Controller Order-reduction. Application to active suspension control

Hossni Zebiri, Benjamin Mourllion and Michel Basset

Séminaire GT MOSAR

November, 28th 2014

Outlines

1 Introduction

- 2 Model order reduction
- 3 Controller order reduction
- 4 Application: active suspension control

5 Conclusion

Outlines

1 Introduction

- 2 Model order reduction
- 3 Controller order reduction
- 4 Application: active suspension control

5 Conclusion

Problem position

Problem position

Problem position

Aim of the work

Introduc	tion Model order reduction	Controller order reduction	n Active suspension contro	l Conclusion
3 dif	ferent approaches			
	How to obtain reduced-order con	ntroller:		
	Full order model			
			Reduced order controller	

Introduction	Model order reduction	Controller order reduction	Active suspension control	Conclusion
3 different	approaches			

Introduction	Model order reduction	Controller order reduction	Active suspension control	Conclusion

Outlines

1 Introduction

2 Model order reduction

3 Controller order reduction

4 Application: active suspension control

5 Conclusion

Several methods to reduce ...

Principle

Preserve the *r* largest invariant parameters α_i

Approach

- Find new basis (called balanced)
 - Define two dual symmetric and positive definite matrices \mathcal{P} and \mathcal{Q} .
 - Search the basis where $\tilde{\mathcal{P}}$ and $\tilde{\mathcal{Q}}$ are <u>balanced</u> (diagonal and equal):

 $\tilde{\mathcal{P}} = T^{-1}\mathcal{P}T^{-\mathsf{T}} = \tilde{\mathcal{Q}} = T^{\mathsf{T}}\mathcal{Q}T = \operatorname{diag}(\alpha_1, \dots, \alpha_n) \text{ with } \alpha_i \geq \alpha_{i+1} > 0$

Reduce the order by <u>truncation</u>: conserve the first *r*th α_i.
 Find an upper bound for the H_∞-error norm: ||G − G_r||_∞

BT methods

- **1** Lyapunov Balanced Truncation LBT (Hankel singular values σ_i)
- 2 Positive Real Balanced Truncation PRBT (positive real singular values δ_i)
- **3** Frequency Weighted Balanced Truncation FWBT (weighted singular values κ_i)

Principle

Preserve the *r* largest invariant parameters α_i

Approach

- Find new basis (called balanced)
 - Define two dual symmetric and positive definite matrices \mathcal{P} and \mathcal{Q} .
 - Search the basis where $\tilde{\mathcal{P}}$ and $\tilde{\mathcal{Q}}$ are <u>balanced</u> (diagonal and equal):

 $\tilde{\mathcal{P}} = T^{-1}\mathcal{P}T^{-\mathsf{T}} = \tilde{\mathcal{Q}} = T^{\mathsf{T}}\mathcal{Q}T = \operatorname{diag}(\alpha_1, \dots, \alpha_n) \text{ with } \alpha_i \geq \alpha_{i+1} > 0$

Reduce the order by <u>truncation</u>: conserve the first *r*th α_i.
 Find an upper bound for the H_∞-error norm: ||G − G_r||_∞

BT methods

1 Lyapunov Balanced Truncation LBT (Hankel singular values σ_i)

- 2 Positive Real Balanced Truncation PRBT (positive real singular values δ_i)
- **3** Frequency Weighted Balanced Truncation FWBT (weighted singular values κ_i)

Principle

Preserve the *r* largest invariant parameters α_i

Approach

- Find new basis (called balanced)
 - Define two dual symmetric and positive definite matrices \mathcal{P} and \mathcal{Q} .
 - Search the basis where $\tilde{\mathcal{P}}$ and $\tilde{\mathcal{Q}}$ are <u>balanced</u> (diagonal and equal):

 $\tilde{\mathcal{P}} = T^{-1}\mathcal{P}T^{-\mathsf{T}} = \tilde{\mathcal{Q}} = T^{\mathsf{T}}\mathcal{Q}T = \operatorname{diag}(\alpha_1, \dots, \alpha_n) \text{ with } \alpha_i \geq \alpha_{i+1} > 0$

- Reduce the order by <u>truncation</u>: conserve the first rth α_i .
- Find an upper bound for the H_{∞} -error norm: $||G G_r||_{\infty}$

BT methods

- **1** Lyapunov Balanced Truncation LBT (Hankel singular values σ_i)
- **2** Positive Real Balanced Truncation PRBT (positive real singular values δ_i)
- **3** Frequency Weighted Balanced Truncation FWBT (weighted singular values κ_i)

Example: Lyapunov

Preserve the *r* largest singular values σ_i

Approach

- Find a new balanced basis:
 - Compute the reachability and observability gramians W_o and W_a , by solving the two Lyapunov equations.

$$\begin{bmatrix} \hat{A}W_a + \hat{W}_a A^{\mathsf{T}} + BB^{\mathsf{T}} &= 0\\ A^{\mathsf{T}}W_o + W_o A + C^{\mathsf{T}}C &= 0 \end{bmatrix}$$

Search the basis where \tilde{W}_a and \tilde{W}_o are <u>balanced</u> (diagonal and equal):

 $\tilde{W}_a = T^{-1} W_a T^{-\mathsf{T}} = \tilde{W}_o = T^{\mathsf{T}} W_o T = \operatorname{diag}(\sigma_1, \dots, \sigma_r, \dots, \sigma_n) \text{ with } \sigma_i \ge \sigma_{i+1} > 0$

- Reduce the order by <u>truncation</u>: conserve the first *r*th σ_i .
- $||G(s) G_r(s)||_{\infty} < 2(\sigma_{r+1} + \dots + \sigma_n)$

Example: Lyapunov

Preserve the *r* largest singular values σ_i

Approach

- Find a new balanced basis:
 - Compute the reachability and observability gramians W_o and W_a , by solving the two Lyapunov equations.

$$\begin{array}{rcl} AW_a + W_a A^{\mathsf{T}} + BB^{\mathsf{T}} &=& 0\\ A^{\mathsf{T}}W_o + W_o A + C^{\mathsf{T}}C &=& 0 \end{array}$$

Search the basis where \tilde{W}_a and \tilde{W}_o are <u>balanced</u> (diagonal and equal):

 $\tilde{W}_a = T^{-1} W_a T^{-\mathsf{T}} = \tilde{W}_o = T^{\mathsf{T}} W_o T = \operatorname{diag}(\sigma_1, \ldots, \sigma_r, \ldots, \sigma_n) \text{ with } \sigma_i \geq \sigma_{i+1} > 0$

- Reduce the order by <u>truncation</u>: conserve the first *r*th σ_i .
- $||G(s) G_r(s)||_{\infty} < 2(\sigma_{r+1} + \dots + \sigma_n)$

Frequency Weighted Balanced Truncation Method

FWBT Procedure

• Define the weights V(s) and W(s) such that

$$W(s) \stackrel{s}{=} \left(\begin{array}{c|c} A_{\nu} & B_{\nu} \\ \hline C_{\nu} & D_{\nu} \end{array}\right) \text{ and } W(s) \stackrel{s}{=} \left(\begin{array}{c|c} A_{w} & B_{w} \\ \hline C_{w} & D_{w} \end{array}\right)$$

- Define the augmented system
 - $G(s)V(s) = C_i(sI A_i)^{-1}B_i + D_i$ ■ $W(s)G(s) = C_o(sI - A_o)^{-1}B_o + D_o$

such that:

$$\begin{pmatrix} A_{i} & B_{i} \\ \hline C_{i} & D_{i} \end{pmatrix} = \begin{pmatrix} A & BC_{v} \\ 0 & A_{v} \end{bmatrix} \begin{bmatrix} BD_{v} \\ B_{v} \end{bmatrix} \\ \hline \begin{bmatrix} C & DC_{v} \end{bmatrix} = DD_{v} \end{pmatrix}$$

and

$$\left(\begin{array}{c|c} A_{0} & B_{0} \\ \hline C_{0} & D_{0} \end{array}\right) = \left(\begin{array}{c|c} A_{w} & B_{w}C \\ 0 & A \\ \hline C_{w} & C_{w}C \\ \hline C_{w} & C_{w}C \\ \hline \end{array}\right) \left[\begin{array}{c|c} B_{w}D \\ B \\ \hline B \\ \hline D_{w}D \\ \hline \end{array}\right)$$

Frequency Weighted Balanced Truncation Method

FWBT Procedure

• Compute \mathcal{P} and \mathcal{Q} , the solutions of the two Lyapunov equations. $\begin{cases}
A_i \mathcal{P}_i + \mathcal{P}_i A_i^{\mathsf{T}} + B_i B_i^{\mathsf{T}} = 0 \\
A_0^{\mathsf{T}} \mathcal{Q}_0 + \mathcal{Q}_0 A_0 + C_o^{\mathsf{T}} C_o = 0
\end{cases}$

- Balance P_i and Q₀: P̃_i = Q̃₀ = diag(κ₁I_{m1},...,κ_qI_{mq})
 κ_i: weighted singular values of G(s).
- Truncate the new realisation in the balanced basis

$$G(s) \stackrel{s}{=} \left(\begin{array}{c|c} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right) \left[\begin{array}{c|c} B_1 \\ B_2 \end{array} \right] \\ \hline \begin{bmatrix} C_1 & C_2 \end{array} \right] \left[\begin{array}{c|c} D \end{array} \right) \longrightarrow G_r(s) \stackrel{s}{=} \left(\begin{array}{c|c} A_{11} & B_1 \\ \hline C_1 & D \end{array} \right)$$

• Weighted error:
$$||W(G - G_r)V||_{\infty} \le 2\sum_{i=r+1}^n f(\kappa_i)$$

Outlines

1 Introduction

- 2 Model order reduction
- 3 Controller order reduction
- 4 Application: active suspension control

5 Conclusion

Introduction	Model order reduction	Controller order reduction	Active suspension control	Conclusion

H_{∞} -control

H_{∞} -standard form

Goal

Attenuate the transfer from *w* to *z*:

$$T_{zw} = \mathcal{F}_{\ell}(P,K) = P_{yw}(s)K(s)(I - P_{uy}K(s))^{-1}P_{uz}(s) + P_{zw}$$

• Worst case: $||T_{zw}||_{\infty} < \gamma$

H_{∞} -control

General solution

 $K = \mathcal{F}_{\ell}(M, Q) = M_{11} + M_{12}Q(I - M_{22}Q)^{-1}M_{21}$

with
$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \stackrel{s}{=} \begin{pmatrix} \hat{A} & \hat{B}_1 & \hat{B}_2 \\ \hat{C}_1 & \hat{D}_{11} & \hat{D}_{12} \\ \hat{C}_2 & \hat{D}_{21} & \hat{D}_{22} \end{pmatrix}$$
 and $\begin{cases} Q \in RH_{\infty} \\ \|Q\|_{\infty} < \gamma \end{cases}$

K, Zhou and J.C. Doyle, "Essentials of Robust Control". Prentice Hall International editions, 1998.

H_{∞} -control

General solution

 $K = \mathcal{F}_{\ell}(M, Q) = M_{11} + M_{12}Q(I - M_{22}Q)^{-1}M_{21}$

with
$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \stackrel{s}{=} \begin{pmatrix} \hat{A} & \hat{B}_1 & \hat{B}_2 \\ \hat{C}_1 & \hat{D}_{11} & \hat{D}_{12} \\ \hat{C}_2 & \hat{D}_{21} & \hat{D}_{22} \end{pmatrix}$$
 and $\begin{cases} Q \in RH_{\infty} \\ \|Q\|_{\infty} < \gamma \end{cases}$

For $Q = 0 \implies K = M_{11}$.

K, Zhou and J.C. Doyle, "Essentials of Robust Control". Prentice Hall International editions, 1998.

Solution

Find Q_r such as:

$$\|\Delta_K M_{21}^{-1} M_{22} M_{12}^{-1}\|_{\infty} < 1 \quad \text{or} \quad \|M_{21}^{-1} M_{22} M_{12}^{-1} \Delta_K\|_{\infty} < 1$$

with $\Delta_K := K_r - K$ and $K_r = M_{11} + M_{12} Q_r (I - M_{22} Q_r)^{-1} M_{21},$

Sketch of proof

Approximation error $\Delta_K := K_r - K_c$.

Sketch of proof

Approximation error $\Delta_K := K_r - K_c$.

 $\Delta_K = M_{12}Q_r(I - M_{22}Q_r)^{-1}M_{21}$

Sketch of proof

Approximation error $\Delta_K := K_r - K_c$.

$$\Delta_K = M_{12}Q_r(I - M_{22}Q_r)^{-1}M_{21}$$

Then

$$Q_r = (I + M_{12}^{-1} \Delta_K M_{21}^{-1} M_{22})^{-1} M_{12}^{-1} \Delta_K M_{21}^{-1}$$

Sketch of proof

Approximation error $\Delta_K := K_r - K_c$.

$$\Delta_K = M_{12}Q_r(I - M_{22}Q_r)^{-1}M_{21}$$

Then

$$Q_r = (I + M_{12}^{-1} \Delta_K M_{21}^{-1} M_{22})^{-1} M_{12}^{-1} \Delta_K M_{21}^{-1}$$

 Q_r may be represented under the form:

By using small gain theorem: $\|\Delta_K M_{21}^{-1} M_{22} M_{12}^{-1}\|_{\infty} < 1$ or $\|M_{21}^{-1} M_{22} M_{12}^{-1} \Delta_K\|_{\infty} < 1$

Reduction overview

 K_r is a stabilizing controller (i.e: $\|\mathcal{F}_{\ell}(K_r, P)\|_{\infty} < \gamma$) if:

Reduction overview

 K_r is a stabilizing controller (i.e: $\|\mathcal{F}_{\ell}(K_r, P)\|_{\infty} < \gamma$) if:

 $\|(K_r - K)M_{21}^{-1}M_{22}M_{12}^{-1}\|_{\infty} < 1$

Reduction overview

 K_r is a stabilizing controller (i.e: $\|\mathcal{F}_{\ell}(K_r, P)\|_{\infty} < \gamma$) if:

Reduction overview

 K_r is a stabilizing controller (i.e: $\|\mathcal{F}_{\ell}(K_r, P)\|_{\infty} < \gamma$) if:

Outlines

1 Introduction

- 2 Model order reduction
- 3 Controller order reduction
- **4** Application: active suspension control

5 Conclusion

Quarter vehicle model

Application: H_{∞} active suspension control

Frequency domain analysis: $\frac{Z_s}{Z_r}$ (K: 14 states, K_r : 5 states)

Frequency domain analysis: $\frac{Z_s}{Z_r}$ (*K*: 14 states, K_r : 5 states)

Frequency domain analysis: $\frac{Z_s}{Z_r}$ (K: 14 states, K_r : 5 states)

Frequency domain analysis: $\frac{Z_s}{Z_r}$ (K: 14 states, K_r : 5 states)

Robustness analysis

Robust Stability

where $\{p_k, p_{kp}, p_s, p_{us}\} \in [-1; 1], \{\delta_k, \delta_{kp}, \delta_s, \delta_{us}\} \in [0; 1]$ and $\Delta_r(s)$ is the uncertain block that contains the model uncertainties.

Robustness analysis

Robust Performance

 Δ_f : fictive uncertain block that relays the controlled outputs to the exogenous inputs.

Introdu	ction Model order red	uction Controlle	r order reduction	Active suspension control	Conclusio
Rob	oustness analysis				
	Structured singular va	ilue: µ			
	For $N \in \mathbb{C}^{n \times n}$, $\mu_{\underline{\Delta}}(N)$	is defined as :			
	I	$u_{\underline{\Delta}}(N) = (\inf_{\Delta \in \underline{\Delta}} \{ \overline{\sigma} (\Delta n) \}$	$\Delta), \ \det(I - \Delta N) =$	$= 0\})^{-1}$	

 $\underline{\Delta} = \operatorname{diag}[\delta_{l}I_{r_{1}}, \dots, \delta_{s}I_{r_{S}}, \Delta_{1}, \dots, \Delta_{F}] \qquad \delta_{i} \in \mathbb{C}, \Delta_{j} \in \mathbb{C}^{m_{j} \times m_{j}} \quad \sum_{i=1}^{S} r_{i} + \sum_{i=1}^{F} m_{j} = n,$

Theorem[Skogestad1996]

Let $\beta > 0$ and assume that the nominal system N(s) and the perturbations Δ are stable. Then, the feedback system is stable for all allowed perturbations $\Delta(\cdot) \in \mathcal{M}(\underline{\Delta})$ such that $||\Delta||_{\infty} < 1/\beta$ if and only if:

 $\forall \boldsymbol{\omega} \in \mathbb{R}, \ \boldsymbol{\mu}_{\underline{\Delta}}(N_{z_{\Delta}\nu_{\Delta}}(j\boldsymbol{\omega})) \le \boldsymbol{\beta}$

Then, the following rules are verified $\forall \omega$:

 $\mathcal{M}(\underline{\Delta}) := \{\Delta(\cdot) \in \mathcal{RH}_{\infty} : \Delta(s_0) \in \underline{\Delta} \text{ for all } s_o \in \overline{\mathbb{C}}^+ \}$

Controller Order-reduction. Application to active suspension control

Robustness analysis

μ -upper and lower bounds

Robust Stability: $\mu_{\underline{\Delta}}(N_{z_{\Delta}v_{\Delta}}(j\omega))$

In practice :

 $\mu_{\underline{\Delta}}(N_{z_{\Delta}\nu_{\Delta}}(j\boldsymbol{\omega})) \in [\mu_{\underline{\Delta}}^{\mathrm{lb}}(N_{z_{\Delta}\nu_{\Delta}}(j\boldsymbol{\omega})); \ \mu_{\underline{\Delta}}^{\mathrm{ub}}(N_{z_{\Delta}\nu_{\Delta}}(j\boldsymbol{\omega}))]$

 $\begin{array}{l} \mu_{\Delta}^{\mathrm{lb}}(N_{z_{\Delta}\nu_{\Delta}}(j\omega)): \ \mu\text{-lower bound,} \\ \mu_{\Delta}^{\mathrm{ub}}(N_{z_{\Delta}\nu_{\Delta}}(j\omega)): \ \mu\text{-upper bound.} \end{array}$

 $m_{\rm s}=415\pm30\%$ kg, $m_{\rm us}=52\pm30\%$ kg, $k_{\rm s}=22000\pm10\%$ N/m, and $k_{\rm us}=270000\pm10\%$ N/m.

Introdu	ction Model order reduction	Controller order reduction	Active suspension control	Conclusion
Rot	oustness analysis			
	μ -upper and lower bounds			
	Robust Performance: $\mu_{\underline{\Delta}}(N(j\omega))$			
		Bode Diagram		
	0.9	\wedge		

 $m_{\rm s} = 415 \pm 10\%$ kg, $m_{\rm us} = 52 \pm 10\%$ kg, $k_{\rm s} = 22000 \pm 4\%$ N/m, and $k_{\rm us} = 270000 \pm 4\%$ N/m.

Controller Order-reduction. Application to active suspension control

Outlines

1 Introduction

- 2 Model order reduction
- 3 Controller order reduction
- 4 Application: active suspension control

5 Conclusion

Conclusions and Perspectives

Conclusions

FWBT techniques applied to the control order reduction

- Closed-loop performance and stability.
- Easy real-time processing.
- Strong conditions on initial models.

Work in progress...

- Robust control (applying FWBT on DK-iteration)
- LPV- H_{∞} controller order reduction.
- Applying to control semi-active suspension system.
- Controller order reduction for uncertain systems.

Thank you for your attention! Questions?

