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Fluid flow dynamical model approximation and control

... a case-study on an open cavity flow

C. Poussot-Vassal & D. Sipp

Journée conjointe GT Contrôle de Décollement & GT MOSAR
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LARGE-SCALE DYNAMICAL MODELS

... some motivating examples in the simulation & control domains

Large-scale systems are present in many engineering fields: aerospace, computational
biology, building structure, VLI circuits, automotive, weather forecasting, fluid flow. . .

I difficulties with simulation & memory management (e.g. ODE solvers)
I difficulties with analysis (e.g. frequency response, µssv and H∞ computation . . . )
I difficulties with controller design (e.g. robust, optimal, predictive, . . . )

C. Poussot-Vassal & D. Sipp [Onera] Fluid flow dynamical model approximation and control



Physical phenomena Model approximation Control design Conclusions

LARGE-SCALE DYNAMICAL MODELS

... in fluid flow dynamical problems

Fluid flow dynamical models
I Complex phenomena describing the motion of fluid flows,
I described by Navier and Stokes equations,
I arising when modeling the weather, ocean currents, water flow in a pipe and air

flow around a wing. . .

Some challenges arising
I Modeling and simulation
I Control turbulences
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OPEN-CAVITY FLOW AND HOPF BIFURCATION
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OUTLINES

Physical model and dynamical modeling
Navier and Stokes equations and assumptions
Linearisation and simplifications
Reduce and control approach

Large-scale dynamical model approximation

Active closed-loop control design

Conclusions
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PHYSICAL MODEL AND DYNAMICAL MODELING

Navier and Stokes equations and assumptions

Navier and Stokes equations

∂tu+ u · ∇u = −∇p+
1

Re
∆u (1)

∇ · u = 0 (2)

or in a condensed way
ẋ(t) = f

`
x(t), Re

´
(3)

Existence of equilibrium points for a range of Reynolds numbers

Family of base-flows parametrized by the Reynolds number: f
`
x0, Re

´
= 0
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PHYSICAL MODEL AND DYNAMICAL MODELING

Linearisation and simplifications - Eigenvalues

Linearisation for different Reynolds Numbers

x(t) = x
(Re)
0 (t) + εx

(Re)
1 (t) (1)

where ε is small

ẋ
(Re)
1 (t) =

∂f

∂x

˛̨̨̨
x

(Re)
0

x1(t) = A(Re)x1(t) (2)
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PHYSICAL MODEL AND DYNAMICAL MODELING

Linearisation and simplifications - Eigenvectors

Right and left eigenvectors

Localization of sensor and actuator
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PHYSICAL MODEL AND DYNAMICAL MODELING

Linearisation and simplifications - Dynamical model and control setting

Actuator/sensor

Eẋ(t) = A(Re)x(t) +Bu(t)
y(t) = Cx(t)

(3)

Actuator (volumic forcing in momentum equations) Sensor (shear stress)
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PHYSICAL MODEL AND DYNAMICAL MODELING

Linearisation and simplifications - Dynamical model and control setting

Actuator/sensor

Eẋ(t) = A(Re)x(t) +Bu(t)
y(t) = Cx(t)

(4)

I Two Reynolds cases (Re = 7000 and Re = 7500)
I Single Input Single Output Differential Algebraic Equations (SISO DAE)
I 8 unstable modes, order ≈ 650,000 states
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PHYSICAL MODEL AND DYNAMICAL MODELING

Reduce and control approach

Proposed procedure
I Approximate the large-scale dynamical model
I Design a stabilizing active closed loop control strategy
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PHYSICAL MODEL AND DYNAMICAL MODELING

Reduce and control approach
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OUTLINES

Physical model and dynamical modeling
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Projection-based approximation framework

Let H : C→ Cny×nu be a nu inputs ny outputs, full order Hny×nu

2 (or Lny×nu

2 )
complex-valued function describing a LTI dynamical system as a DAE of order n, with
realization H:

H :


Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5)
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Projection-based approximation framework

Let H : C→ Cny×nu be a nu inputs ny outputs, full order Hny×nu

2 (or Lny×nu

2 )
complex-valued function describing a LTI dynamical system as a DAE of order n, with
realization H:

H :


Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5)

the approximation problem consists in finding V,W ∈ Rn×r (with r � n) spanning V
andW subspaces and forming a projector ΠV,W = VWT , such that

Ĥ :


WTEV ˙̂x(t) = WTAV x̂(t) +WTBu(t)

ŷ(t) = CV x̂(t)
(6)

well approximates H.

C. Poussot-Vassal & D. Sipp [Onera] Fluid flow dynamical model approximation and control
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Projection-based approximation framework

Let H : C→ Cny×nu be a nu inputs ny outputs, full order Hny×nu

2 (or Lny×nu

2 )
complex-valued function describing a LTI dynamical system as a DAE of order n, with
realization H:

H :


Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5)

the approximation problem consists in finding V,W ∈ Rn×r (with r � n) spanning V
andW subspaces and forming a projector ΠV,W = VWT , such that

Ĥ :


WTEV ˙̂x(t) = WTAV x̂(t) +WTBu(t)

ŷ(t) = CV x̂(t)
(6)

well approximates H.

I Small approximation error and/or global error bound
I Stability / passivity preservation
I Numerically stable & efficient procedure
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in theH2,H2,Ω and L2-norm1 2

H2 model approximation

Ĥ := arg min
G ∈ Hny×nu

2
rank(G) = r � n

||H −G||H2 (7)

10
−1

10
0

10
1

−40

−30

−20

−10

0

10

20

30

M
ag

n
it

u
d

e 
(d

B
)

Bode Diagram

Frequency  (rad/s)

1 S. Gugercin and A C. Antoulas and C A. Beattie, "H2 Model Reduction for Large Scale Linear Dynamical
Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

2 K. A. Gallivan, A. Vanderope, and P. Van-Dooren, "Model reduction of MIMO systems via tangential
interpolation", SIAM Journal of Matrix Analysis and Application, vol. 26(2), February 2004, pp. 328-349.
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2 K. A. Gallivan, A. Vanderope, and P. Van-Dooren, "Model reduction of MIMO systems via tangential
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Energy to an impulse input

||H||2H2
:= trace

„
1

2π

Z ∞
−∞

`
H(iν)H(iν)

´
dν

«
:= trace

„
CPCT

«
= trace

„
BTQB

«
:=

nX
i=1

trace
„
φiH(−λi)T

«
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in theH2,H2,Ω and L2-norm3 4

H2,Ω model approximation

Ĥ := arg min
G ∈ Hny×nu

∞
rank(G) = r � n

||H −G||H2,Ω (8)
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3 P. Vuillemin, C. Poussot-Vassal and D. Alazard, "A Spectral Expression for the Frequency-Limited
H2-norm", Available as http://arxiv.org/abs/1211.1858, 2012.

4 P. Vuillemin, C. Poussot-Vassal and D. Alazard, "Spectral expression for the Frequency-LimitedH2-norm
of LTI Dynamical Systems with High Order Poles", European Control Conference, 2014, pp. 55-60.
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in theH2,H2,Ω and L2-norm3 4

H2,Ω model approximation

Ĥ := arg min
G ∈ Hny×nu

∞
rank(G) = r � n

||H −G||H2,Ω (8)
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H2-norm", Available as http://arxiv.org/abs/1211.1858, 2012.

4 P. Vuillemin, C. Poussot-Vassal and D. Alazard, "Spectral expression for the Frequency-LimitedH2-norm
of LTI Dynamical Systems with High Order Poles", European Control Conference, 2014, pp. 55-60.
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Energy (in a finite frequency) to an impulse input

||H||2H2,Ω
:= trace

„
1

π

Z
Ω

`
H(iν)H(iν)

´
dν

«
:= trace

„
CPΩC

T

«
= trace

„
BTQΩB

«
:=

nX
i=1

trace
„
φiH(−λi)T

«»
−

2

π
atan

„
ω

λi

«–
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in theH2,H2,Ω and L2-norm5

H∞ model approximation

Ĥ := arg min
G ∈ Hny×nu

∞
rank(G) = r � n

||H −G||H∞ (9)
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5 P. Vuillemin, C. Poussot-Vassal, D. Alazard, "Two upper bounds on theH∞-norm of LTI dynamical
systems", 19th IFAC World Congress, pp. 5562-5567, 2014.
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in theH2,H2,Ω and L2-norm5

H∞ model approximation

Ĥ := arg min
G ∈ Hny×nu

∞
rank(G) = r � n

||H −G||H∞ (9)
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Worst case to an impulse input
(numerically complex to compute)

‖H‖H∞ := sup
ω∈R

σ (H(jω))

:= max
w∈L2

||y||2
||u||2
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in theH2,H2,Ω and L2-norm6

Mismatch objective and eigenvector preservation

Ĥ := arg min
G ∈ Lny×nu

2
rank(G) = r � n

λk(G) ⊆ λ(H) k = 1, . . . , q1 < r

||H −G||H2 (10)

I More than a H2 (sub-optimal) criteria
I Keep some user defined eigenvalues... e.g. the unstable/well known ones

6 C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for
Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Approximation in theH2,H2,Ω and L2-norm

MIMO Iterative Krylov Interpolation Algorithm (or ITIA)
I H2-optimal, but still do not theoretically preserves stability
I Numerically very efficient (e.g. with sparse methods, Ax = b)

Iterative Eigenvector Tangential Interpolation Algorithm (IETIA)
I H2 sub-optimal, but still do not theoretically preserves stability
I Numerically very efficient (e.g. with sparse methods, Ax = b and AV = EV λ)
I Applicable to L2 dynamical systems

Balanced Truncation Proper Orthogonal Decomposition (BT POD)
I Provides a H∞-norm mismatch error (not tight), preserves stability
I Costly to compute, but a Matrix free version alleviate this problem by replacing by

simulation (direct and adjoint)

C. Poussot-Vassal & D. Sipp [Onera] Fluid flow dynamical model approximation and control
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

MIMO IRKA (or ITIA) -H2 optimality conditions (Tangential subspace approach) 7 8

Given H(s), let V ∈ Cn×r and W ∈ Cn×r be matrices of full column rank r such that
W ∗V = Ir . If, for j = 1, . . . , r,h

(σjE −A)−1Bb̂j

i
∈ span(V ) and

h
(σjE −AT )−1CT ĉ∗j

i
∈ span(W ) (11)

where σj ∈ C, b̂j ∈ Cnu and ĉj ∈ Cny , be given sets of interpolation points and left
and right tangential directions, respectively.

7 P. Van-Dooren, K. A. Gallivan, and P. A. Absil, "H2-optimal model reduction of MIMO systems", Applied
Mathematics Letters, vol. 21(12), December 2008, pp. 53-62.

8 S. Gugercin and A C. Antoulas and C A. Beattie, "H2 Model Reduction for Large Scale Linear Dynamical
Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

MIMO IRKA (or ITIA) -H2 optimality conditions (Tangential subspace approach) 7 8

Given H(s), let V ∈ Cn×r and W ∈ Cn×r be matrices of full column rank r such that
W ∗V = Ir . If, for j = 1, . . . , r,h

(σjE −A)−1Bb̂j

i
∈ span(V ) and

h
(σjE −AT )−1CT ĉ∗j

i
∈ span(W ) (11)

where σj ∈ C, b̂j ∈ Cnu and ĉj ∈ Cny , be given sets of interpolation points and left
and right tangential directions, respectively. Then, the reduced order system Ĥ(s)
satisfies the tangential interpolation conditions

H(−σ̂j)b̂j = Ĥ(−σ̂j)b̂j
ĉ∗jH(−σ̂j) = ĉ∗j Ĥ(−σ̂j)

ĉ∗j
d

ds
H(s)

˛̨̨̨
s=−σ̂j

b̂j = ĉ∗j
d

ds
Ĥ(s)

˛̨̨̨
s=−σ̂j

b̂j

(12)

7 P. Van-Dooren, K. A. Gallivan, and P. A. Absil, "H2-optimal model reduction of MIMO systems", Applied
Mathematics Letters, vol. 21(12), December 2008, pp. 53-62.

8 S. Gugercin and A C. Antoulas and C A. Beattie, "H2 Model Reduction for Large Scale Linear Dynamical
Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Require: H = (E,A,B,C), {σ(0)
1 , . . . , σ

(0)
q2 } ∈ Cq2 , {b̂1, . . . , b̂q2} ∈ Cnu×q2 ,

{ĉ1, . . . , ĉq2} ∈ Cny×q2 and r ∈ N
1: Construct,

span
`
V (σ

(0)
j , b̂j)

´
and span

`
W (σ

(0)
j , ĉ∗j )

´
(13)

2: Compute W ←W (V TW )−1

3: while Stopping criteria do
4: k ← k + 1
5: Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV
6: Compute ÂR = Λ(Â, Ê)R and LÂ = Λ(Â, Ê)L

7: Compute {b̂1, . . . , b̂r} = B̂TL and {ĉ∗1, . . . , ĉ∗r} = ĈR

8: Set σ(i) = −Λ(Â, Ê)
9: Construct,

span
`
V (σ

(k)
j , b̂j)

´
and span

`
W (σ

(k)
j , ĉ∗j )

´
(14)

10: Compute W ←W (V TW )−1

11: end while
12: Construct Ĥ := (WTEV ,WTAV ,WTB,CV )
Ensure: V,W ∈ Rn×r , WTV = Ir

C. Poussot-Vassal & D. Sipp [Onera] Fluid flow dynamical model approximation and control
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7: Compute {b̂1, . . . , b̂r} = B̂TL and {ĉ∗1, . . . , ĉ∗r} = ĈR
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

IETIA -H2 & spectral optimality conditions (Tangential subspace approach) 9

Given H(s), let V ∈ Cn×r and W ∈ Cn×r be matrices of full column rank r = q1 + q2
such that W ∗V = Ir . If, for i = 1, . . . , q1 and j = 1, . . . , q2,h
r?i (σjE −A)−1Bb̂j

i
∈ span(V ) and

h
l?i (σjE −AT )−1CT ĉ∗j

i
∈ span(W ) (15)

l?i ∈ Cn and r?i ∈ Cn are left and right eigenvectors associated to λ?i ∈ C eigenvalues
associated to A,E and σj ∈ C, b̂j ∈ Cnu and ĉj ∈ Cny , be given sets of interpolation
points and left and right tangential directions, respectively.

9 C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for
Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

IETIA -H2 & spectral optimality conditions (Tangential subspace approach) 9

Given H(s), let V ∈ Cn×r and W ∈ Cn×r be matrices of full column rank r = q1 + q2
such that W ∗V = Ir . If, for i = 1, . . . , q1 and j = 1, . . . , q2,h
r?i (σjE −A)−1Bb̂j

i
∈ span(V ) and

h
l?i (σjE −AT )−1CT ĉ∗j

i
∈ span(W ) (15)

l?i ∈ Cn and r?i ∈ Cn are left and right eigenvectors associated to λ?i ∈ C eigenvalues
associated to A,E and σj ∈ C, b̂j ∈ Cnu and ĉj ∈ Cny , be given sets of interpolation
points and left and right tangential directions, respectively. Then, the reduced order
system Ĥ(s) satisfies the eigenvalue conditions,

{λ?1, . . . , λ?q1} ⊂ Λ(Â, Ê) (16)

and the tangential interpolation conditions

H(−σ̂j)b̂j = Ĥ(−σ̂j)b̂j
ĉ∗jH(−σ̂j) = ĉ∗j Ĥ(−σ̂j)

ĉ∗j
d

ds
H(s)

˛̨̨̨
s=−σ̂j

b̂j = ĉ∗j
d

ds
Ĥ(s)

˛̨̨̨
s=−σ̂j

b̂j

(17)

9 C. Poussot-Vassal and P. Vuillemin, "An Iterative Eigenvector Tangential Interpolation Algorithm for
Large-Scale LTI and a Class of LPV Model Approximation", European Control Conference, 2013, pp. 4490-4495.
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Require: H = (E,A,B,C), {λ?1, . . . , λ?q1} ∈ C
q1 , {σ(0)

1 , . . . , σ
(0)
q2 } ∈ Cq2 ,

{b̂1, . . . , b̂q2} ∈ Cnu×q2 , {ĉ1, . . . , ĉq2} ∈ Cny×q2 and r = q1 + q2 ∈ N
1: Compute {l?1 , . . . , l?q1} and {r?1 , . . . , r?q1}, eigenvectors of {λ?1, . . . , λ∗q1}
2: Construct,

span
`
V (l?i , σ

(0)
j , b̂j)

´
and span

`
W (r?i , σ

(0)
j , ĉ∗j )

´
(18)

3: Compute W ←W (V TW )−1

4: while Stopping criteria do
5: k ← k + 1
6: Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV
7: Compute ÂR = ÊΛ(Â, Ê)R and LÂ = Λ(Â)L

8: Compute {b̂1, . . . , b̂q2} = B̂TL and {ĉ∗1, . . . , ĉ∗q2} = ĈR

9: Set σ(i) = −Λ(Â, Ê)
10: Construct,

span
`
V (l?i , σ

(k)
j , b̂j)

´
and span

`
W (r?i , σ

(k)
j , ĉ∗j )

´
(19)

11: Compute W ←W (V TW )−1

12: end while
13: Construct Ĥ := (WTEV ,WTAV ,WTB,CV )

Ensure: V,W ∈ Rn×r , WTV = Ir , {λ?1, . . . , λ?q1} ⊂ Λ(Â, Ê)
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD - Idea

Assume a stable system, the impulse response, t ≥ 0 such that h(t) = CeAtB

I Input-to-state map xc(t) = eAtB

I State-to-output map xo(t) = CeAt = (eA
∗tC∗)∗

Corresponding to Gramian:

P =
X
t

xc(t)x
∗
c(t) =

Z ∞
0

eAtBB∗eA
∗tdt

Q =
X
t

x∗o(t)xo(t) =

Z ∞
0

eA
∗tC∗CeAtdt

(20)

solution of the Lyapunov equations,
AP + PA∗ +BB∗ = 0
A∗Q+QA+ C∗C = 0

(21)
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD - in its Balanced basis T = [T1, . . . , Tn]

Meaning of Gramians:
I x∗fP

−1xf , is the minimal energy required to steer the state from 0 to xf as
t→∞.

I x∗0Qx0 is the maximal energy produced by observing the output of the system
corresponding to an initial state x0 when no input is applied.

Balanced basis T = [T1, . . . , Tn]:

P = Q = S = diag(σ1, . . . , σn) with σ1 > σ2 > · · · > σn (22)

I T ∗1 P−1T1 = 1
σ1

(easily controllable) and T ∗1QT1 = σ1 (easily observable)

I T ∗nP−1Tn = 1
σn

(weakly controllable) and T ∗nQTn = σn (weakly observable)

moreover,
I stability is preserved
I error between original and reduced systems is upper-bounded by,

σr ≤ ||H − Ĥ||H∞ ≤ 2(σr+1 + · · ·+ σn) (23)

where σi, i = 1, . . . n are the Hankel singular values.

C. Poussot-Vassal & D. Sipp [Onera] Fluid flow dynamical model approximation and control



Physical phenomena Model approximation Control design Conclusions

LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD

Require: A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, r ∈ N∗
1: Solve AP + PAT +BBT = 0
2: Solve ATQ+QA+ CTC = 0
3: P = UUT and Q = LLT

4: SVD decomposition: [Z, S, Y ] = SVD(UTL)
5: Set V = UZS−1/2

6: Set W = LY S−1/2

7: Apply projectors V and W and obtain

H⊥ =

24 A11 A12 B1

A21 A22 B2

C1 C2 D

35 (24)

8: Approximation is obtained by Ĥ =

»
A11 B1

C1 D

–
Ensure: Small approximation error
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD - Factorization of Gramians with snapshot method

Numerical approximation
Solving Lyapunov equations is memory/time consuming.

P = UU∗ (25)

usually done with Cholesky Factorization, but noticing that (i finite)

P =

Z ∞
0

eAtBB∗eA
∗t

≈
X
i

xc(ti)x
∗
c(ti)∆t

≈
ˆ
xc(t1)

√
∆t xc(t2)

√
∆t . . .

˜ 2664
x∗c(t1)

√
∆t

x∗c(t2)
√

∆t
...

3775
(26)

where xc(t) = eAtB (here use of the linearized model, ẋ(t) = Ax(t), x(0) = B).
Same process for Q with adjoint simulation ẋ(t) = A∗x(t), x(0) = C∗.
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD - Hankel singular values and bpod structures)
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Balanced Truncation POD - Properties (lower/upper bounds & mismatch errors)
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Fluid flow dynamical model approximation - Re=7000
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LARGE-SCALE DYNAMICAL MODEL APPROXIMATION

Fluid flow dynamical model approximation - Re=7500
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ACTIVE CLOSED-LOOP CONTROL DESIGN

Objectives

Objectives and H∞ control approach
I Stabilize the system
I Damp modes
I Potentially attenuate the H∞-norm
I Engineering appealing / structured in view of RT implementation

A standard control approach:

K? = arg min
K⊆K

||Fl(Ĥ,K)||H∞ (27)

Ĥ WoWi

z̃(t)w̃(t)
z(t)w(t)

K? y(t)u(t)

P

C. Poussot-Vassal & D. Sipp [Onera] Fluid flow dynamical model approximation and control



Physical phenomena Model approximation Control design Conclusions

ACTIVE CLOSED-LOOP CONTROL DESIGN

Results - Spectral (ROM)
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ACTIVE CLOSED-LOOP CONTROL DESIGN

Results - Impulse (un-normalized ROM)
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ACTIVE CLOSED-LOOP CONTROL DESIGN

Results - Frequency-domain (un-normalized ROM)
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ACTIVE CLOSED-LOOP CONTROL DESIGN

Results - Frequency-domain (original LSS)
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CONCLUSIONS

About fluid flow control

About today’s presentation
I Good performance of two model approximation techniques
I First attempt of H∞ control synthesis (controller of order 6)
I Application on Navier and Stokes equations for an open cavity flow

Some perspectives
I Extension to robust analysis / parameter dependent control
I Apply the realization-less approaches (e.g. handle delays)
I Include learning policy for (on-line) model accuracy enhancement?
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CONCLUSIONS

About model approximation - MORE toolbox 10

I Successful application of advanced model
approximation techniques

I both full and sparse
I on a complex unstable aerodynamical set of

equations

10 C. Poussot-Vassal and P. Vuillemin, "Introduction to MORE: a MOdel REduction Toolbox", IEEE Multi
Systems Conference, pp. 776-781, 2012.
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moremore
Σ

(A, B,C, D)i

Σ

Σ̂
(Â, B̂, Ĉ, D̂)i

model reduction toolbox

Kr(A, B)
AP + PAT + BBT = 0

WT V

DAE/ODE

State x(t) ∈ Rn, n large
or infinite

Data PDEs

Infinite order equations
(require meshing)

Reduced
DAE/ODE

Reduced state x̂(t) ∈ Rr
with r � n
(+) Simulation
(+) Analysis
(+) Control
(+) Optimization

u(f) = [u(f1) . . . u(fi)]
y(f) = [y(f1) . . . y(fi)]

Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

H(s) = e−τs

∂
∂t
u(x, t) = ...
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Fluid flow dynamical model approximation and control

... a case-study on an open cavity flow

C. Poussot-Vassal & D. Sipp

Journée conjointe GT Contrôle de Décollement & GT MOSAR
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