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Example: Tunnel Diode Oscillator

Ɣ What are good parameters?
– startup conditions
– parameter variations
– disturbances

Tunnel 
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Example: Tunnel Diode Oscillator

R=0.201 � Oscillation

VC [V]

IL [mA]

Time [µs]

initial states
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Example: Tunnel Diode Oscillator

R=0.241 � Stable equilibrium

VC [V]

IL [mA]

Time [µs]

initial states
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Example: Tunnel Diode Oscillator

Ɣ Jitter measurement
– add clock that is reset at zero crossing

time

jitter measurement
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Example: Tunnel Diode Oscillator

Tunnel 
Diode

• Oscillation
• Jitter
• …

Reachability Analysis

Formal Model

Analog/Mixed Signal Circuit

Guaranteed Safety Property
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Outline

Ɣ Modeling with Hybrid Automata
Ɣ Reachability versus Simulation
Ɣ Reachability Algorithms

– piecewise constant dynamics
– piecewise affine dynamics

Ɣ Case Study: Controller Implementation
Ɣ SpaceEx Tool Platform
Ɣ Bibliography
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Modeling with Hybrid Automata

Ɣ Example: Bouncing Ball
– ball with mass m and position x in free fall
– bounces when it hits the ground at x = 0

– initially at position x� and at rest

x

0

Fg
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Ɣ Condition for Free Fall
– ball above ground:

Ɣ First Principles (physical laws)

Part I – Free Fall

• gravitational force :
Fg = cmg

g = 9.81m/s2

• Newton's law of motion :
mẍ = Fg

x w 0 x

0

Fg
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Ɣ Obtaining 1st Order ODE System

Part I – Free Fall

Fg = cmg
mẍ = Fg

• ordinary differential equation ẋ = f(x)

• transform to 1st order by introducing variables
for higher derivatives

• here: v = ẋ:
ẋ = v
v̇ = cg

x

0

Fg
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Part II – Bouncing

Ɣ Conditions for “Bouncing”

Ɣ Action for “Bouncing”

• ball at ground position: x = 0

• downward motion: v < 0

• velocity changes direction

• loss of velocity (deformation, friction)

• v := ccv, 0 � c � 1
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Combining Part I and II

Ɣ Free Fall

Ɣ Bouncing

• while x w 0,
ẋ = v
v̇ = cg

• if x = 0 and v < 0
v := ccv

continuous dynamics

discrete dynamics

ẋ = f(x)

x � G
x := R(x)
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Hybrid Automaton Model

x w 0 bounce
x = 0 A v < 0
v := ccv

freefall

ẋ = v
v̇ = cg

x = x0
v = 0

flow

location

invariant

discrete transition

guard

label

reset

initial conditions
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ODEs with Switching

Ɣ Continous/Discrete Behaviour
– evolution with time according to ODE dynamics
– dynamics can switch (instantaneous)
– state can jump (instantaneous)

x�(t)

x�(t)

x�(t)



15

Example: Bouncing Ball

Ɣ States over Time

time t

position x

x�(t)
x�(t)

x�(t)
x�(t)

x�(t)

x�

0

time t

velocity v

v�(t)
v�(t)

v�(t)
v�(t)

v�(t)
0
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Example: Bouncing Ball

Ɣ States over States = State-Space View

position x

velocity v

x�

0

x�(t)

x�(t)

x�(t)

behavior from 
single initial state



17

Ɣ Reachability in State-Space

Example: Bouncing Ball

position x

velocity v

behaviors from 
set of initial states =
reachable states
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Outline

Ɣ Modeling with Hybrid Automata
Ɣ Reachability versus Simulation
Ɣ Reachability Algorithms

– piecewise constant dynamics
– piecewise affine dynamics

Ɣ Case Study: Controller Implementation
Ɣ SpaceEx Tool Platform
Ɣ Bibliography
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Reachability in Model Based Design

Plant Model

Controller Synthesis

Simulation

Deployment

Reachability
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Example: Overhead Crane

Ɣ State variables
– position x, speed v
– line angle y, angle rate w

Ɣ Feedback controller
– state estimated by observer

Ɣ Goals
– validate observer for y,w

– validate swing

x,v

y,w

u
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Overhead Crane – Observer

Ɣ Validation of 
observer quality

Ɣ Standard: 
– Simulation of “representative 

trajectories”

Ɣ Reachability:
– Error bounds over range of 

initial states & inputs

time

angle
rate actual

estimated

angle
rate
error

angle
error
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Overhead Crane - Controller

Ɣ Evaluation of swing (angle range) 

over small initial range
[-0.17,0.12]

over small initial range
[-0.17,0.12]

over full operating range
[-0.17,0.17]

over full operating range
[-0.17,0.17]

angle angle

positionposition

setpoint
setpoint
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Example: Controlled Helicopter

Ɣ 28-dim model of a Westland Lynx helicopter
– 8-dim model of flight dynamics
– 20-dim continuous H' controller for disturbance rejection
– stiff, highly coupled dynamics

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

Photo by Andrew P Clarke
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Simulation vs Reachability

Ɣ Simulation
– approximative

sample
of single behavior 

– over finite time

Ɣ Reachability
– over-approximative

set-valued cover
of all behaviors

– over finite or infinite time

vertical
speed

simulation run

reachable states over time
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Simulation vs Reachability

Ɣ Simulation
– deterministic

• resolve nondet. using
Monte Carlo etc.

– scalable for nonlinear dyn.

Ɣ Reachability
– nondeterministic

• continuous disturbances...
• implementation tolerances...

– scalable for linear dynamics

vertical
speed

1000 simulations

Reachable set equiv.   
>228 corner case simulations

Reachable set equiv.   
>228 corner case simulations

Frehse et al. "SpaceEx: Scalable verification of hybrid systems." Computer Aided Verification. Springer, 2011.
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Example: Controlled Helicopter

Ɣ Comparing two controllers 
subject to continuous disturbance

Frehse, G., et al. "SpaceEx: Scalable verification of hybrid systems." Computer Aided Verification. Springer, 2011.
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Outline

Ɣ Modeling with Hybrid Automata
Ɣ Reachability versus Simulation
Ɣ Reachability Algorithms

– piecewise constant dynamics
– piecewise affine dynamics

Ɣ Case Study: Controller Implementation
Ɣ SpaceEx Tool Platform
Ɣ Bibliography
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Computing Reachable States

Ɣ Computing One-Step Successors

Ɣ Fixpoint computation
• Initialization: R0 = Ini

• Recurrence: Rk+1 = Rk > Postd(Rk) > Post c(Rk)

• Termination: Rk+1 = Rk � Reach = Rk.



29

Computing Reachable States

Ɣ Set-based integration can answer many interesting 
questions about a system
– safety, bounded liveness,…

Ɣ Problems
– in general termination not guaranteed
– set-based integration of ODEs is hard

Ɣ Solution
– piecewise constant approximations
– piecewise linear approximations
– math tricks (implicit set representations,...)
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Piecewise Constant Dynamics

Ɣ A very simple class of hybrid systems:
Linear Hybrid Automata 
– trajectories are straight lines

Ɣ Exact computation of successor states possible
– reachability is nonetheless undecidable.
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Linear Hybrid Automata

Ɣ Continuous Dynamics
• piecewise constant: ẋ = 1

• intervals: ẋ � [1, 2]

• conservation laws: ẋ1 + ẋ2 = 0

• general form: conjunctions of linear constraints

a · ẋ �� b, a � Zn, b � Z, �� � {<,�}.

= convex polyhedron over derivatives



32

Linear Hybrid Automata

Ɣ Discrete Dynamics

• affine transform: x := ax + b

• with intervals: x2 := x1 ± 0.5

• general form: conjunctions of linear constraints (new value x�)

a · x + a� · x� �� b, a, a� � Zn, b � Z, �� � {<,�}

= convex polyhedron over x and x’
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Linear Hybrid Automata

Ɣ Invariants, Initial States
• general form: conjunctions of linear constraints

a · x �� b, a � Zn, b � Z, ��� {<,�},
= convex polyhedron over x
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Linear Hybrid Automata

Ɣ model complex behavior
– discrete jump maps can model 

discrete-time linear control systems
(widely used in industry)

(source: wikipedia)

source: mathworks.com
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Linear Hybrid Automata

Ɣ chaos
– even with 1 variable, 1 location, 1 transition (tent map)
– observed in actual production systems [Schmitz,2002]

states of the Tent map
source: wikipedia

Schmitz, J. P. M., D. A. Van Beek, and J. E. Rooda. "Chaos in discrete production systems?." Journal of Manufacturing Systems 21.3 
(2002): 236-246.c

brewery and chaotic throughput [Schmitz,2002]
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Compute time elapse states Postc(S)

Ɣ arbitrary trajectory iff straight line exists 
(convex invariant) [Alur et al.]

Ɣ time elapse along straight line can be computed as 
projection along cone [Halbwachs et al.]

derivatives
projection 
cone

Inv
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Compute discrete successors Postd(S)

Ɣ Postd(S) = all x’ for which exists x � S s.t.
– guard: x � G

– reset and target invariant: x’ � R(x) � Inv

Ɣ Operations:
– existential quantification
– intersection
– standard operations on convex polyhedra, but O(exp(n))
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Reachability with LHA [Halbwachs, Henzinger, 93-97]

invariant

initial states

successors

derivatives
projection 
cone

1. get projection 
cone

1. get projection 
cone

2. time elapse by 
projection

2. time elapse by 
projection 3. compute 

discrete 
successors

3. compute 
discrete 
successors
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Multi-Product Batch Plant
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Multi-Product Batch Plant 

Ɣ Cascade mixing process
– 3 educts via 3 reactors 

� 2 products

Ɣ Verification Goals
– Invariants 

• overflow
• product tanks never empty

– Filling sequence

Ɣ Design of verified 
controller 

LIS
11

M

LIS
22

QIS
22

LIS
32

LIS
31

M

LIS
23

QIS
23

M

LIS
21

QIS
21

LIS
13

LIS
12
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Verification with PHAVer

Ɣ Controller + Plant
– 266 locations, 823 transitions

(~150 reachable)
– 8 continuous variables

Ɣ Reachability over infinite time
– 120s—1243s, 260—600MB
– computation cost increases

with nondeterminism
(intervals for throughputs, 
initial states)

Controller Controlled Plant
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Verification with PHAVer
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Outline

Ɣ Modeling with Hybrid Automata
Ɣ Reachability versus Simulation
Ɣ Reachability Algorithms

– piecewise constant dynamics
– piecewise affine dynamics

Ɣ Case Study: Controller Implementation
Ɣ SpaceEx Tool Platform
Ɣ Bibliography
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Piecewise Affine Dynamics

Ɣ Not quite so simple dynamics 
– trajectories = exponential functions

Ɣ Exact computation at discrete points in time
– used to overapproximate continuous time

Ɣ Efficient data structures
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Time Elapse Computation

Ɣ Continuous time elapse for affine dynamics
– efficient, scalable
– approximation without accumulation of approximation error

(wrapping effect)

Ɣ It took a long time to do it well...
– Chutinan, Krogh. HSCC’99
– Asarin, Bournez, Dang, Maler. HSCC’00
– Girard. HSCC’05
– Le Guernic, Girard. HSCC’06, CAV’09
– Frehse, Kateja, Le Guernic. HSCC’13
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Affine Dynamics

Ɣ linear terms plus inputs U:

Ɣ solution:

matrix exponential
factors influence of inputs
(stable system forgets the past)
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Time-Discretization (no inputs)

Ɣ Analytic solution:

Ɣ Explicit solution in discretized time (recursive):
x0 = xIni
xk+1 = eAqxk

x(t) = eAtxIni

2b 3bb0

x0
x1

x2

x3

t

x(t)

multiplication with const. matrix eA!

= linear transform

x(q(k + 1)) = eAqx(qk)

• with t = qk :
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Time-Discretization for an Initial Set

Ɣ Explicit solution in 
discretized time

Ɣ Acceptable solution for purely continuous systems
– x(t) is in r(b)-neighborhood of some Xk

Ɣ Unacceptable for hybrid systems
– discrete transitions might “fire” between sampling times
– if transitions are “missed,” x(t) not in r(b)-neighborhood 

2b 3bb0

X0

X1

X2

X3

t

X0 = XIni

Xk+1 = eAqXk
Reach[0,3b](XIni)
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Ɣ One can miss jumps (guard)

Time Discretization for Hybrid Systems

guard

flowpipe

sets in 
discretized time

X1
X2

jump not visible 
in discretization
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Bouncing Ball

– Note: Computed in exact arithmetic, no numerical errors
– In other examples this error might not be as obvious…

X90 = �
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Ɣ States in discrete time:

From Time-Discretization to Reach

2b 3bb0 t

Reach(X0)

Xb

X2b

X3b

...

X0

need to cover also states in between!

integral over inputs
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Ɣ Cover in discrete time:

From Time-Discretization to Reach

t

Reach(X0)

1[0,b]

1[b,2b]

1[2b,3b]

...

X0

k Minkowski sum = pointwise sum of sets

2b 3bb0
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Wrapping Effect

Ɣ accumulation of approximation error
Ɣ avoidable using the right approximation

wrapping effect wrapping-free algorithm

Antoine Girard, Colas Le Guernic, and Oded Maler. Efficient computation of reachable sets of linear time-invariant systems with inputs. 
HSCC 2006
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Reachability in High Dimensions

Ɣ Scalability Trick 1:

Use data structures adapted to operations
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Scalable Set Representations

Ɣ Ellipsoids [Kurzhansky, Varaiya 2006]

– bad representation of intersection, convex hull, flat sets

(this is an illustration, not actual computation)
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Scalable Set Representations

Ɣ Zonotopes [Girard 2005]

– symmetric polytope spanned by
set of generator vectors

– bad representation of intersection, 
convex hull, asymmetric sets

(computed with Zonotope toolbox of M. Althoff)
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Scalable Set Representations

Ɣ Support Functions [Le Guernic, Girard 2009]

– lazy representation of any convex set
– gives outer polyhedral approximation that can be refined
– scalable except for intersection

(computed with SpaceEx)

low accuracy high accuracy
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Operations on Convex Sets

Polyhedra
Operators Constraints Vertices Zonotopes Support F.
Convex hull -- + -- ++

Affine transform +/- ++ ++ ++

Minkowski sum -- -- ++ ++

Intersection + -- -- -

Le Guernic, Girard. CAV’09
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Support Functions

Ɣ Support Function Rn Æ R

– direction dÆ position of supporting halfspace

– exact set representation

0

d

P

x* support vector
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Support Functions

Ɣ black box representation of a convex set
Ɣ implementation: function objects

direction vector tangent hyperplane
Support 
Function
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Support Functions

Ɣ black box representation of a convex set
Ɣ implementation: function objects

Support 
Function

direction vector
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Support Functions

Ɣ black box representation of a convex set
Ɣ implementation: function objects

Support 
Function

direction vector

Support 
Function
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Reachability in High Dimensions

Ɣ Scalability Trick 2:

Change data structures (data-dependent)
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Computing Time Elapse

Linear Map

Minkowski Sum Invariant Intersection

Convex Hull

Support Functions Polyhedra

overapprox.

Initial Set Initial Set
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Computing Transition Successors

Ɣ Intersection with guard
– use outer poly approximation

Ɣ Linear map &
Minkowski sum
– with polyhedra if invertible

(map regular, input set a point)
– otherwise use support functions

Ɣ Intersection with target invariant
– use outer poly approximation

x w 0

bounce
x = 0 A v < 0
v := ccv

freefall

ẋ = v
v̇ = cg

x = x0
v = 0

guard

reset
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Computing Transition Successors

Linear Map

Minkowski Sum

Invariant Intersection

Guard Intersection

Support Functions Polyhedra

overapprox.

Linear Map

Minkowski Sum

map 
reversible

irreversible
exact (LP)
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Example: Switched Oscillator

Ɣ Switched oscillator
– 2 continuous variables
– 4 discrete states
– similar to many circuits

(Buck converters,…)

Ɣ plus linear filter
– m continuous variables
– dampens output signal

Ɣ affine dynamics
– total 2 + m continuous variables
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Example: Switched Oscillator

Ɣ Scalability Measurements:
– fixpoint reached in O(nm2) time
– box constraints: O(n3) 

– octagonal constraints: O(n5) 

0.1

1.0

10.0

100.0

1000.0

10000.0

1 10 100 1000

number of variables n

ru
nt

im
e 

[s
]
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Reachability in High Dimensions

Ɣ Scalability Trick 3:

Work in Space-Time (exploit pointwise convexity)
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Approximation in Space-Time

x

y

Improve the approximation by adding time...
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Approximation in Space-Time

x

y
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Approximation in Space-Time

x

y
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Approximation in Space-Time

y

x

t

approximation
constant over 
time interval
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Support Function over Time

t
t

support in d

convex set per time interval =
piecewise constant scalar functions

x

y

d
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Support Function over Time

Ɣ 1st order Taylor approx. 
CAV’11

t

support in d upper bound

lower bound

interpolation with 
piecewise linear scalar functions
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Support Function over Time

t

support in d

support sampling
at each t

infinite union of template polyhedra
(one for each t)

x

y

t

d
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Convexification

t

support in d

concave piece

finite union of non-template polyhedra
(one for each concave piece)

x

y

t

d

non-template
polyhedron
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Approximation in Space-Time

y

x

t

approximation
piecewise linear
over time
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Approximation in Space-Time

y

x

t
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Approximation in Space-Time

x

y
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Approximation in Space-Time

x

y
non-template
facet normals
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Example: Bouncing Ball

Clustering up to total error 0.1 = 8 pieces

non-template
facet normals!
non-template
facet normals!
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Example: Bouncing Ball

Clustering up to total error 1.0 = 2 pieces
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Example: Controlled Helicopter

Ɣ 28-dim model of a Westland Lynx helicopter
– 8-dim model of flight dynamics
– 20-dim continuous H' controller for disturbance rejection
– stiff, highly coupled dynamics

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

Photo by Andrew P Clarke
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Example: Helicopter

Ɣ 28 state variables + clock

CAV’11: 1440 sets in 5.9s
1440 time steps
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Ɣ 28 state variables + clock

Example: Helicopter

HSCC’13: 32 sets in 15.2s (4.8s clustering)
2 -- 3300 time steps, median 360

convex in 29 
dimensions!
convex in 29 
dimensions!
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Example: Chaotic Circuit

Ɣ piecewise linear Rössler-like circuit
Pisarchik, Jaimes-Reátegui. ICCSDS’05

Ɣ added nondet. disturbances
Ɣ 3 variables, hard!
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Outline

Ɣ Modeling with Hybrid Automata
Ɣ Reachability versus Simulation
Ɣ Reachability Algorithms

– piecewise constant dynamics
– piecewise affine dynamics

Ɣ Case Study: Controller Implementation
Ɣ SpaceEx Tool Platform
Ɣ Bibliography
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Case Study: Electro-Mechanical Brake

Frehse, Hamann, Quinton, Woehrle. Formal analysis of timing effects on closed-loop properties of control software. RTSS'14
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Case Study: Electro-Mechanical Brake

Ɣ Controller Implementation
– discrete time
– fixed-point arithmetic
– multi-tasking processor: scheduling with uncertain frequency
– worst-case analysis too conservative
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Case Study: Electro-Mechanical Brake
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Case Study: Electro-Mechanical Brake

Ɣ Typical Worst-Case Execution Time
– limit missed schedules

per time interval
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Case Study: Electro-Mechanical Brake

time

caliper position
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Case Study: Electro-Mechanical Brake

time

caliper position

artificial failure case
(inconsistent with classical theory)

only failure – hard to detect
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Case Study: Electro-Mechanical Brake

time

current

physical properties: maximum impulse on contact
(measured via current)
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Ɣ Case Study: Controller Implementation
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SpaceEx Verification Platform

Browser-based GUI
–2D/3D output
–runs remotely
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SpaceEx Model Editor

Components = Hybrid Automata
– real-values variables
– ODE, linear DAE
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SpaceEx Model Editor

Block diagrams connect 
components
– templates, nesting
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PHAVer
–constant dynamics (LHA)
–formally sound and exact

SpaceEx Reachability Algorithms

Support Function Algo
–many continuous variables
–low discrete complexity

Simulation
–nonlinear dynamics
–based on CVODE

spaceex.imag.frspaceex.imag.fr
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Outline

Ɣ Modeling with Hybrid Automata
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Conclusions

Ɣ Reachability in continuous time is hard
– even for simple dynamics

Ɣ Handle affine systems with 100+ variables
– exploiting properties of affine dynamics
– lazy set representations (support functions)

Ɣ Further Work...
– abstraction refinement
– extension to nonlinear dynamics


