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Example: Tunnel Diode Oscillator

Diode

G

V. l() Tunnel N7 =

v VC=%<_ICZ(VC)+IL)
l/d jL %(_VC_RIL"'Vm)

Dang, Donze, Maler, FMCAD’ 04

e What are good parameters?

— startup conditions
— parameter variations
— disturbances
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Example: Tunnel Diode Oscillator

R=0.20Q — Oscillation

1.2

1.0

0.8

0.6

04

0.2

0.0

\

nitial states

00 0.1 02 03 04 05



Example: Tunnel Diode Oscillator

R=0.24Q2 — Stable equilibrium

I, [MA]

Initial states
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Example: Tunnel Diode Oscillator

e Jitter measurement

— add clock that is reset at zero crossing

!T"_—‘—ﬁ
—_—

10

jitter measurement
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Example: Tunnel Diode Oscillator

v, l Tl . | Analog/Mixed Signal Circuit

VC = % _Id VC IL
cmt- Lo+ ) [ Formal Model ]
IL =%(_VC _RIL+Vin)
I [mA] *
ul >
*o, [ Reachability Analysis

3 85 68 VC [V] '

- Oscillation
. Jitter [Guaranteed Safety Property]
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Modeling with Hybrid Automata

e Example: Bouncing Ball
— ball with mass m and position x in free fall
— bounces when it hits the ground at z = 0
— initially at position z, and at rest




Part | — Free Fall

e Condition for Free Fall

— ball above ground: x>0

e First Principles (physical laws)

e gravitational force :
Fy = —mg

g =9.81m/s?

e Newton's law of motion :
mx = Fg




Part | — Free Fall

e Obtaining 15t Order ODE System

Iy

ma

Iy

e ordinary differential equation © = f(x)

e transform to 1st order by introducing variables

for higher derivatives

e here: v = z:

10



Part Il - Bouncing

e Conditions for “Bouncing”

e ball at ground position: x =0
e downward motion: v < 0
e Action for “Bouncing”
e velocity changes direction
e loss of velocity (deformation, friction)

o v:=—cv,0<¢c<1

11



Combining Part | and Il

e Free Fall
e while x > 0, continuous dynamics
Lo - = f()
H = g r = X
e Bouncing _ _
discrete dynamics
e ifr=0andv <0
v o= —cCv x e G

O

12



Hybrid Automaton Model

initial conditions

:c:xo/

v=20

location
\/ freefall \ label

invariant s z 20 bounce /
- r=0Av<(0——guard

Yo V.= —CvU
v = — T~
flow )< / reset

discrete transition
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ODEs with Switching

e Continous/Discrete Behaviour
— evolution with time according to ODE dynamics
— dynamics can switch (instantaneous)
— state can jump (instantaneous)

//////////
/ K
#,
-

/
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Example: Bouncing Ball

e States over Time

X

position x
0 time ¢
) AR
velocity v . \ N %, t)
SURCL ORI
v(t)
time t
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Example: Bouncing Ball

States over States = State-Space View

position x

behavior from _
single initial state
\

velocity v
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Example: Bouncing Ball

e Reachability in State-Space

position x

behaviors from

set of initial states =
reachable state

A A
/////42 | velocity v
A /
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Reachability in Model Based Design

Plant Model ]

Simulation

Deployment

{ Controller Synthesis

—
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Example: Overhead Crane

e State variables

— position x, speed v

— line angle y, angle rate w
e Feedback controller

— state estimated by observer
e Goals

— validate observer for y,w
— validate swing

v
b21u + b2ag
w

= —a43y —by1u

SFOSTESHE T
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Overhead Crane — Observer

e Validation of angle =
observer quality rate /

e Standard: - TG

— Simulation of “representative 005
trajectories” 010

actual

estimated

e Reachability:

— Error bounds over range of
initial states & inputs

angle

—0.4 1

%6 oz o0z 00 02 04 06 error

21



Overhead Crane - Controller

e Evaluation of swing (angle range)

015

angle

0.10

0.00 -

over small initial range

IIIIIIIIIII

/

setpoint

position

[-0.17,0.12]

0.20
angle

1 1
15 20

position

over full operating range
[-0.17,0.17]
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Example: Controlled Helicopter

e 28-dim model of a Westland Lynx helicopter
— 8-dim model of flight dynamics
— 20-dim continuous He« controller for disturbance rejection
— stiff, highly coupled dynamics

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005. 23



Simulation vs Reachability

e Simulation e Reachability
— approximative — over-approximative
sample set-valued cover
of single behavior of all behaviors
— over finite time — over finite or infinite time
0.6
0.4+

simulation run

0.2
vertical 5 u

speed \
—0.2
~0.4} reachable states over time -
0.6} : 0 15 20 25 30

t [s]
24



Simulation vs Reachability

e Simulation e Reachability

— deterministic — nondeterministic

* resolve nondet. using
Monte Carlo etc.

— scalable for nonlinear dyn.

0.6

0.4

1000 simulations
0.2

vertical Z oo

speed
—-0.2

—-0.4

( Reachable set equiv.

0.6, . k>228 corner case simulations

J

el

Frehse et al. "SpaceEx: Scalable verification of hybrid systems." Computer Aided Verification. Springer, 2011.

 continuous disturbances...
« implementation tolerances...

— scalable for linear dynamics

25



Example: Controlled Helicopter

e Comparing two controllers
subject to continuous disturbance

015 0.15
0.1 0.1
0.05 \ 0.05
) | )
é 0 | & 0
5 f 5
% -0.05 p 2 0,05
01 = g 0.1
'.'-".”“! |l".
015 e 0.15
0.2 ; e P 2 i P T 9 Lk | il EXSEYSey | i o] | PRSP,
0,05 0 0.05 0.1 0.15 004 002 ©O 002 0D4 006 008 01 0.2
x2 {Roll Attitude) x1 (Pitch Attitude)
(a) Roll stabilization (b) Pitch stabilization

Frehse, G., et al. "SpaceEx: Scalable verification of hybrid systems." Computer Aided Verification. Springer, 2011. 26
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Computing Reachable States

e Computing One-Step Successors
e time elapse: Y = Post.(X)

o jumps: S = Posty(5)

e Fixpoint computation
e Initialization: Ry = In:
e Recurrence: Rk_|_1 = R, U POStd(Rk> U POStC(Rk)

e Termination: Ry,1 = Ry = Reach = Ry.

28



Computing Reachable States

e Set-based integration can answer many interesting
questions about a system

— safety, bounded liveness,...

e Problems
— in general termination not guaranteed
— set-based integration of ODEs is hard
e Solution
— piecewise constant approximations
— piecewise linear approximations

— math tricks (implicit set representations,...)

29



Piecewise Constant Dynamics

e A very simple class of hybrid systems:
Linear Hybrid Automata

— trajectories are straight lines

e Exact computation of successor states possible

— reachability is nonetheless undecidable.

30



Linear Hybrid Automata

e Continuous Dynamics

piecewise constant: © =1
intervals: ¢ € [1, 2]
conservation laws: 1 + ©2 = 0
general form: conjunctions of linear constraints
a- b, a€Z™beZ,xe{<, <}

= convex polyhedron over derivatives

31



Linear Hybrid Automata

e Discrete Dynamics

e affine transform: z :=ax + b
e with intervals: z5 := 21 £ 0.5

e general form: conjunctions of linear constraints (new value z’)

a-x+a -x' b, a,a’ € L™ beZ,x e {<,<}

= convex polyhedron over z and z’

32



Linear Hybrid Automata

e Invariants, Initial States

e general form: conjunctions of linear constraints

a-x b, a €Z",be Z,xe {<, <},
= convex polyhedron over z

33



Linear Hybrid Automata

(source: wikipedia)

e model complex behavior

— discrete jump maps can model
discrete-time linear control systems
(widely used in industry)

<) Figure No_ 1 =] 3
File Edit “iew Inset Tools MWindow Help

Deda "A 2/ 2P0

Linear Simulation Results

source: mathworks.com
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Linear Hybrid Automata

e chaos

— even with 1 variable, 1 location, 1 transition (tent map)

— observed in actual production systems [Schmitz,2002]

1 T 1 1T T T 1T T 1|
1.0 1.2 1.4 1.6 1.8 2.0

states of the Tent map

source: wikipedia

Schmitz, J. P. M., D. A. Van Beek, and J. E. Rooda. "
(2002): 236-246.c

i

»3 [ 5 W ; ning i
{ i i_| i .
R E o
o] 'ﬁ:}‘j' FE
A~ ]
; ; gt
ren! e e
# # #

throughput

product number

brewery and chaotic throughput [Schmitz,2002]

Chaos in discrete production systems?." Journal of Manufacturing Systems 21.3
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Compute time elapse states Post (5)

e arbitrary trajectory iff straight line exists
(convex invariant) [Aluretal]

|

e time elapse along straight line can be computed as
projection along cone [Halbwachs etal ]

-

Inv

~

derivatives —|

™ projection
» COne
4

36



Compute discrete successors Post (S)

e Post,(S) = all ’ for which exists x € S s.t.
— guard:z € G
— reset and target invariant: ’ € R(x) N Inv

e Operations:
— existential quantification
— intersection
— standard operations on convex polyhedra, but O(exp(n))

37



ReaChabi I ity With LHA [Halbwachs, Henzinger, 93-97]

N
{1. get projection

cone
— g 2. time elapse by
A invariant projection 3. compute

\ XL discrete
successors

SUCCEeSSO0rs

—/

v

\
initial states

/ A

derivatives —_|

v

projection
cone
%
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Multi-Product Batch Plant

39



Multi-Product Batch Plant

% q %m; e Cascade mixing process

— 3 educts via 3 reactors
= 2 products

e Verification Goals

— |Invariants

« overflow

 product tanks never empty

— Filling sequence

e Design of verified
controller

40



Controller

Verification with PHAVer

Controlled Plant

e Controller + Plant

— 266 locations, 823 transitions
(~150 reachable)

— 8 continuous variables

e Reachability over infinite time
— 120s—1243s, 260—600MB

— computation cost increases
with nondeterminism
(intervals for throughputs,
initial states)

41



6000

5000 }-

4000

3000

2000

1000

6000

5000 |

4000

3000

2000

10001
0 500 1000 1500 2000 2500 3000

(d) BP8.4: varying but slow demand

Verification with PHAVer

0
0 200 400 600 800

(a) BP8.1: nominal case

S 6000

6000 ———————
5000
a000,
3000 1|

2000

1000

3000

2000

B 1000

0
0 200 400

600 800 1000

(b) BP8.2: varying initial cond.

5000

4000

0
0 200 400 600 800 1000

(¢) BP8.3: varying demand

Automaton  Reachable Set
Instance Time [s] Mem. [MB] Depth® Checks® Loc. Trans. Loc. Poly.
BP8&.1 120 267 173 279 266 823 130 279
BP8&.2 139 267 173 422 266 823 131 450
BP&.3 845 622 302 2669 266 823 143 2737
BP8.4 1243 622 1071 4727 266 823 147 4772

* on Xeon 3.20 GHz, 4GB RAM running Linux; “ lower bound on depth in breadth-first
search; ¥ number of applications of post-operator

42
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Piecewise Affine Dynamics

e Not quite so simple dynamics

— trajectories = exponential functions

e Exact computation at discrete points in time

— used to overapproximate continuous time

e Efficient data structures

44



Time Elapse Computation

e Continuous time elapse for affine dynamics
— efficient, scalable

— approximation without accumulation of approximation error
(wrapping effect)

e |t took a long time to do it well...
— Chutinan, Krogh. HSCC’99
— Asarin, Bournez, Dang, Maler. HSCC’00
— Girard. HSCC’05
— Le Guernic, Girard. HSCC’06, CAV’09
— Frehse, Kateja, Le Guernic. HSCC’13

45



Affine Dynamics

e linear terms plus inputs U:

z=Ax+u,ucU

e solution:
t
z(t) = ez (0) —i—/ e =T y(r)dr
0

matrix exponential \

factors influence of inputs
(stable system forgets the past)

46



Time-Discretization (no inputs)

e Analytic solution: z(t) = ez, "
x(t
e Witht = 0k : T3
Ly
r(6(k+1) = eMa(0k) oz T

e EXxplicit solution in discretized time (recursive):

Zo LIni

eAdg,

Lk+1

N multiplication with const. matrix e4*
= linear transform

47



Time-Discretization for an Initial Set

e EXxplicit solution in
discretized time

Xo = X
X1 = ePXy

e Acceptable solution for purely continuous systems

— z(t) is in ¢(d)-neighborhood of some X,

e Unacceptable for hybrid systems
— discrete transitions might “fire” between sampling times
— if transitions are “missed,” x(¢) not in ¢(d)-neighborhood

48



Time Discretization for Hybrid Systems

e One can miss jumps (guard)

jump not visible
in discretization

guard /

S«

sets in

. , discretized time
owpipe

49



Bouncing Ball

} /////j {
Z // //// /// :
iR

A
\X90= 0

— Note: Computed in exact arithmetic, no numerical errors

— In other examples this error might not be as obvious...

50



From Time-Discretization to Reach

e States in discrete time:

need to cover also states in between!

51



From Time-Discretization to Reach

e Cover in discrete time:
Qs (k+1)8) = (eA(S)kQ[o,(S] D Wis

A €215 39)

@ Minkowski sum = pointwise sum of sets % [ L j:

52



Wrapping Effect

e accumulation of approximation error
e avoidable using the right approximation

Appr(e® Appr(et® Xp)) Appr(¢23 ;)

/'r\ \ gAg,YO EASXO
\/\\ V // XO Z XO Z
wrapping effect wrapping-free algorithm

Antoine Girard, Colas Le Guernic, and Oded Maler. Efficient computation of reachable sets of linear time-invariant systems with inputs.
HSCC 2006 53



Reachability in High Dimensions

e Scalability Trick 1:

Use data structures adapted to operations

54



Scalable Set Representations

°® Ellipsoids [Kurzhansky, Varaiya 2006]

— bad representation of intersection, convex hull, flat sets

0

(this is an illustration, not actual computation)

55



Scalable Set Representations

® ZOﬂOtOpes [Girard 2005]

— symmetric polytope spanned by
set of generator vectors

— bad representation of intersection,
convex hull, asymmetric sets

Qo

(computed with Zonotope toolbox of M. Althoff)

56



Scalable Set Representations

° Support Functions [Le Guernic, Girard 2009]

— lazy representation of any convex set
— gives outer polyhedral approximation that can be refined
— scalable except for intersection

: Xos
w—lﬂj Xs
0

2

low accuracy high accuracy

(computed with SpaceEx)
57



Operations on Convex Sets

Polyhedra
Operators Constraints Vertices Zonotopes SupportF.
Convex hull == + o ++
Affine transform +/- e e +4
Minkowski sum -= . ++ ++

Intersection - - -

Le Guernic, Girard. CAV’09

58



Support Functions

e Support Function R > R
— direction d = position of supporting halfspace
pp(d) = maxzep d'z

— exact set representation

_ x" support vector

59



Support Functions

e black box representation of a convex set
e implementation: function objects

direction vector tangent hyperplane
Support
/ Function \K

60



Support Functions

e black box representation of a convex set
e implementation: function objects

direction vector -,
t Support
| Function -

61



Support Functions

e black box representation of a convex set
e implementation: function objects

direction vector -,
t Support
! Function -
'
E%s Support
Function

62



Reachability in High Dimensions

e Scalability Trick 2:

Change data structures (data-dependent)

63



Computing Time Elapse

Support Functions

Initial Set

Convex Hull

Linear Map

Minkowski Sum

overapprox.

Polyhedra

Initial Set

Invariant Intersection

64



Computing Transition Successors

¢ Intersection with guard

r = Ty
— use outer poly approximation l _
freefall
e Linear map & z 2 0
Minkowski sum . ”‘ig bounce _Quard
. . . = 0
— with polyhedra if invertible ’ y ::A_U;
(map regular, input set a point) reset

— otherwise use support functions

e Intersection with target invariant

— use outer poly approximation

65



Computing Transition Successors

Support Functions Polyhedra

Guard Intersection

irreversible | map

exact (LP) reversible
Linear Map Linear Map
Minkowski Sum Minkowski Sum
overapprox. Invariant Intersection

66



Example: Switched Oscillator

e Switched oscillator i
— 2 continuous variables o4
— 4 discrete states 02r

— similar to many circuits > 00
(Buck converters,...)

-0.2r

e plus linear filter

- m continuous variables B P T

— dampens output signal

e affine dynamics

— total 2 + m continuous variables

67



Example: Switched Oscillator

Scalability Measurements:

_‘ i Wi,
— fixpoint reached in O(nm?) time b‘“‘@”’_””ﬁ/

Bty
s

gty
i)

— box constraints: O(n?)

— octagonal constraints: O(n?)

10000.0
1000.0 |

100.0 |

runtime [s]

10.0 -

1.0

0.1

1 10 100 1000
number of variables n

68



Reachability in High Dimensions

e Scalability Trick 3:

Work in Space-Time (exploit pointwise convexity)

69



Approximation in Space-Time

JZZZ(\{@

Improve the approximation by adding time...

70



Approximation in Space-Time

y

71



Approximation in Space-Time

72



Approximation in Space-Time

AN approximation
constant over
time interval

X

73



Support Function over Time

support in d

convex set per time interval =
piecewise constant scalar functions

74



Support Function over Time

e 1st order Taylor approx.

CAV’11

Qt = (]_ — %)XO @D %eéAXQ
& (565 N1 - 5)Eg)
OtU © L&y
Dy(A,6) = A2 (24 — 1 — 0A)

Eq (X0, 0) =B (P2(|A],0) B (4°X)) ,
Eq (Xo, &) = O (Do(]A],6) B (A% X)) ,
Ev(U,0) = L (Do(|A],0) T (AU)) .

supp

ortind

A

upper bound

/,

“lower bound

v

interpolation with

piecewise linear scalar functions
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Support Function over Time

support in d

T

support sampling
at eacht

infinite union of template polyhedra
(one for each t)

76



Convexification

non-template |
polyhedron support in d

concave piece

v

finite union of non-template polyhedra
(one for each concave piece)

77



Approximation in Space-Time

~
e

\ approximation

X . o
piecewise linear
over time
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Approximation in Space-Time

79



Approximation in Space-Time

80



Approximation in Space-Time

e non-template
( | \ facet normals
AN \\\

/
\

/ /

81



Example: Bouncing Ball

19 r——ee——— (
| non-template
10 facet normals!

x [m]
o

t[s]

Clustering up to total error 0.1 = 8 pieces

82



Example: Bouncing Ball

t [s]

Clustering up to total error 1.0 = 2 pieces

83



Example: Controlled Helicopter

e 28-dim model of a Westland Lynx helicopter
— 8-dim model of flight dynamics
— 20-dim continuous He« controller for disturbance rejection
— stiff, highly coupled dynamics

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005. 84



Example: Helicopter

e 28 state variables + clock

v, [ft/s]

02+t

-0.6

0.6
04r
0.2¢

0.0}

0.4+

0

5 10 15 20 25 30
t [s]

CAV’11: 1440 sets in 5.9s
1440 time steps
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Example: Helicopter

e 28 state variables + clock

v, [ft/s]

0.6

04

0.2

0.0

-0.2

-0.4

-0.6

( .
' convex in 29
dimensions!

(ML
M T
l
\( //\/
"\
0 é 1I0 1I5 2IO 2I5 30

t[s]

HSCC’13: 32 sets in 15.2s (4.8s clustering)

2 -- 3300 time steps, median 360
86



Example: Chaotic Circuit

e piecewise linear Rossler-like circuit

e added nondet. disturbances

e 3 variables, hard!

Rc=(1-200)k 47 k

87
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Case Study: Electro-Mechanical Brake

Electric o Brake
Motor Caliper

Scheduler
property model
""'::::::::::Z:::Z:::::::Zl:qgg:g:!j:!!g:mEit:::Z:::Z:::Z:::l:::::::Z:::::::::::Z::::::::::"'.'.':.'.'f:Z.'.':Z.'.':Z.'.'f:.'.'f:.'.':Z.'.'f:.'.'::.'.'.':.'.'f:.'.':'"'
Trajectory | | Open-loop |
planning voltage control :

Caliper
position

Position R Position PI
deviation control

. Closed-loop EMB model:

Frehse, Hamann, Quinton, Woehrle. Formal analysis of timing effects on closed-loop properties of control software. RTSS'14 89



Case Study: Electro-Mechanical Brake

e Controller Implementation
— discrete time
— fixed-point arithmetic
— multi-tasking processor: scheduling with uncertain frequency

— worst-case analysis too conservative

90



Case Study: Electro-Mechanical Brake

Software
Timing
_ model _ Closed-loop
activate oo terminate : properties
Derive
Scheduler scheduler Plant
Model properties
(a) Timing analysis of software _ .
Discretized
Closed-loop Software _.CD
properties Model 3
) write
Plant I Refine Scheduler
Continuous software Property
¥ Software model Model
Model
(c) Closed-loop verification
(b) Closed-loop verification including timing effects

91



Case Study: Electro-Mechanical Brake

e Typical Worst-Case Execution Time

— limit missed schedules
per time interval

# deadline misses

consecutive executions

2 2
3 18
4 20
5 56

deadline_miss

timeg > 1 A time; > miss(2) A timep > miss(3)

Atimez > miss(4) A times > miss(5)

timey := timesg A timegz := timeo A times := time;

timeq := timeg A timeg := 0

NoMiss
0 < timeg < 1
timey = 1/P A time] = 1/P A time, = 1/P
Atime; = 1/P A time) = 1/P

deadline_met
timeg > 1
timeg (=0

92



Case Study: Electro-Mechanical Brake

caliper position

T

[dm]

0.05

0.04

0.03f

0.02

0.01r

0.00

t[ms]

time

93



Case Study: Electro-Mechanical Brake

caliper position only failure — hard to detect

xr

[dm]

0.05

0.04

0.03r

0.02

0.01

0.00

s _.-,.',:—:_ — =

0

5 10 15 o0 tlms]
artificial failure case time
(inconsistent with classical theory)
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Case Study: Electro-Mechanical Brake

current

I
[A]

1.0

0.9r

0.8

0.7F

0.6r

0.5

0.4r

0.3
8

13

t[ms]

time

physical properties: maximum impulse on contact

(measured via current)
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SpaceEx Verification Platform

s p a C e E X State Space Explorer

Model Spedcification Options Output Advanced

Model editor Download

Model file
Configuration file

User input file _' User file

Examples I Bouncing Ball (.xm, .cfa)

! Timed Bouncing Ball (.xml, .cfg)

'/ Nondet. Bouncing Ball (.xml, .cfa)

\_ Circle {.xml, .cfa)
_' Fittered Oscillator 6 (.o, .cfa)
-' Fittered Oscillator 18 (.xml, .cfa)

6' Fittered Oscillator 34 (.xml, .cfa)

A filtered oscillator.

Same as the 6-variable filtered osdillator, but with a higher order filter.
With 34 state variables, an analysis with octagonal constraints is no
longer practical, since this requires 2¥342=2312 constraints to be
computed at every time step. The analysis with 2*34=68 box
constraints remains cheap.

Home

Console

Iteration 6...
Iteration 7...
Iteration 8..
Iteration 9...

Iteration 10
Iteration 11
Iteration 12
Iteration 13

About SpaceEx Documentation

8 sym states passed, 1 waiting 0.457s

9 sym states passed, 1 waiting 0.941s

. 10 sym states passed, 1 waiting 0.434s
11 sym states passed, 1 waiting 0.9365
... 12 sym states passed, 1 waiting 0.457s
... 13 sym states passed, 1 waiting 0.929s
... 14 sym states passed, 1 waiting 0.455s
... 14 sym states passed, 0 waiting 0.917s

Found fixpoint after 14 iterations.
Computing reachable states done after 10.058s
Output of reachable states... 0.823s

Graphics

Fe

11

‘|

Run SpaceEx Downloads Contact

Reports

11.05s5 elapsed
20516KB memary
Spacebx output file : output (v

Browser-based GUI
—2D/3D output

—runs remotely
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SpaceEx Model Editor

@00 SpaceEx Model Editor (0.9.3) - [Users/goran/Documents/spaceex_work/examples [filtered_oscillator/filtered_oscillator.xml - oscillator_template

File Edit Help Experimental

blale ®

BEIEE

Model Explorer

% 2| control_library.xml
Clock
PI_Controller
Diff2
5um2
Integrator
Gain
PT1
Constant

4 Closed_Loop
[ sys_t

¢ (2 filtered_oscillator.xml
oscillator_template
filter_t
clock

5 oscillator

B filter_4th_order
1 osc_w_4th_order
5 osc_w_4th_order_time

[ojwfe/alva]’

: T pscillator_template » ‘

np

<=0 Ry == -¢/x0%x

x' == al*x-al*x0 &
y' == a2*y+al2*y0

hop

nn
¥==0 &y == -¢/x0*x

x' == al*x+al*x0 &
'== a2*y-a2*y0

Components = Hybrid Automata

— real-values variables
— ODE, linear DAE

hop

hop

PP
¥x==0 &y == -g/x0*x
¥x' == al*x-al*x0 &
y' == aZ*y+a2¥y0

hop

pn
x==0 &y <= -¢/x0*x

x' == al*x+al*x0 &
y' == a2*y-a2*y0

| location
5| rname -

[ »
il

| |lon

invariant

=0 &y <= -¢/x0"x

:.flnw

% == al*x+al*x0 &
V' == a2*y-a2=yD
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SpaceEx Model Editor

800

SpaceEx Model Editor (0.9.3) - [Users/goran/Documents/spaceex work/control_library/control_library.xml - Closed_Loop

File Edit Help Experimental

L|a|

B =g

Model Explorer

E % Closed_Loop

param

2 2 control_library.xml
Clock
PI_Controller
Diff2
Sum2
Integrator
GCain
PT1
Constant

51 [Closed_Loop]
[ sys_t

EIEIDESETI)

=(=xJcm

Reference

>
I

PI_Control

o

— templates, nesting

Block diagrams connect
components
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SpaceEx Reachability Algorithms
)

PHAVer
—constant dynamics (LHA)
—formally sound and exact

Support Function Algo
—many continuous variables

—low discrete complexity

Simulation
—nonlinear dynamics
—based on CVODE

[ spaceex.imag.fr ]
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Outline

Modeling with Hybrid Automata
Reachability versus Simulation
Reachability Algorithms

— piecewise constant dynamics
— piecewise affine dynamics

Case Study: Controller Implementation
SpaceEx Tool Platform
Bibliography
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Verification Tools for Hybrid Systems

HyTech: LHA

— http://embedded.eecs.berkeley.edu/research/hytech/
Matisse Toolbox: zonotopes

— http://www.seas.upenn.edu/~agirard/Software/MATISSE/
Cora Toolbox: zonotopes, nonlinear systems

— http://www6.in.tum.de/Main/SoftwareCORA
HSOLVER: nonlinear systems

— http://hsolver.sourceforge.net/

Flow*: nonlinear systems

— http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/

and more...: http:/wiki.grasp.upenn.edu/hst/
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Conclusions

e Reachability in continuous time is hard
— even for simple dynamics
e Handle affine systems with 100+ variables

— exploiting properties of affine dynamics
— lazy set representations (support functions)

e Further Work...

— abstraction refinement
— extension to nonlinear dynamics
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