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Context and objectives

Since its introduction, µ-analysis has been extensively studied both in the
academic and in the industrial worlds.

Several methods have been developed in the last 30 years in order to
tackle the problem of computing the structured singular value µ.

Due to NP-hardness, bounds are computed instead of the exact value.

1 Most of the computationally tractable techniques to compute µ
upper bounds rely on the so-called (D,G) scalings formulation.
→ the resulting bounds are sometimes quite conservative
→ the computational time is sometimes quite large

2 A wide number of very different approaches have been developed to
compute µ lower bounds.
→ no extensive comparison is available
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Context and objectives

Main contributions

Present a thorough comparison of the most significant µ lower
bound algorithms on a wide set of real-world applications.

Propose simple improvements to these algorithms to approach the
exact value of µ with a reasonable computational cost.

Develop several techniques to reduce the gap between µ and its
upper bound with a moderate computational time.

Objectives

Compute the (almost) exact value of µ in (almost) all cases, even
for medium/large size problems addressed by control engineers.

Propose a user-friendly Matlab Toolbox, which implements
state-of-the-art algorithms.
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Problem statement

Stability/performance of LTI systems with time-invariant uncertainties.

-

�∆(s)

M(s)

M(s) is a stable and proper real-rational transfer
function ⇒ nominal system.

∆(s) = diag(∆1(s), . . . ,∆N(s)) is a block-diagonal
operator ⇒ model uncertainties. ∆i (s) can be:

a time-invariant diagonal matrix ∆i (s) = δi Ini ,
where δi is a real/complex parametric uncertainty,
a stable and proper real-rational unstructured
transfer function representing neglected dynamics.

∆ is the set of all matrices with the same block-diagonal structure and
the same nature (real or complex) as ∆(jω) ⇒ admissible uncertainties.

kB∆ = {∆ ∈ ∆ : σ(∆) < k} ⇒ maximum size of the uncertaintes.
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Problem statement

Definition
Let ω∈R+ be a given frequency. If no matrix ∆∈∆ makes I −M(jω)∆
singular, then the structured singular value µ∆(M(jω)) is zero. Otherwise:

µ∆(M(jω)) =
[
min
∆∈∆
{σ(∆), det(I −M(jω)∆) = 0}

]−1
Lemma
The interconnection M(s)−∆(s) is stable ∀∆(s) ∈ krB∆, where the
robust stability margin kr is defined as the inverse of the largest value of
µ∆(M(jω)) over the whole frequency range:

kr =
[
max
ω∈R+

µ∆(M(jω))
]−1

The main objective of this work is to determine kr , i.e. to compute the
best possible µ upper and lower bounds over the whole frequency range.
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Survey of existing µ lower bound algorithms

All methods that can be applied to real-world benchmarks are mentioned.
µ lower bounds and destabilizing values of ∆(s) are obtained in all cases.

1 Power algorithm
- a non-concave optimization problem is solved: µ∆(M) = max

Q∈Q
ρR (QM)

- a local maximum (µ lower bound) is computed using a fixed point iteration

2 Gain-based algorithm
- the problem is reformulated as a worst-case H∞ performance problem
- real uncertainties are computed so as to bring the H∞ norm to infinity
- complex uncertainties are obtained using the power algorithm

3 Poles migration techniques
- the idea is to move an eigenvalue of the state matrix A0 of the interconnection
between M(s) and ∆ towards the imaginary axis

- first approach: use of a first-order characterization of the variation dλi in the
ith eigenvalue λi (A0) of A0 caused by a small variation d∆ of ∆
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Survey of existing µ lower bound algorithms

- a series of such perturbations d∆ are computed, which progressively move
the eigenvalues towards the imaginary axis

- two algorithms exist:
1. the uncertainty with minimum Froebenius norm which brings an

eigenvalue on the imaginary axis is determined, and then the one with
minimum σ norm such that the system remains at the limit of stability

2. the power algorithm is applied for a few frequencies on a regularized
problem (addition of a small amount of complex uncertainty) ; using
the results as an initialization, a series or LP problems are solved until
one of the eigenvalues of the interconnection becomes unstable.

- second approach: resolution of an optimization problem with a nonsmooth
objective function and a non-convex constraint: min

∆∈∆
σ(∆) such that

λmax (A0) = max
i
< (λi (A0)) = 0

- Matlab standard nonlinear optimization algorithms are used
- a relaxed condition is considered in practice to avoid convergence issues: the
equality constraint is replaced with |λmax (A0)| ≤ ε
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Survey of existing µ lower bound algorithms

4 Direct optimization-based techniques
- direct resolution of an optimization problem with a nonsmooth objective
function and a non-convex constraint: min

∆∈∆
σ(∆) such that det(I −M∆) = 0

- a relaxed condition is considered in practice to avoid convergence issues: the
equality constraint is replaced with σ(I −M∆) ≤ ε or |det(I −M∆)| ≤ ε

- different optimization tools:
1. Matlab standard nonlinear optimization algorithms (function fmincon)
2. nonsmooth optimization algorithms

- convergence to a local minimum is ensured in the latter case

5 Geometrical approach
- the signs of the real and the imaginary parts of det(I −M∆) are computed
for randomly selected points on the surface of a given hyperbox in RN

- this hyperbox is enlarged until the four possible sign combinations are found,
which means that it might contain values of δ1, . . . , δN s.t. det(I −M∆) = 0

- a series of contractions and expansions involving nonlinear optimization are
performed to approach the singular region
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Selected µ lower bound algorithms

Eight µ lower bound algorithms are compared in this work:

Description Uncertainties Matlab code
1 Power algorithm all Robust Control Toolbox
2 Gain-based algorithm all but complex Robust Control Toolbox
3 Poles migration technique all Carsten Döll
4 Poles migration technique real SMAC Toolbox
5 Poles migration technique all Mark Halton
6 Direct nonlinear optimization all Mark Halton
7 Direct nonsmooth optimization all Alberto Simoes
8 Geometrical approach real Jongrae Kim

Some other algorithms exist but are not considered here:
exponential-time algorithms,
methods which can only be applied in very specific cases,
slight variants of already selected techniques.
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Selected µ lower bound algorithms

Classical strategy: compute µ lower bounds on a fixed frequency grid:
50 logarithmically-spaced points within the system bandwidth
50 additional points used to refine the grid in some frequency regions
corresponding to weakly damped modes

The same grid is used for all grid-based methods (1-2-6-7-8).

Alternative: compute bounds on a set of frequency intervals whose union
covers the whole frequency range (requires to solve a skew-µ problem).
Interval-based implementations are available for methods 6 and 7 ⇒ the
system bandwidth is divided into 6 and 4 frequency intervals of equal size
on a logarithmic scale respectively.

Special case of poles migration techniques (3-4-5): no tight grid is
required since frequency is naturally optimized:

coarse 10-point grid used as an initialization for method 4
no frequency grid at all for methods 3 and 5
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List of benchmarks

Large set of 36 challenging benchmarks:

a few academic systems and many real-world applications
purely real, mixed real/complex or purely complex uncertainties
large number of states (from 2 up to 70)
large number of uncertainties (from 1 up to 28), repeated or not, even
highly repeated in some cases (size of ∆ up to 507× 507)
both rigid & highly flexible models (aircraft, telescope mockup, satellite...)
several fields of application (civilian & fighter aircraft, launcher, re-entry
vehicle, satellite, telescope, helicopter, spacecraft, missile, hard disk drive,
biochemical network, car, hydraulic servo system, spark ignition engine...)

32 of these 36 benchmarks are available in the control literature. The
other 4 ones have been developed by ONERA in cooperation with
industrial partners. See the papers for all details and references!
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Results for purely complex and mixed problems

Only algorithms 1-3-5-6-7 can be applied to benchmarks 30-36.

Algo
No. of times the gap w.r.t. Mean gap Mean
the best µ lower bound is w.r.t. the best CPU

=0% ≤5% ≤25% µ lower bound time
1 4 7 7 0.10% 1.1 s
3 0 4 6 16.60% 0.9 s
5 2 2 3 57.12% 140.8 s

6 (g) 1 7 7 0.34% 2648.8 s
6 (i) 0 5 7 4.26% 874.2 s
7 (g) 4 4 6 10.63% 3972.6 s
7 (i) 2 5 6 7.91% 249.5 s

The most relevant algorithm is the power algorithm of Young & Doyle
[TAC, p.123-128, 1997] with the highest accuracy and almost the lowest
computational time.
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Improvement for purely complex and mixed problems

→ The power algorithm is applied on a fixed frequency grid, which usually
does not contain the frequency corresponding to the exact value of µ.

→ It almost always converges in the presence of complex uncertainties,
but it sometimes requires a quite large number of iterations.

→ The considered optimization problem is non-concave and the results
strongly depend on the initialization.

Idea: better exploit the power algorithm

1 algorithm 1 is applied on a rough frequency grid (e.g. 20 frequency points)
2 the grid is gradually tightened around the peak frequencies until

improvement in the µ lower bound becomes marginal

At each frequency, algorithm 1 is not only initialized with the best result
obtained at the previous frequency, but also with one or more random values.
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Improvement for purely complex and mixed problems

This strategy has been implemented in the Systems Modeling Analysis
and Control (SMAC) Toolbox for Matlab developed at ONERA.

Benchmark Initial µ lower bound Improved µ lower bound
value time value time

30 1.6828 0.4 s 1.6828 0.4 s
31 3.7245 0.3 s 3.7245 0.2 s
32 0.8908 1.6 s 0.8908 2.0 s
33 0.4346 0.7 s 0.4362 0.6 s
34 0.9587 1.1 s 0.9606 1.3 s
35 0.9910 1.7 s 0.9927 2.1 s
36 15.0296 1.7 s 15.0296 1.1 s

The best lower bound is obtained for all benchmarks with this strategy.
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Results for purely real problems

All algorithms are applied to benchmarks 1-29.

Algo
No. of times the gap w.r.t. Mean gap Mean
the best µ lower bound is w.r.t. the best CPU

=0% ≤5% ≤25% µ lower bound time
1 6 9 13 44.10% 1.7 s
2 2 19 24 11.87% 27.1 s
3 5 16 22 18.81% 1.0 s
4 26 27 29 0.88% 0.9 s
5 22 26 26 8.95% 22.8 s

6 (g) 5 18 24 11.09% 448.8 s
6 (i) 9 20 23 15.72% 97.8 s
7 (g) 8 17 23 17.44% 1694.9 s
7 (i) 24 25 25 9.36% 124.3 s
8 0 8 17 24.38% 749.4 s

The most relevant algorithm is the poles migration technique of
Ferreres & Biannic [CEP, p.1267-1278, 2001] with by far the highest
accuracy and also the lowest computational time.
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Improvement for purely real problems

Improving the poles migration technique is not a trivial issue.

Idea: combine several algorithms
1 algorithm 4 is executed first (most efficient technique in almost all cases)
2 algorithm 2 is then executed only for a few selected frequencies using the

previous results as an initialization
3 particle swarm optimization is finally applied using the previous results as

an initialization

This strategy has been implemented in the SMAC Toolbox.

Bench Algorithm 4 Other algorithms Combination
value time best value time algo value time

20 0.9380 0.5 s 0.9947 41.6 s 7 0.9947 5.5 s
26 0.9881 2.2 s 1.2134 184.9 s 7 1.2144 18.0 s
29 724.15 46.9 s 733.86 2864.8 s 2 753.10 580.0 s

The best lower bound is obtained for all benchmarks with this strategy.
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µ upper bound computation

Strategies exist to compute the best possible µ lower bound in all cases.

What about conservatism, which is measured as the gap with respect to
the exact value of µ?

The next step is to compute µ upper bounds to evaluate this gap.

(D,G) scalings based characterization
Let β > 0. If there exist matrices D ∈ D and G ∈ G which satisfy one of
the following relations:

M(jω)∗DM(jω) + j(GM(jω)−M(jω)∗G) ≤ β2D

σ

(
(I + G2)−

1
4

(
DM(jω)D−1

β
− jG

)
(I + G2)−

1
4

)
≤ 1

where
{
D={D = D∗ > 0 : ∀∆∈∆,D∆ = ∆D}
G ={G = G∗ : ∀∆ ∈ ∆, G∆ = ∆∗G} , then µ∆(M(jω)) ≤ β.
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µ upper bound computation

Computing a µ upper bound on R+ involves an infinite number of
frequency-domain constraints ⇒ usually solved on a finite frequency grid.

Problem
The frequency for which the maximal value of µ is reached is generally
not part of the grid, since it is unknown ⇒ kr can be over-evaluated.

In this context, the frequency grid must be quite dense, which can lead
to a prohibitive computational cost. But even so, it is still possible to
miss a critical frequency. . .

Alternative method implemented in the SMAC Toolbox
A µ upper bound is first determined at some frequency.
A hamiltonian-based technique is then applied to determine all frequency
intervals on which this bound remains valid.
This strategy is repeated and a guaranteed µ upper bound is finally
obtained when the union of all intervals covers the whole frequency range.
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Gap between µ lower and upper bounds

A µ upper bound is computed for each of the 36 benchmarks using the
SMAC Toolbox for Matlab using the aforementioned algorithm.

The mean value of the gap between the lower and the upper bounds µ̌
and µ̂ is:

12.71% for purely real problems
0.39% for purely complex and mixed real/complex problems

Is it the lower or the upper bound on µ which is responsible for this gap?

Claim
The µ lower bound almost always equals the exact value of µ.

No proof, but true in many practical cases!
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Focus on purely complex and mixed problems

For 6 benchmarks out of 7, the gap between µ̌ and µ̂ is less than 0.00%.

For the last one, a branch & bound algorithm is applied to improve µ̂.

Without branch & bound With branch & bound
Bench Value of µ̌ Value of µ̂ Gap Value of µ̂ Gap
33 0.4346 0.4479 2.68% 0.4346 0.00%

The mean value of the gap over all 7 benchmarks is now less than 0.00%.

For all benchmarks, it has been proved that the µ lower bound is equal to
the exact value of µ.
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Focus on purely real problems

For 19 benchmarks out of 29, the gap between µ̌ and µ̂ is less than 0.00%.
For the 10 others, a branch & bound algorithm is applied to improve µ̂.

Without branch & bound With branch & bound
Bench Value of µ̌ Value of µ̂ Gap Value of µ̂ Gap

3 1.7111 2.4131 41.03% 1.7111 0.00%
10 1.6200 1.9757 21.96% 1.6200 0.00%
16 0.8182 0.8187 0.06% 0.8182 0.00%
17 0.6667 0.6875 3.12% 0.6667 0.00%
19 0.9966 1.0875 9.12% 0.9966 0.00%
20 0.9947 1.0073 1.27% 0.9947 0.00%
22 0.1842 0.2283 23.94% 0.1842 0.00%
23 1.6668 2.2237 33.41% 1.7000 1.99%
27 0.8619 2.7235 215.99% 0.9481 10.00%
29 753.10 894.36 18.76% 754.00 0.12%

The mean value of the gap over all 29 benchmarks is now only 0.42%.

For all except one benchmarks, it has been proved that the µ lower
bound is (almost) equal to the exact value of µ.

Problem: computing tight µ upper bounds can be extremely long.
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Towards a reduction of conservatism

The gap between µ upper and lower bounds is usually very reasonable,
but it can unfortunately be quite large in some cases.

This is essentially due to the conservatism of the µ upper bound. From
experience, the µ lower bound is usually very close to the true value of µ.

Several solutions can be considered to reduce conservatism and CPU time:

branch & bound → already implemented in the SMAC Toolbox,
µ-sensitivities to focus on the most relevant uncertainties,
less conservative µ upper bound characterizations,

} available
in a future
releasefaster LMI solvers (SeDuMi. . . ).

This work focuses on the first three items for problems with purely real
uncertainties.
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Branch-and-bound algorithms

Standard branch & bound algorithm

Partition the uncertainty domain in more and more subsets until the gap
between:

the highest lower bound computed on all subsets and

the highest upper bound computed on all subsets

becomes lower than a user-defined threshold η.

→ Conservatism can be reduced to an arbitrarily small value for systems
with only real parametric uncertainties.

→ Computational complexity grows exponentially as a function of the
number of uncertain parameters (it can take hours and even days to
get a tight µ upper bound for some benchmarks).
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Branch-and-bound algorithms

Improved branch & bound algorithm

Assume that for a given subset Di , stability can only be proved for
frequencies ω ∈ ΩV ⊂ R+:

→ Di is partitioned,

→ for each subset of Di , the analysis is restricted to the frequency
domain ΩI = R+r ΩV .
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µ U
B

Ω
I,1

Ω
I,2 Ω

I,3 After a few steps, each analysis is restricted
to narrow frequency intervals.

⇒ drastic reduction of computational cost,
but still not sufficient...
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Use of the µ-sensitivities

The µ-sensitivities introduced by Braatz & Morari [ACC, p.231-236,
1991] aim at determining how the value of µ changes with a small
variation of a single uncertainty in ∆.

µ-sensitivities
Let M = M(jω) be the frequency response of M(s) at a frequency ω. Let
∆ = diag(δ1In1 , . . . , δN InN ) and A(εj) = diag(In1 , . . . , (1− εj)Inj , . . . , InN ).
The jth µ-sensitivity is defined as:

Sµj =
∂

∂εj
µ∆(Mεj ) = lim

εj→0+

|µ∆(M)− µ∆(Mεj )|
εj

where Mεj = A(εj)MA(εj).

The µ-sensitivities can thus be used to identify which uncertainties have
the largest influence on the µ upper bound.
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Use of the µ-sensitivities

1 Application to the (D,G) scalings based characterization
The decision variables associated to the most "critical" uncertainties are
optimized using an LMI solver, while the others are obtained using a
suboptimal and faster gradient descent method.

∆ = diag(δ1In1 , ..., δN InN )⇒
{
D = {diag(D1, ...,DN),Di ∈ Cni×ni ,Di = D∗i }
G = {diag(G1, ...,GN),Gi ∈ Cni×ni ,Gi = G∗i }

→ only some of the Di and Gi matrices are optimized using an LMI solver

Bench µ̂LMI µ̂pLMI µ̂GD

CPU time Gap w.r.t µ̂LMI CPU time Gap w.r.t µ̂LMI CPU time
25 63 s 0.01% 20 s 20.41% 9 s
26 306 s 0.57% 30 s 20.47% 6 s
27 3546 s 26.58% 100 s 63.37% 36 s

satellite 2555 s 97.34% 49 s 230.48% 22 s

µ upper bounds close to µ̂LMI are obtained with a computational time close to
the one needed to compute µ̂GD .
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Use of the µ sensitivities

2 Application to the multiplier based characterization

Focus on purely real uncertainties: ∆ = diag(δ1In1 , . . . , δN InN ).

Multiplier based characterization

Let α > 0. If there exist a matrix C ∈ Cn×n, where n =
N∑

i=1
ni , such that:

He C(In −∆M(jω)) < 0 for all ∆ =
1
α
diag(±In1 , . . . ,±InN )

then µ∆(M(jω)) ≤ α.

+ less conservative than the (D,G) scalings based characterization,
- unstructured multiplier C ⇒ large number of decision variables,
- 2N constraints ⇒ exponential growth of computational complexity,
- only applicable at a single frequency ⇒ use of a frequency grid.
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Use of the µ-sensitivities

Proposed solutions:
exploit rank deficiency: if M = AB∗, where A,B ∈ Cn×q and q = rank(M),
the size of C can be restricted to q × q instead of n × n,
use the µ-sensitivities: if the r most "critical" uncertainties are handled
using the multiplier approach and the others using the (D,G) scalings
approach, the number of constraints drops from 2N to 2r ,
use a hamiltonian-based technique to compute µ upper bounds which are
guaranteed on the whole frequency range and not only on a grid.

Benchmark (D,G) scalings Multiplier
Gap w.r.t. µ̌ CPU time r Gap w.r.t. µ̌ CPU time

3 41.03% 1 s 2 1.23% 42 s

10 27.59% 6 s 2 14.20% 120 s
4 0.09% 477 s

22 24.46% 11 s 5 12.88% 133 s
9 5.34% 1190 s

Conservatism is significantly reduced with a reasonable computation time.
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Use of the µ-sensitivities

3 Application to branch & bound

The uncertainty domain is cut along the most "sensitive" edges instead of
the longest edges.

Benchmark Gap η Standard B&B Use of the µ-sensitivities
CPU time CPU time

19 2% 1787 s 104 s
22 5% 348 s 180 s
23 5% 688 s 481 s

27 10% ∞ 901 s
85% 280 s 10 s

29 10% 36269 s 1485 s

Conservatism is significantly reduced with a much more reasonable
computational time.
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Conclusion

A thorough comparative analysis of the main existing methods to compute
µ lower bounds has been presented. The most relevant algorithms are:

the poles migration technique of Ferreres & Biannic [CEP, p.1267-1278,
2001] for purely real problems
the power algorithm of Young & Doyle [TAC, p.123-128, 1997] for
purely complex or mixed real/complex problems

36 challenging benchmarks have been considered, with various fields of
application, system dimensions and structures of the uncertainties.

A strategy has been proposed to combine the most efficient techniques.
In almost all cases, the µ lower bound is equal to the exact value of µ.

Several solutions have been proposed to reduce conservatism and
computational time when computing µ upper bounds: branch & bound,
µ-sensitivities, alternative µ upper bound characterizations. . .

Similar results are obtained for skew-µ problems.
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Overview of the SMART Library of the SMAC Toolbox

Matlab routines to compute tight bounds on µ are available in the Skew-Mu
Analysis based Robustness Tools (SMART) Library of the SMAC Toolbox:

http://w3.onera.fr/smac

More generally, the SMART Library implements most of the µ-analysis based
algorithms developed at ONERA/DCSD and allows to compute:

the (skewed) structured singular value,
the (skewed) robust stability margin,
the worst-case H∞ performance level,
the worst-case gain, modulus, phase and delay margins.

It can be applied to high-order systems with numerous uncertainties.

It is currently the most efficient available software.

A new release of the SMART Library will be issued in 2015!
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List of benchmarks

Benchmark Description States Uncertainty block ∆
Size Structure

1 Academic example 5 1 1×1
2 Academic example 4 3 3×1
3 Academic example 4 4 2×2
4 Inverted pendulum 4 3 3×1
5 Anti-aliasing filter 2 5 3×1 + 1×2
6 DC motor 4 5 3×1 + 1×2
7 Bus steering system 9 5 1×2 + 1×3
8 Satellite 9 4 2×1 + 1×2
9 Bank-to-turn missile 6 4 4×1
10 Aeronautical vehicle 8 4 4×1
11 Four-tank system 10 4 4×1
12 Re-entry vehicle 6 8 1×2 + 2×3
13 Missile 14 4 4×1
14 Cassini spacecraft 17 4 4×1
15 Mass-spring-damper 7 6 6×1
16 Spark ignition engine 4 7 7×1
17 Hydraulic servo system 8 8 8×1
18 Academic example 41 5 3×1 + 1×2
19 Drive-by-wire vehicle 4 16 2×1 + 7×2
20 Re-entry vehicle 7 13 3×1 + 1×4 + 1×6
21 Space shuttle 34 9 9×1
22 Rigid aircraft 9 14 14×1
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List of benchmarks

Benchmark Description States Uncertainty block ∆
Size Structure

23 Fighter aircraft 10 27 7×1 + 1×2 + 1×3 + 1×15
24 Flexible aircraft 46 20 20×1
25 Telescope mockup 70 20 20×1
26 Hard disk drive 29 27 19×1 + 4×2
27 Launcher 30 45 16×1 + 10×2 + 1×3 + 1×6
28 Helicopter 12 120 4×30
29 Biochemical network 7 507 13×39
30 Himat fighter aircraft 16 4 2×2(c)
31 F14 fighter aircraft 52 8 1×2(c) + 1×6(c)
32 DC motor 4 6 3×1 + 1×2 + 1×1(c)
33 Four-tank system 12 6 4×1 + 1×2(c)
34 Missile 19 6 4×1 + 2×1(c)
35 Hydraulic servo system 9 9 8×1 + 1×1(c)
36 Space shuttle 46 18 9×1 + 1×9(c)

The notation m×p in the last column means that ∆ contains m blocks of size p×p.
All blocks are real unless (c) is specified. All real/complex blocks are diagonal/full.

All benchmarks can be freely downloaded from the SMAC website:
http://w3.onera.fr/smac/smart
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