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Motivation

Semi-active suspension control problem:
- Main challenge: the dissipativity constraint of semi-active damper.
- LPV approach both for linear and nonlinear model of the damper:

Linear modeling [Poussot-Vassal et al., 2008], [DO et al., 2011]

Fdamper = cżdef

where the damping coefficient c ≥ 0 and c ∈ [cmin, cmax].

Nonlinear modeling [DO et al., 2010]

Fdamper = c0żdef + k0zdef + fI tanh
(
c1żdef + k1zdef

)
where c0, k0, c1 and k1 are constant parameters; fI ≥ and fI ∈ [fImin, fImax]

but validated only on the quarter car model.
Problem: A 7dof full vehicle model equipped 4 semi-active dampers
- Use a linear model for the damper→ 4 scheduling parameters
- The dissipative conditions of the semi-active dampers are recast as saturation
conditions on the control inputs.
- Motivate a state feedback input constrained control problem
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Vehicle Modelling

M.Q Nguyen [GIPSA-lab / SLR team] 5/26

A 7 dof full vertical vehicle model:
msz̈s = −Fsfl − Fsfr − Fsrl − Fsrr + Fdz
Ixθ̈ = (−Fsfr + Fsfl)tf + (−Fsrr + Fsrl)tr +mhay +Mdx

Iyφ̈ = (Fsrr + Fsrl)lr − (Fsfr + Fsfl)lf −mhax +Mdy

musz̈usij = −Fsij + Ftzij

(1)

Suspension force:
Fsij = kij(zsij − zusij ) + Fdamperij (2)

where Fdamperij is the semi-active controlled damper force and ρij = żdefij :

Fdamperij = cij(.)żdefij = cij(.)(żsij − żusij ) = cnomij żdefij + uH∞ij ρij (3)

Tire force:
Ftzij = −ktij (zusij − zrij ) (4)
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Rewrite (1) in the state space representation form:

ẋg(t) = Agxg(t) +B1gw(t) +B2g(ρ)u(t) (4)

where:
xg = [zs θ φ zusfl zusfr zusrl zusrr żs θ̇ φ̇ żusfl żusfr żusrl żusrr]

T ,

w = [Fdz Mdx Mdy zrfl zrfr zrrl zrrr]
T ,

u = [uH∞fl , uH∞fr , uH∞rl , uH∞rr ]T .
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Input and State constraints

The dissipativity constraint of the semi-active damper:

0 6 cminij 6 cij(.) 6 cmaxij (5)

cminij żdefij ≤ Fdamperij ≤ cmaxij żdefij if żdefij > 0 (6)

cmaxij żdefij ≤ Fdamperij ≤ cminij żdefij if żdefij ≤ 0

The dissipativity constraint is now recast into:

cminij żdefij ≤ cnomij żdefij + u
H∞
ij żdefij ≤ cmaxij żdefij if żdefij > 0

cmaxij żdefij ≤ cnomij żdefij + u
H∞
ij żdefij ≤ cminij żdefij if żdefij ≤ 0

Because of cnomij =
(cmaxij + cminij )

2
, then we must guarantee the Input constraint:

|uH∞ij | ≤
(cmaxij − cminij )

2
(7)

It should be noted that |ρij | = |żdefij | = |żsij − żusij | ≤ 1. Thus, to ensure the
constraints on the scheduling parameter |ρij | ≤ 1, we must ensure also a state constraint
which will be rewritten later as:

|H.x| ≤ 1 (8)

where x being the generalized system state and H is state constraint matrix.
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Control problem

Problem Statement: Design a suspension control in order to reduce the roll motion of
the vehicle equipped with 4 semi-active dampers. The suspension control must satisfy
the input saturation constraints (7) and the state constraint (8).
To tackle this problem, we consider an LPV approach detailed in the sequence.
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LPV Control in the presence of input
saturation
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System description

Consider a quasi-LPV system Sρ with input saturation and disturbance:

ẋ = A(ρ)x+B1(ρ)w +B2u

z = C1(ρ)x+D11(ρ)w +D12u (9)

Let us consider the following assumptions:
ρ is bounded to be able to apply the polytopic approach for LPV system:

ρ ∈ Ω =
{
ρi | ρi ≤ ρi ≤ ρi, i = 1, ..k

}
The applied control signal u takes value in the compact set:

U = {u ∈ Rm/− u0i 6 ui 6 u0i, i = 1, ...,m} (10)

The input disturbances w are supposed to be bounded in amplitude i.e w belongs
to a setW:

W =
{
w ∈ Rq/wTw < δ

}
(11)

The state vector is assumed to be known (measured or estimated) and the
trajectories of system must belong to a region X defined as follows:

X = {x ∈ Rn/|Hix| ≤ h0i, i = 1, ..., k} (12)
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Figure: State feedback control with input saturation

A state feedback control law is considered (Fig.1) and the control signal v(t) computed by the state
feedback controller is given by:

v(t) = K(ρ)x(t)

where K(ρ) ∈ Rm×n is a parameter dependent state feedback matrix gain.
Then, the applied control u to system (9) is a saturated one, i.e:

u(t) = sat(v(t)) = sat(K(ρ)x(t)) (13)

where the saturated function sat(.) is defined by:

sat(vi(t)) =


u0i if vi(t) > u0i

vi(t) if − u0i ≤ vi(t) ≤ u0i

−u0i if vi(t) < −u0i

(14)
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The closed-loop system obtained from the application of (13) in (9) reads as follows:
ẋ = A(ρ)x + B1(ρ)w + B2sat(K(ρ)x) (15)

z = C1(ρ)x +D11(ρ)w +D12sat(K(ρ)x)

Let us define now the vector-valued dead-zone function φ(K(ρ)x):
φ(K(ρ)x) = sat(K(ρ)x)−K(ρ)x (16)

From (16), the closed-loop system can therefore be re-written as follows:
ẋ = (A(ρ) + B2K(ρ))x + B2φ(K(ρ)x) + B1(ρ)w (17)

z = (C1(ρ) +D12K(ρ))x +D12φ(K(ρ)x) +D11(ρ)w

Problem definition

We propose the design of a state feedbackK(ρ) for the LPV system (15) in order to satisfy the following conditions:

When the control input signal is saturated, the nonlinear behavior of the closed-loop system must be
considered and the stability has to be guaranteed both internally as well as in the context of input to state, that
is:
- for w ∈ W , the trajectories of the closed-loop system must be bounded.
- if w(t) = 0 for t > t1 > 0 then the trajectory of the system converge asymptotically to the origin.

The control performance objective consists in minimizing the upper bound for the L2 gain from the
disturbance w to the controlled output z, i.e Min γ > 0, such that:

sup
‖z‖2
‖w‖2

< γ (18)

Remark:

In order to reduce the conservatisme, the L2 performance problem is solved only in the case that the input
saturation is not activated.
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Controller design
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Stability analysis
Let us first define the following polyhedral set (saturation model validity region):

Sρ(K,G, u0) =
{
x ∈ Rm | −u0 � (K(ρ)−G(ρ))x � u0

}
(19)

where this inequality stands for each input variable.

Lemma 1: Sector condition ([Gomes da Silva, 2005])

If x ∈ Sρ(K,G, u0), then the deadzone function φ satisfies the following inequality:

φ(K(ρ)x)
T
T (ρ)[φ(K(ρ)x) +G(ρ)x] 6 0 (20)

for any diagonal and positive definite matrix T (ρ) ∈ Rm×m.

Definition: ([Blanchini, 1999])

The set E ⊂ Rn is said to be W-invariant if ∀x(t0) ∈ E, ∀w(t) ∈ W implies that the trajectory
x(t) ∈ E for all t > t0.

Remark: ([Boyd et al., 1994])

The quadratic stability of a system can be intepreted in term of the existence of an invariant
ellipsoid.

Consider an ellipsoidal set E associated to a Lyapunov function V = xTPx with P = PT � 0,

E(P ) =
{
x ∈ Rn : x

T
Px < 1

}
(21)
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Stability analysis
Let us first define the following polyhedral set (saturation model validity region):

Sρ(K,G, u0) =
{
x ∈ Rm | −u0 � (K(ρ)−G(ρ))x � u0

}
(19)

where this inequality stands for each input variable.

Lemma 1: Sector condition ([Gomes da Silva, 2005])

If x ∈ Sρ(K,G, u0), then the deadzone function φ satisfies the following inequality:

φ(K(ρ)x)
T
T (ρ)[φ(K(ρ)x) +G(ρ)x] 6 0 (20)

for any diagonal and positive definite matrix T (ρ) ∈ Rm×m.

Definition: ([Blanchini, 1999])

The set E ⊂ Rn is said to be W-invariant if ∀x(t0) ∈ E, ∀w(t) ∈ W implies that the trajectory
x(t) ∈ E for all t > t0.

Remark: ([Boyd et al., 1994])

The quadratic stability of a system can be intepreted in term of the existence of an invariant
ellipsoid.

Consider an ellipsoidal set E associated to a Lyapunov function V = xTPx with P = PT � 0,

E(P ) =
{
x ∈ Rn : x

T
Px < 1

}
(21)
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Theorem 1: Stability condition

If there exist a matrix Q-positive definite, a matrix S(ρ)-diagnonal positive definite, matrices K̄(ρ), Ḡ(ρ) of
appropriate dimensions and positive scalar λ2 such that the following conditions are verified:

 M̄(ρ) (B2S(ρ)− Ḡ(ρ)T ) B1(ρ)

(S(ρ)BT2 − Ḡ(ρ)) −2S(ρ) 0

B1(ρ)T 0 −λ2I

 < 0 (22)

where M̄(ρ) = (QA(ρ)T + K̄(ρ)TBT2 ) + (QA(ρ)T + K̄(ρ)TBT2 )T + λ1Q.

[
Q (K̄i(ρ)− Ḡi(ρ))T

K̄i(ρ)− Ḡi(ρ) u2
0i

]
� 0, i = 1, ...,m (23)

where K̄i(ρ), Ḡi(ρ) are ith line of K̄(ρ), Ḡ(ρ) respectively.

[
Q QHTi
HiQ h2

0i

]
≥ 0, i = 1, ..., k (24)

λ2δ − λ1 < 0 (25)

Then, with K(ρ) = K̄(ρ)Q−1:
a) For any w ∈ W and x(0) ∈ E(P) the trajectories do not leave E(P), i.e. E(P) is an W-invariant domain for
the system (15).
b) If x(0) ∈ E(P) and w(t) = 0 for t > t1, then the corresponding trajectory converge asymptotically to the
origin , i.e. E(P) (with P = Q−1) is included in the region of attraction of the closed-loop system (15).
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Proof:

M.Q Nguyen [GIPSA-lab / SLR team] 15/26

Idea: Demonstrate that E(P) is a W-invariant set for the system ∀w(t) ∈ W.
This condition can be satisfied if there exist scalars λ1 > 0 and λ2 > 0, such that

V̇ + λ1(ξTPξ − 1) + λ2(δ − wTw) < 0 (26)

From "Lemma 1": φ(K(ρ)x)TT (ρ)[φ(K(ρ)x) +G(ρ)x] 6 0, then (26) is satisfied if:

V̇ + λ1(xTPx− 1) + λ2(δ − wTw)− 2φ(K(ρ)x)TT (ρ)[φ(K(ρ)x) +G(ρ)x] < 0 (27)

Then we obtain: (22),(25).

Then, to ensure that x(t) belongs effectively to Sρ(K,G, u0)
and that the state constraints are not violated, we must ensure
that E(P ) ⊂ Sρ(K,G, u0) ∩ X , i.e E(P ) ⊂ Sρ(K,G, u0) and
E(P ) ⊂ X .
It leads to (23),(24).

Finally, if w(t) = 0, it follows: V̇ (x(t)) ≤ −λ1xTPx < 0.
i.e V (x(t)) ≤ e−λ1tV (x(0)), it means that the trajectories of the system
converge asymptotically to the origin. �
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Performance objective

Disturbance attenuation

V̇ (x(t)) +
1

γ
z
T
z − γwTw < 0 (28)

In linear mode, sat(K(ρ)x) = K(ρ)x, the closed loop system (15) becomes:

ẋ = (A(ρ) + B2K(ρ))x+ B1(ρ)w (29)

z = (C1(ρ) +D12K(ρ))x+D11(ρ)w

Then, condition (28) holds if the following inequality is satisfied: N (ρ) PB1(ρ) (C1(ρ) +D12K(ρ))T

B1(ρ)TP −γI DT11
C1(ρ) +D12K(ρ) D11 −γI

 < 0 (30)

where N (ρ) = (A(ρ) + B2K(ρ))TP + P (A(ρ) + B2K(ρ)).
Pre and post-multiplying (30) by diag(P−1, I, I), and with P−1 = Q one obtains: N̄ (ρ) B1(ρ) (QC1(ρ)T + K̄(ρ))TDT12

B1(ρ)T −γI DT11
C1(ρ)Q+D12K̄(ρ) D11 −γI

 < 0 (31)

where N̄ (ρ) = (QA(ρ)T + K̄(ρ)TBT2 ) + (QA(ρ)T + K̄(ρ)TBT2 )T
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Controller computation

The state feedback gain K(ρ) that satisfies the stability condition for the saturated
system and the disturbance attenuation for the unsaturated system can be derived by
solving the following optimization problem:

min
Q,S,K̄,Ḡ,λ2

γ

subject to (22, 23, 24, 25, 31),

Q, S > 0, λ2 > 0.

(32)

Then the state feedback gain matrix K(ρ) can be computed by:

K(ρ) = K̄(ρ)P = K̄(ρ)Q−1 (33)

where:

K(ρ) =
2k∑
j=1

αj(ρ)Kj ,
2k∑
j=1

αj(ρ) = 1.
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Application of LPV approach to the
full vehicle

M.Q Nguyen [GIPSA-lab / SLR team] 18/26
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Performance objective: reduce the roll motion of the vehicle.
→ Minimizing the effect of the road disturbance w to the controlled output z (z = θ)
while taking into account the actuator saturation.
The H∞ framework is used to solve this objective, the weighting function Wθ on θ is
added:

Wθ = kθ
s2 + 2ξ11Ω1s+ Ω1

2

s2 + 2ξ12Ω1s+ Ω1
2
. (34)

Noting that 7 DOF vertical model:

ẋg(t) = Agxg(t) +B1gw(t) +B2g(ρ)u

has the parameter dependent input matrix B2g(ρ)→ add a low pass filter to obtain the
parameter independent input matrix.
The interconnection between the 7 DOF vertical model, Wθ , and the low pass filter
gives the following parameter dependent suspension generalized plant (Σgv(ρ)):

Σgv(ρ) :

{
ẋ = A(ρ)x+B1w +B2u
z = C1x+D11w +D12u

(35)

where x = [xTg x
T
wf x

T
f ]T , xg , xwf , xf are the vertical model, weighting function and

filter states respectively.
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Context of simulation: Full nonlinear vehicle model, validated in a real car "Renault
Mégane Coupé " coll. MIPS lab [Basset, Pouly and Lamy]:

The varying parameter ρij = żdefij ∈ [−1 1]

The damping coefficients vary as follows:
-For the front dampers: cminf = 660 Ns/m, cmaxf = 3740 Ns/m.
-For the rear dampers: cminr = 1000 Ns/m, cmaxr = 8520 Ns/m.
Thus, the input constraints (7) lead to:
[|uH∞fl | |u

H∞
fr | |u

H∞
rl | |u

H∞
rr |] ≤ [1540 1540 3760 3760]

The road profile is chosen in the setW subject to (11) with δ = 0.01 m2.

The state constraint in (12) is the constraint on suspension deflection speed:
|żdefij | = |żsij − żusij | = |Hg .xg | = |[Hg 0wf 0f ]x| = |Hx| ≤ 1. where Hg is
the matrice that allows to calculate żdefij from xg and 0wf , 0f are zero matrices.

The scenario is proposed:

The vehicle runs at 90km/h in a straight line on a dry road ( µ = 1, where µ
stands for the adherence to the road).

A 5cm bump occurs on the left wheels (from t = 0.5s to t = 1s). A lateral wind
disturbance occurs also in this time to excite the roll motion.

Moreover, a line change that causes also the roll motion is performed from t = 4s
to t = 7s.
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The road profile and steering angle are shown in the Fig. 2 and Fig. 3.
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Conclusion
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Conclusions

Application of an LPV/H∞ State Feedback approach subject to input saturation
to the problem of semi-active suspension control for a full vehicle equipped with 4
semi-active dampers.

Future works

Consider different performance objectives: comfort, road holding or suspension
stroke...

Reduce the conservatism of the solution (for example, use two different Lyapunov
functions for stability and performance)

To implement this strategy on a test bed, available at Gipsa-lab Grenoble.

Figure: Car equipped by 4 semi-active suspension dampers.
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