optimal model reduction of MIMO systems", Applied Mathematics Letters, vol. 21(12), December 2008, pp. 53-62.

⁸ S. Gugercin and A C. Antoulas and C A. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

C. Poussot-Vassal & D. Sipp [Onera]

Physical phenomen	а
000000	

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Require:
$$\mathbf{H} = (E, A, B, C), \{\sigma_1^{(0)}, \dots, \sigma_{q_2}^{(0)}\} \in \mathbb{C}^{q_2}, \{\hat{b}_1, \dots, \hat{b}_{q_2}\} \in \mathbb{C}^{n_u \times q_2}, \{\hat{c}_1, \dots, \hat{c}_{q_2}\} \in \mathbb{C}^{n_y \times q_2} \text{ and } r \in \mathbb{N}$$

1: Construct.

$$\operatorname{span}(\boldsymbol{V}(\sigma_j^{(0)}, \hat{b}_j)) \text{ and } \operatorname{span}(\boldsymbol{W}(\sigma_j^{(0)}, \hat{c}_j^*))$$
(13)

2: Compute $W \leftarrow W(V^T W)^{-1}$

3: while Stopping criteria do

4:
$$k \leftarrow k + 1$$

5:
$$\hat{E} = W^T E V, \hat{A} = W^T A V, \hat{B} = W^T B, \hat{C} = C V$$

- 6: Compute $\hat{A}R = \Lambda(\hat{A}, \hat{E})R$ and $L\hat{A} = \Lambda(\hat{A}, \hat{E})L$
- 7: Compute $\{\hat{b}_1, \dots, \hat{b}_r\} = \hat{B}^T L$ and $\{\hat{c}_1^*, \dots, \hat{c}_r^*\} = \hat{C}R$
- 8: Set $\sigma^{(i)} = -\Lambda(\hat{A}, \hat{E})$
- 9: Construct,

$$span(V(\sigma_j^{(k)}, \hat{b}_j)) \text{ and } span(W(\sigma_j^{(k)}, \hat{c}_j^*))$$
(14)

10: Compute
$$W \leftarrow W(V^TW)^{-1}$$

11: end while
12: Construct $\hat{\mathbf{H}} := (W^T E V, W^T A V, W^T B, C^T)$
Ensure: $V, W \in \mathbb{R}^{n \times r}, W^T V = I_r$

Physical phenomen	а
000000	

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Require:
$$\mathbf{H} = (E, A, B, C), \{\sigma_1^{(0)}, \dots, \sigma_{q_2}^{(0)}\} \in \mathbb{C}^{q_2}, \{\hat{b}_1, \dots, \hat{b}_{q_2}\} \in \mathbb{C}^{n_u \times q_2}, \{\hat{c}_1, \dots, \hat{c}_{q_2}\} \in \mathbb{C}^{n_y \times q_2} \text{ and } r \in \mathbb{N}$$

1: Construct.

$$\operatorname{span}(\boldsymbol{V}(\sigma_j^{(0)}, \hat{b}_j)) \text{ and } \operatorname{span}(\boldsymbol{W}(\sigma_j^{(0)}, \hat{c}_j^*))$$
(13)

- 2: Compute $W \leftarrow W(V^T W)^{-1}$
- 3: while Stopping criteria do

4:
$$k \leftarrow k+1$$

5: $\hat{E} = W^T \hat{E} V$, $\hat{A} = W^T \hat{A} V$, $\hat{B} = W^T \hat{B}$, $\hat{C} = C V$

- 6: Compute $\hat{A}R = \Lambda(\hat{A}, \hat{E})R$ and $L\hat{A} = \Lambda(\hat{A}, \hat{E})L$
- 7: Compute $\{\hat{b}_1, \dots, \hat{b}_r\} = \hat{B}^T L$ and $\{\hat{c}_1^*, \dots, \hat{c}_r^*\} = \hat{C}R$
- 8: Set $\sigma^{(i)} = -\Lambda(\hat{A}, \hat{E})$
- 9: Construct,

$$\operatorname{span}\left(V(\sigma_j^{(k)}, \hat{b}_j)\right) \text{ and } \operatorname{span}\left(W(\sigma_j^{(k)}, \hat{c}_j^*)\right)$$
(14)

- 10: Compute $W \leftarrow W(V^T W)^{-1}$
- 11: end while

12: Construct $\hat{\mathbf{H}} := (\boldsymbol{W}^T \boldsymbol{E} \boldsymbol{V}, \boldsymbol{W}^T \boldsymbol{A} \boldsymbol{V}, \boldsymbol{W}^T \boldsymbol{B}, \boldsymbol{C} \boldsymbol{V})$ Ensure: $V, W \in \mathbb{R}^{n \times r}, W^T V = I_r$

Control design

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

IETIA - \mathcal{H}_2 & spectral optimality conditions (Tangential subspace approach) ⁹

Given H(s), let $V \in \mathbb{C}^{n \times r}$ and $W \in \mathbb{C}^{n \times r}$ be matrices of full column rank $r = q_1 + q_2$ such that $W^*V = I_r$. If, for $i = 1, ..., q_1$ and $j = 1, ..., q_2$,

$$\left[r_i^{\star} \ (\sigma_j E - A)^{-1} B \hat{b}_j\right] \in \operatorname{span}(V) \text{ and } \left[l_i^{\star} \ (\sigma_j E - A^T)^{-1} C^T \hat{c}_j^{\star}\right] \in \operatorname{span}(W)$$
(15)

 $l_i^{\star} \in \mathbb{C}^n$ and $r_i^{\star} \in \mathbb{C}^n$ are left and right eigenvectors associated to $\lambda_i^{\star} \in \mathbb{C}$ eigenvalues associated to A, E and $\sigma_j \in \mathbb{C}, \hat{b}_j \in \mathbb{C}^{n_u}$ and $\hat{c}_j \in \mathbb{C}^{n_y}$, be given sets of interpolation points and left and right tangential directions, respectively.

⁹ C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.

Control design

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

IETIA - \mathcal{H}_2 & spectral optimality conditions (Tangential subspace approach) ⁹

Given H(s), let $V \in \mathbb{C}^{n \times r}$ and $W \in \mathbb{C}^{n \times r}$ be matrices of full column rank $r = q_1 + q_2$ such that $W^*V = I_r$. If, for $i = 1, ..., q_1$ and $j = 1, ..., q_2$,

$$\left[r_i^* \ (\sigma_j E - A)^{-1} B \hat{b}_j\right] \in \operatorname{span}(V) \text{ and } \left[l_i^* \ (\sigma_j E - A^T)^{-1} C^T \hat{c}_j^*\right] \in \operatorname{span}(W)$$
(15)

 $l_i^{\star} \in \mathbb{C}^n$ and $r_i^{\star} \in \mathbb{C}^n$ are left and right eigenvectors associated to $\lambda_i^{\star} \in \mathbb{C}$ eigenvalues associated to A, E and $\sigma_j \in \mathbb{C}, \hat{b}_j \in \mathbb{C}^{n_u}$ and $\hat{c}_j \in \mathbb{C}^{n_y}$, be given sets of interpolation points and left and right tangential directions, respectively. Then, the reduced order system $\hat{H}(s)$ satisfies the eigenvalue conditions,

$$\{\lambda_1^{\star}, \dots, \lambda_{q_1}^{\star}\} \subset \Lambda(\hat{A}, \hat{E})$$
(16)

and the tangential interpolation conditions

$$H(-\hat{\sigma}_{j})\hat{b}_{j} = \hat{H}(-\hat{\sigma}_{j})\hat{b}_{j}$$

$$\hat{c}_{j}^{*}H(-\hat{\sigma}_{j}) = \hat{c}_{j}^{*}\hat{H}(-\hat{\sigma}_{j})$$

$$\hat{c}_{j}^{*}\frac{d}{ds}H(s)\bigg|_{s=-\hat{\sigma}_{j}}\hat{b}_{j} = \hat{c}_{j}^{*}\frac{d}{ds}\hat{H}(s)\bigg|_{s=-\hat{\sigma}_{j}}\hat{b}_{j}$$
(17)

⁹ C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.

Physical	phenomena
00000	0

Control design

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Require:
$$\mathbf{H} = (E, A, B, C), \{\lambda_1^{\star}, \dots, \lambda_{q_1}^{\star}\} \in \mathbb{C}^{q_1}, \{\sigma_1^{(0)}, \dots, \sigma_{q_2}^{(0)}\} \in \mathbb{C}^{q_2}, \{\hat{b}_1, \dots, \hat{b}_{q_2}\} \in \mathbb{C}^{n_u \times q_2}, \{\hat{c}_1, \dots, \hat{c}_{q_2}\} \in \mathbb{C}^{n_y \times q_2} \text{ and } r = q_1 + q_2 \in \mathbb{N}$$

- 1: Compute $\{l_1^{\star}, \ldots, l_{q_1}^{\star}\}$ and $\{r_1^{\star}, \ldots, r_{q_1}^{\star}\}$, eigenvectors of $\{\lambda_1^{\star}, \ldots, \lambda_{q_1}^{\star}\}$
- 2: Construct,

$$\operatorname{span}\left(\boldsymbol{V}(l_i^{\star}, \sigma_j^{(0)}, \hat{b}_j)\right) \text{ and } \operatorname{span}\left(\boldsymbol{W}(r_i^{\star}, \sigma_j^{(0)}, \hat{c}_j^{\star})\right)$$
(18)

3: Compute $W \leftarrow W(V^T W)^{-1}$

4: while Stopping criteria do

5:
$$k \leftarrow k + 1$$

6:
$$\hat{E} = W^T E V, \hat{A} = W^T A V, \hat{B} = W^T B, \hat{C} = C V$$

- 7: Compute $\hat{A}R = \hat{E}\Lambda(\hat{A},\hat{E})R$ and $L\hat{A} = \Lambda(\hat{A})R$
- 8: Compute $\{\hat{b}_1, \dots, \hat{b}_{q_2}\} = \hat{B}^T L$ and $\{\hat{c}_1^*, \dots, \hat{c}_{q_2}^*\} = \hat{C}R$
- 9: Set $\sigma^{(i)} = -\Lambda(\hat{A}, \hat{E})$
- 10: Construct,

$$\operatorname{span}\left(V(l_i^*, \sigma_j^{(k)}, \hat{b}_j)\right) \text{ and } \operatorname{span}\left(W(r_i^*, \sigma_j^{(k)}, \hat{c}_j^*)\right) \tag{19}$$

- 11: Compute $W \leftarrow W(V^T W)^{-1}$
- 12: end while
- 13: Construct $\hat{\mathbf{H}} := (W^T E V, W^T A V, W^T B, CV)$

Ensure: $V, W \in \mathbb{R}^{n \times r}, W^T V = I_r, \{\lambda_1^\star, \dots, \lambda_{q_1}^\star\} \subset \Lambda(\hat{A}, \hat{E})$

C. Poussot-Vassal & D. Sipp [Onera]

Physical	phenomena
00000	0

Control design

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

$$\begin{aligned} & \textbf{Require: } \mathbf{H} = (E, A, B, C), \{\lambda_1^*, \dots, \lambda_{q_1}^*\} \in \mathbb{C}^{q_1}, \{\sigma_1^{(0)}, \dots, \sigma_{q_2}^{(0)}\} \in \mathbb{C}^{q_2}, \\ & \{\hat{b}_1, \dots, \hat{b}_{q_2}\} \in \mathbb{C}^{n_u \times q_2}, \{\hat{c}_1, \dots, \hat{c}_{q_2}\} \in \mathbb{C}^{n_y \times q_2} \text{ and } r = q_1 + q_2 \in \mathbb{N} \\ & 1: \text{ Compute } \{l_1^*, \dots, l_{q_1}^*\} \text{ and } \{r_1^*, \dots, r_{q_1}^*\}, \text{ eigenvectors of } \{\lambda_1^*, \dots, \lambda_{q_1}^*\} \\ & \textbf{span} \big(V(l_i^*, \sigma_j^{(0)}, \hat{b}_j) \big) \text{ and } \textbf{span} \big(W(r_i^*, \sigma_j^{(0)}, \hat{c}_j^*) \big) \end{aligned}$$
(18)
3: Compute $W \leftarrow W(V^T W)^{-1}$
4: while Stopping criteria do
5: $k \leftarrow k + 1$
6: $\hat{E} = W^T EV, \ \hat{A} = W^T AV, \ \hat{B} = W^T B, \ \hat{C} = CV$
7: Compute $\hat{A}R = \hat{E}\Lambda(\hat{A}, \hat{E})R \text{ and } L\hat{A} = \Lambda(\hat{A})L$
8: Compute $\{\hat{b}_1, \dots, \hat{b}_{q_2}\} = \hat{B}^T L \text{ and } \{\hat{c}_1^*, \dots, \hat{c}_{q_2}^*\} = \hat{C}R$
9: Set $\sigma^{(i)} = -\Lambda(\hat{A}, \hat{E})$
10: Construct,

$$\textbf{span} \big(V(l_i^*, \sigma_j^{(k)}, \hat{b}_j) \big) \text{ and } \textbf{span} \big(W(r_i^*, \sigma_j^{(k)}, \hat{c}_j^*) \big)$$
(19)
11: Compute $W \leftarrow W(V^T W)^{-1}$
12: end while
13: Construct $\hat{\mathbf{H}} := (W^T EV, W^T AV, W^T B, CV)$
Ensure: $V, W \in \mathbb{R}^{n \times r}, W^T V = I_r, \{\lambda_1^*, \dots, \lambda_{q_1}^*\} \subset \Lambda(\hat{A}, \hat{E})$

Physical	phenomena
00000	0

Control design

Conclusions 000

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD - Idea

Assume a stable system, the impulse response, $t \ge 0$ such that $h(t) = Ce^{At}B$

- Input-to-state map $x_c(t) = e^{At}B$
- State-to-output map $x_o(t) = Ce^{At} = (e^{A^*t}C^*)^*$

Corresponding to Gramian:

$$\mathcal{P} = \sum_{t} x_c(t) x_c^*(t) = \int_0^\infty e^{At} B B^* e^{A^* t} dt$$

$$\mathcal{Q} = \sum_{t} x_o^*(t) x_o(t) = \int_0^\infty e^{A^* t} C^* C e^{At} dt$$
(20)

solution of the Lyapunov equations,

$$\begin{cases} A\mathcal{P} + \mathcal{P}A^* + BB^* = 0\\ A^*\mathcal{Q} + \mathcal{Q}A + C^*C = 0 \end{cases}$$
(21)

Physical phenomena	ł
000000	

Conclusions 000

Model approximation

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD - in its Balanced basis $T = [T_1, \ldots, T_n]$

Meaning of Gramians:

- ► $x_f^* \mathcal{P}^{-1} x_f$, is the minimal energy required to steer the state from 0 to x_f as $t \to \infty$.
- $x_0^* Q x_0$ is the maximal energy produced by observing the output of the system corresponding to an initial state x_0 when no input is applied.

Balanced basis $T = [T_1, \ldots, T_n]$:

$$\mathcal{P} = \mathcal{Q} = S = \operatorname{diag}(\sigma_1, \dots, \sigma_n) \text{ with } \sigma_1 > \sigma_2 > \dots > \sigma_n$$
 (22)

- ► $T_1^* \mathcal{P}^{-1} T_1 = \frac{1}{\sigma_1}$ (easily controllable) and $T_1^* \mathcal{Q} T_1 = \sigma_1$ (easily observable)
- $T_n^* \mathcal{P}^{-1} T_n = \frac{1}{\sigma_n}$ (weakly controllable) and $T_n^* \mathcal{Q} T_n = \sigma_n$ (weakly observable) moreover.
 - stability is preserved
 - error between original and reduced systems is upper-bounded by,

$$\sigma_r \le ||H - \hat{H}||_{\mathcal{H}_{\infty}} \le 2(\sigma_{r+1} + \dots + \sigma_n)$$
(23)

where σ_i , i = 1, ..., n are the Hankel singular values.

C. Poussot-Vassal & D. Sipp [Onera]

Physical	phenomena
00000	0

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD

Require:
$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^{n \times n_u}$, $C \in \mathbb{R}^{n_y \times n}$, $r \in \mathbb{N}^*$
1: Solve $A\mathcal{P} + \mathcal{P}A^T + BB^T = 0$
2: Solve $A^T\mathcal{Q} + \mathcal{Q}A + C^TC = 0$
3: $\mathcal{P} = UU^T$ and $\mathcal{Q} = LL^T$
4: SVD decomposition: $[Z, S, Y] = \mathbf{SVD}(U^TL)$
5: Set $V = UZS^{-1/2}$
6: Set $W = LYS^{-1/2}$
7: Apply projectors V and W and obtain

$$\mathbf{H}_{\perp} = \begin{bmatrix} A_{11} & A_{12} & B_1 \\ A_{21} & A_{22} & B_2 \\ \hline C_1 & C_2 & D \end{bmatrix}$$
(24)

8: Approximation is obtained by $\hat{\mathbf{H}} = \begin{bmatrix} A_{11} & B_1 \\ \hline C_1 & D \end{bmatrix}$ Ensure: Small approximation error

Model approximation

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD - Factorization of Gramians with snapshot method

Numerical approximation

Solving Lyapunov equations is memory/time consuming.

$$\mathcal{P} = UU^* \tag{25}$$

usually done with Cholesky Factorization, but noticing that (*i* finite)

$$\mathcal{P} = \int_{0}^{\infty} e^{At} BB^{*} e^{A^{*}t}$$

$$\approx \sum_{i}^{\infty} x_{c}(t_{i}) x_{c}^{*}(t_{i}) \Delta t$$

$$\approx \left[x_{c}(t_{1}) \sqrt{\Delta t} \quad x_{c}(t_{2}) \sqrt{\Delta t} \quad \dots \right] \left[\begin{array}{c} x_{c}^{*}(t_{1}) \sqrt{\Delta t} \\ x_{c}^{*}(t_{2}) \sqrt{\Delta t} \\ \vdots \end{array} \right]$$
(26)

where $x_c(t) = e^{At}B$ (here use of the linearized model, $\dot{x}(t) = Ax(t), x(0) = B$). Same process for Q with adjoint simulation $\dot{x}(t) = A^*x(t), x(0) = C^*$.

Model approximation

Control design

Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD - Hankel singular values and bpod structures)

ical phenomena

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD - Properties (lower/upper bounds & mismatch errors)

Model approximation

Control design

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Fluid flow dynamical model approximation - Re=7000

Control design

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Fluid flow dynamical model approximation - Re=7500

Model approximation

Control design

Conclusions

Physical model and dynamical modeling

Large-scale dynamical model approximation

Active closed-loop control design Objectives Results

Conclusions

Physical	phenomena
00000	0

Control design

Conclusions

ACTIVE CLOSED-LOOP CONTROL DESIGN

Objectives

Objectives and \mathcal{H}_∞ control approach

- Stabilize the system
- Damp modes
- Potentially attenuate the \mathcal{H}_{∞} -norm
- Engineering appealing / structured in view of RT implementation

A standard control approach:

$$K^{\star} = \arg\min_{K \subseteq \mathcal{K}} ||\mathcal{F}_{l}(\hat{H}, K)||_{\mathcal{H}_{\infty}}$$
(27)

$$w(t) \xrightarrow{\tilde{w}(t)} \hat{H} \xrightarrow{\tilde{z}(t)} W_{o} \xrightarrow{z(t)} z(t)$$

$$u(t) \xrightarrow{K^{\star}} y(t)$$

Control design

Conclusions

ACTIVE CLOSED-LOOP CONTROL DESIGN

Results - Spectral (ROM)

Model approximation

Control design

Conclusions

ACTIVE CLOSED-LOOP CONTROL DESIGN

Results - Impulse (un-normalized ROM)

Model approximation

Control design

Conclusions

ACTIVE CLOSED-LOOP CONTROL DESIGN

Results - Frequency-domain (un-normalized ROM)

C. Poussot-Vassal & D. Sipp [Onera]

Model approximation

Control design

Conclusions

ACTIVE CLOSED-LOOP CONTROL DESIGN

Results - Frequency-domain (original LSS)

C. Poussot-Vassal & D. Sipp [Onera]

Model approximation

Control design

Conclusions

Physical model and dynamical modeling

Large-scale dynamical model approximation

Active closed-loop control design

Conclusions About fluid flow control About model approximation

Physical phenomena
000000
ONERA

Control design

Conclusions

CONCLUSIONS

About fluid flow control

About today's presentation

- Good performance of two model approximation techniques
- First attempt of \mathcal{H}_{∞} control synthesis (controller of order 6)
- Application on Navier and Stokes equations for an open cavity flow

Some perspectives

- Extension to robust analysis / parameter dependent control
- Apply the realization-less approaches (e.g. handle delays)
- Include learning policy for (on-line) model accuracy enhancement?

Physical phenomena	
000000	
ONERA	

+) Control Optimization

About model approximation - MORE toolbox ¹⁰

Conclusions 000

CONCLUSIONS

Successful application of advanced model

C. Poussot-Vassal and P. Vuillemin, "Introduction to MORE: a MOdel REduction Toolbox", IEEE Multi Systems Conference, pp. 776-781, 2012.

C. Poussot-Vassal & D. Sipp [Onera]

10 📚

Control design

Conclusions

Fluid flow dynamical model approximation and control

- ... a case-study on an open cavity flow
- C. Poussot-Vassal & D. Sipp

Journée conjointe GT Contrôle de Décollement & GT MOSAR

