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ẋr(t) = Arxr(t)+Bru(t)
Order Reduction

Optimisation Simulation Control

Highly expensive

A B

C D

n

n

ny

nu

Ar Br

Cr Dr

r

r

ny

nu

Order reduction
r < n

Controller Order-reduction. Application to active suspension control H. Zebiri, B. Mourllion and M. Basset 3/26



Introduction Model order reduction Controller order reduction Active suspension control Conclusion

Problem position

Physical system
+

Data

ODEs
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Several methods to reduce . . .

Approximation methods

Non-linear systems

-Petrov-Galerkin projections based
-Proper orthogonal decomposition

Linear Systems

SVD methods
-Balanced truncation (BT)
-Positive real BT
-Frequency weighted BT

Modal methods
-Eigenvalues, residues
-Dominant modes

Hankel Approximation

Krylov methods
-Arnoldi/Lanczos
-Rational interpolation
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Balanced Truncation BT

Principle

Preserve the r largest invariant parameters αi

Approach

Find new basis (called balanced)
Define two dual symmetric and positive definite matrices P and Q.
Search the basis where P̃ and Q̃ are balanced (diagonal and equal):

P̃ = T−1PT−T = Q̃= TTQT = diag(α1, . . . ,αn) with αi ≥ αi+1 > 0

Reduce the order by truncation: conserve the first rth αi.
Find an upper bound for the H∞-error norm: ‖G−Gr‖∞

BT methods

1 Lyapunov Balanced Truncation LBT (Hankel singular values σi)

2 Positive Real Balanced Truncation PRBT (positive real singular values δi)

3 Frequency Weighted Balanced Truncation FWBT (weighted singular values κi)
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Balanced Truncation BT

Example: Lyapunov

Preserve the r largest singular values σi

Approach

Find a new balanced basis:
Compute the reachability and observability gramians Wo and Wa,by solving the two
Lyapunov equations.{

AWa +WaAT +BBT = 0
ATWo +WoA+CTC = 0

Search the basis where W̃a and W̃o are balanced (diagonal and equal):

W̃a = T−1WaT−T = W̃o = TTWoT = diag(σ1, . . . ,σr, . . .σn) with σi ≥ σi+1 > 0

Reduce the order by truncation: conserve the first rth σi.

‖G(s)−Gr(s)‖∞
< 2(σr+1 + · · ·+σn)
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Frequency Weighted Balanced Truncation Method

FWBT Procedure

Define the weights V(s) and W(s) such that

V(s) s
=

(
Av Bv
Cv Dv

)
and W(s) s

=

(
Aw Bw
Cw Dw

)

Define the augmented system
G(s)V(s) = Ci(sI−Ai)

−1Bi +Di
W(s)G(s) = Co(sI−Ao)

−1Bo +Do

such that: (
Ai Bi
Ci Di

)
=

 [
A BCv
0 Av

] [
BDv
Bv

]
[

C DCv
]

DDv


and (

Ao Bo
Co Do

)
=

 [
Aw BwC
0 A

] [
BwD

B

]
[

Cw CwC
]

DwD

 .
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Frequency Weighted Balanced Truncation Method

FWBT Procedure

Compute P and Q,the solutions of the two Lyapunov equations.{
AiPi + PiAT

i + BiBT
i = 0

AT
oQo + QoAo + CT

o Co = 0

Balance Pi and Qo: P̃i = Q̃o = diag(κ1Im1 , . . . ,κqImq)
κi: weighted singular values of G(s).

Truncate the new realisation in the balanced basis

G(s) s
=


[

A11 A12
A21 A22

] [
B1
B2

]
[

C1 C2
]

D

 −→ Gr(s)
s
=

(
A11 B1
C1 D

)

Weighted error: ‖W(G−Gr)V‖∞
≤ 2

n

∑
i=r+1

f (κi)
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H∞-control

H∞-standard form

P

K

yu

zw

Goal

Attenuate the transfer from w to z:

Tzw = F`(P,K) = Pyw(s)K(s)(I−PuyK(s))−1Puz(s)+Pzw

Worst case: ‖Tzw‖∞ < γ
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H∞-control

General solution

M

Q

K

yu

K = F`(M,Q) = M11 +M12Q(I−M22Q)−1M21

with M =

[
M11 M12
M21 M22

]
s
=

 Â B̂1 B̂2
Ĉ1 D̂11 D̂12
Ĉ2 D̂21 D̂22

 and
{

Q ∈ RH∞

‖Q‖∞ < γ

For Q = 0 ⇒ K = M11.

K, Zhou and J.C. Doyle, ”Essentials of Robust Control”. Prentice Hall International editions, 1998.
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H∞-controller order reduction

Goal

P

K

yu

zw

P

Kr

y
¯

u
¯

z
¯w

a. Full order controller b. Reduced order controller

Solution

Find Qr such as:

‖∆KM−1
21 M22M−1

12 ‖∞ < 1 or ‖M−1
21 M22M−1

12 ∆K‖∞ < 1

with ∆K := Kr−K and Kr = M11 +M12Qr(I−M22Qr)
−1M21,
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H∞-controller order reduction

Sketch of proof

Approximation error ∆K := Kr−Kc.

∆K = M12Qr(I−M22Qr)
−1M21

Then
Qr = (I +M−1

12 ∆KM−1
21 M22)

−1M−1
12 ∆KM−1

21

Qr may be represented under the form:

Kr−KcM−1
21 M−1

12

M22

+

−

By using small gain theorem: ‖∆KM−1
21 M22M−1

12 ‖∞ < 1 or ‖M−1
21 M22M−1

12 ∆K‖∞ < 1
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H∞ controller order reduction

Reduction overview

Kr is a stabilizing controller (i.e: ‖F`(Kr,P)‖∞ < γ) if:

‖(Kr−K)M−1
21 M22M−1

12 ‖∞ < 1

‖W(Kr−K)V‖∞ < 1

Frequency weighted balanced truncation

V = M−1
21 M22M−1

12 and W = I
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Application: H∞ active suspension control

Quarter vehicle model

ms

mus

ks cs fs

kus

zs

zus

zr
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Application: H∞ active suspension control

Frequency domain analysis: Zs
Zr

(K: 14 states, Kr : 5 states )
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Application: H∞ active suspension control
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Application: H∞ active suspension control

Time Domain analysis: (bump of 0.05×0.2m at 30km/h)
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Application: H∞ active suspension control

Time Domain analysis: (bump of 0.05×0.2m at 30km/h)
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Robustness analysis

Robust Stability

∆r

G(s)

δkp

δk

δus

δs

zkpvkp

zkvk

zusvus

zsvs

ew

k = k(1+pkδk), kp = k(1+pkpδkp)
ms = k(1+psδs), mus = k(1+pusδus)

where {pk, pkp, ps, pus} ∈ [−1 ;1], {δk, δkp, δs, δus} ∈ [0 ;1] and ∆r(s) is the
uncertain block that contains the model uncertainties.
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Robustness analysis

Robust Performance

∆

N(s)

G(s)

K(s)

Pi(s) Po(s)

∆r

∆f

z∆v∆

yu

w ev z

∆f : fictive uncertain block that relays the controlled outputs to the exogenous inputs.
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Robustness analysis

Structured singular value: µ

For N ∈ Cn×n,µ∆(N) is defined as :

µ∆(N) = ( inf
∆∈∆
{σ(∆), det(I−∆N) = 0})−1

∆ = diag[δiIr1 , . . . ,δsIrS ,∆1 , . . . ,∆F ] δi ∈ C,∆j ∈ Cmj×mj
S
∑

i=1
ri +

F
∑

j=1
mj = n,

Theorem[Skogestad1996 ]

Let β > 0 and assume that the nominal system N(s) and the perturbations ∆ are
stable. Then, the feedback system is stable for all allowed perturbations
∆(·) ∈M(∆) such that ||∆||∞ < 1/β if and only if:

∀ω ∈ R, µ∆(Nz∆v∆
(jω)) ≤ β

Then, the following rules are verified ∀ω:

Robust Stability ⇐⇒ µ∆r
(Nz∆v∆

(jω)) < 1
Robust Performance ⇐⇒ µ∆(N(jω)) < 1

M(∆) := {∆(·) ∈RH∞ : ∆(s0) ∈ ∆ for all so ∈ C̄+}
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Robustness analysis

µ-upper and lower bounds

Robust Stability: µ∆(Nz∆v∆
(jω))
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In practice :

µ∆(Nz∆v∆
(jω))∈ [µ lb

∆
(Nz∆v∆

(jω)); µ
ub
∆
(Nz∆v∆

(jω))]

µ lb
∆
(Nz∆v∆

(jω)): µ-lower bound,
µub

∆
(Nz∆v∆

(jω)): µ-upper bound.

ms = 415±30% kg, mus = 52±30% kg, ks = 22000±10% N/m, and kus =
270000±10% N/m.
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Robustness analysis

µ-upper and lower bounds

Robust Performance: µ∆(N(jω))
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ms = 415±10% kg, mus = 52±10% kg, ks = 22000±4% N/m, and kus =
270000±4% N/m.
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Conclusions and Perspectives

Conclusions

FWBT techniques applied to the control order reduction

Closed–loop performance and stability.

Easy real–time processing.

Strong conditions on initial models.

Work in progress. . .

Robust control (applying FWBT on DK-iteration)

LPV-H∞ controller order reduction.

Applying to control semi-active suspension system.

Controller order reduction for uncertain systems.
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Thank you for your attention! Questions?
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