

VERIMAG

Goran Frehse Université Grenoble 1 Joseph Fourier Verimag, France

EMACS Summer School, Bourges, 2015

$$\begin{split} \dot{V}_{C} &= \frac{1}{C} \left(-I_{d} \left(V_{C} \right) + I_{L} \right) \\ \dot{I}_{L} &= \frac{1}{L} \left(-V_{C} - RI_{L} + V_{in} \right) \end{split}$$

Dang, Donze, Maler, FMCAD' 04

• What are good parameters?

- startup conditions
- parameter variations
- disturbances

R=0.20 $\Omega \Rightarrow$ **Oscillation**

R=0.24 $\Omega \Rightarrow$ **Stable equilibrium**

• Jitter measurement

VERIMAG

Example: Tunnel Diode Oscillator

Outline

- Modeling with Hybrid Automata
- Reachability versus Simulation
- Reachability Algorithms
 - piecewise constant dynamics
 - piecewise affine dynamics
- Case Study: Controller Implementation
- SpaceEx Tool Platform
- Bibliography

Modeling with Hybrid Automata

• Example: Bouncing Ball

- ball with mass m and position x in free fall
- bounces when it hits the ground at x = 0
- initially at position x_0 and at rest

Part I – Free Fall

- Condition for Free Fall
 - ball above ground: $x \ge 0$
- First Principles (physical laws)
 - gravitational force :

$$F_g = -mg$$
$$g = 9.81 \text{m/s}^2$$

• Newton's law of motion :

$$m\ddot{x} = F_g$$

VERIMAG

Part I – Free Fall

$$\begin{array}{rcl} F_g &=& -mg \\ m\ddot{x} &=& F_g \end{array}$$

• Obtaining 1st Order ODE System

- ordinary differential equation $\dot{x} = f(x)$
- transform to 1st order by introducing variables for higher derivatives

• here:
$$v = \dot{x}$$
:

$$\dot{x} = v$$

 $\dot{v} = -g$

Part II – Bouncing

• Conditions for "Bouncing"

- ball at ground position: x = 0
- downward motion: v < 0

• Action for "Bouncing"

- velocity changes direction
- loss of velocity (deformation, friction)
- v := -cv, $0 \le c \le 1$

Combining Part I and II

• Free Fall

• while $x \ge 0$, $\dot{x} = v$ $\dot{v} = -g$

continuous dynamics

 $\dot{x} = f(x)$

• Bouncing

• if
$$x = 0$$
 and $v < 0$
 $v := -cv$

discrete dynamics

$$x \in G$$

$$x := R(x)$$

Hybrid Automaton Model

ODEs with Switching

Continous/Discrete Behaviour

- evolution with time according to ODE dynamics
- dynamics can switch (instantaneous)
- state can jump (instantaneous)

Example: Bouncing Ball

• States over Time

15

Example: Bouncing Ball

• States over States = State-Space View

Example: Bouncing Ball

• Reachability in State-Space

Outline

- Modeling with Hybrid Automata
- Reachability versus Simulation
- Reachability Algorithms
 - piecewise constant dynamics
 - piecewise affine dynamics
- Case Study: Controller Implementation
- SpaceEx Tool Platform
- Bibliography

Reachability in Model Based Design

Example: Overhead Crane

• State variables

- position *x*, speed *v*
- line angle *y*, angle rate *w*

• Feedback controller

- state estimated by observer
- Goals
 - validate observer for *y*,*w*
 - validate swing

Overhead Crane – Observer

• Validation of observer quality

Reachability:

 ${\color{black}\bullet}$

- Standard:
 - Simulation of "representative trajectories"

- Error bounds over range of

initial states & inputs

Overhead Crane - Controller

• Evaluation of swing (angle range)

Example: Controlled Helicopter

• 28-dim model of a Westland Lynx helicopter

- 8-dim model of flight dynamics
- 20-dim continuous H ∞ controller for disturbance rejection
- stiff, highly coupled dynamics

Simulation vs Reachability

Simulation

- approximative sample of **single** behavior
- over finite time

• Reachability

- over-approximative set-valued cover of all behaviors
- over finite or infinite time

Simulation vs Reachability

Simulation

- deterministic
 - resolve nondet. using Monte Carlo etc.
- scalable for nonlinear dyn.

• Reachability

- nondeterministic
 - continuous disturbances...
 - implementation tolerances...
- scalable for linear dynamics

Frehse et al. "SpaceEx: Scalable verification of hybrid systems." Computer Aided Verification. Springer, 2011.

Example: Controlled Helicopter

 Comparing two controllers subject to continuous disturbance

Frehse, G., et al. "SpaceEx: Scalable verification of hybrid systems." Computer Aided Verification. Springer, 2011.

Outline

- Modeling with Hybrid Automata
- Reachability versus Simulation
- Reachability Algorithms
 - piecewise constant dynamics
 - piecewise affine dynamics
- Case Study: Controller Implementation
- SpaceEx Tool Platform
- Bibliography

Computing Reachable States

- Computing One-Step Successors
 - time elapse: $Y = Post_c(X)$
 - jumps: $S = Post_d(S)$

• Fixpoint computation

- Initialization: $R_0 = Ini$
- Recurrence: $R_{k+1} = R_k \cup Post_d(R_k) \cup Post_c(R_k)$
- Termination: $R_{k+1} = R_k \Rightarrow Reach = R_k$.

Computing Reachable States

- Set-based integration can answer many interesting questions about a system
 - safety, bounded liveness,...

• Problems

- in general termination not guaranteed
- set-based integration of ODEs is hard

Solution

- piecewise constant approximations
- piecewise linear approximations
- math tricks (implicit set representations,...)

Piecewise Constant Dynamics

• A very simple class of hybrid systems: Linear Hybrid Automata

- trajectories are straight lines

• Exact computation of successor states possible

- reachability is nonetheless undecidable.

• Continuous Dynamics

- piecewise constant: $\dot{x} = 1$
- intervals: $\dot{x} \in [1, 2]$
- conservation laws: $\dot{x}_1 + \dot{x}_2 = 0$
- general form: conjunctions of linear constraints

$$a \cdot \dot{x} \bowtie b, \qquad a \in \mathbb{Z}^n, b \in \mathbb{Z}, \bowtie \in \{<,\le\}.$$

= convex polyhedron over derivatives

• Discrete Dynamics

- affine transform: x := ax + b
- with intervals: $x_2 := x_1 \pm 0.5$
- general form: conjunctions of linear constraints (new value x')

 $a \cdot x + a' \cdot x' \bowtie b, \qquad a, a' \in \mathbb{Z}^n, b \in \mathbb{Z}, \bowtie \in \{<,\le\}$

= convex polyhedron over x and x'

• Invariants, Initial States

• general form: conjunctions of linear constraints

 $a \cdot x \bowtie b, \qquad a \in \mathbb{Z}^n, b \in \mathbb{Z}, \bowtie \in \{<, \le\},$

= convex polyhedron over x

• model complex behavior

 discrete jump maps can model discrete-time linear control systems (widely used in industry)

source: mathworks.com

(source: wikipedia)

chaos

- even with 1 variable, 1 location, 1 transition (tent map)
- observed in actual production systems [Schmitz, 2002]

Compute time elapse states $Post_c(S)$

• arbitrary trajectory iff straight line exists (convex invariant) [Alur et al.]

• time elapse along straight line can be computed as projection along cone [Halbwachs et al.]

Compute discrete successors $Post_d(S)$

- $Post_d(S) = all x'$ for which exists $x \in S$ s.t.
 - guard: $x \in G$
 - reset and target invariant: $x' \in R(x) \cap Inv$

• Operations:

- existential quantification
- intersection
- standard operations on convex polyhedra, but O(exp(n))

Reachability with LHA [Halbwachs, Henzinger, 93-97]

38

Multi-Product Batch Plant

Multi-Product Batch Plant

Cascade mixing process

- 3 educts via 3 reactors \Rightarrow 2 products

Verification Goals

- Invariants
 - overflow
 - product tanks never empty
- Filling sequence
- Design of verified controller

Verification with PHAVer

Controller

Controlled Plant

• Controller + Plant

- 266 locations, 823 transitions (~150 reachable)
- 8 continuous variables

Reachability over infinite time

- 120s-1243s, 260-600MB
- computation cost increases with nondeterminism (intervals for throughputs, initial states)

Verification with PHAVer

					Automaton		Reachable Set	
Instance	Time [s]	$\mathrm{Mem.}\;[\mathrm{MB}]$	Depth^a	\mathbf{Checks}^{b}	Loc.	Trans.	Loc.	Poly.
BP8.1	120	267	173	279	266	823	130	279
BP8.2	139	267	173	422	266	823	131	450
BP8.3	845	622	302	2669	266	823	143	2737
BP8.4	1243	622	1071	4727	266	823	147	4772

 * on Xeon 3.20 GHz, 4GB RAM running Linux; a lower bound on depth in breadth-first search; b number of applications of post-operator

Outline

- Modeling with Hybrid Automata
- Reachability versus Simulation
- Reachability Algorithms
 - piecewise constant dynamics
 - piecewise affine dynamics
- Case Study: Controller Implementation
- SpaceEx Tool Platform
- Bibliography

Piecewise Affine Dynamics

• Not quite so simple dynamics

trajectories = exponential functions

• Exact computation at discrete points in time

- used to overapproximate continuous time

• Efficient data structures

Time Elapse Computation

• Continuous time elapse for affine dynamics

- efficient, scalable
- approximation without accumulation of approximation error (wrapping effect)

• It took a long time to do it well...

- Chutinan, Krogh. HSCC'99
- Asarin, Bournez, Dang, Maler. HSCC'00
- Girard. HSCC'05
- Le Guernic, Girard. HSCC'06, CAV'09
- Frehse, Kateja, Le Guernic. HSCC'13

Affine Dynamics

• linear terms plus inputs *U*:

$$\dot{x} = Ax + u$$
, $u \in U$

• solution:

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}u(\tau)d\tau$$
 matrix exponential

factors influence of inputs (stable system forgets the past)

Time-Discretization (no inputs)

- Analytic solution: $x(t) = e^{At}x_{Ini}$
 - with $t = \delta k$: $x(\delta(k+1)) = e^{A\delta}x(\delta k)$ x_{0} x_{1} x_{2} x_{1} x_{2} x_{1} x_{2} x_{3} x_{1} x_{2} x_{3} x_{2} x_{3} x_{2} x_{3} x_{4} x_{2} x_{3} x_{2} x_{3} x_{4} x_{5} x_{4} x_{5} x_{5}
- Explicit solution in discretized time (recursive):

$$\begin{array}{rcl} x_0 &=& x_{Ini} \\ x_{k+1} &=& e^{A\delta} x_k \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

Time-Discretization for an Initial Set

- Acceptable solution for purely continuous systems
 - -x(t) is in $\epsilon(\delta)$ -neighborhood of some X_k
- Unacceptable for hybrid systems
 - discrete transitions might "fire" between sampling times
 - if transitions are "missed," x(t) not in $\epsilon(\delta)$ -neighborhood

Time Discretization for Hybrid Systems

• One can miss jumps (guard)

- Note: Computed in exact arithmetic, no numerical errors
- In other examples this error might not be as obvious...

From Time-Discretization to Reach

• States in discrete time:

From Time-Discretization to Reach

• Cover in discrete time:

 \oplus Minkowski sum = pointwise sum of sets

Wrapping Effect

- accumulation of approximation error
- avoidable using the right approximation

Antoine Girard, Colas Le Guernic, and Oded Maler. Efficient computation of reachable sets of linear time-invariant systems with inputs. HSCC 2006

Reachability in High Dimensions

• Scalability Trick 1:

Use data structures adapted to operations

Scalable Set Representations

• Ellipsoids [Kurzhansky, Varaiya 2006]

- bad representation of intersection, convex hull, flat sets

(this is an illustration, not actual computation)

Scalable Set Representations

- Zonotopes [Girard 2005]
 - symmetric polytope spanned by set of generator vectors
 - bad representation of intersection, convex hull, asymmetric sets

(computed with Zonotope toolbox of M. Althoff)

Scalable Set Representations

• Support Functions [Le Guernic, Girard 2009]

- lazy representation of any convex set
- gives outer polyhedral approximation that can be refined
- scalable except for intersection

(computed with SpaceEx)

Operations on Convex Sets

	Polyhe	edra			
Operators	Constraints	Vertices	Zonotopes	Support F.	
Convex hull		+		++	
Affine transform	+/-	++	++	++	
Minkowski sum			++	++	
Intersection	+			-	

Le Guernic, Girard. CAV'09

• Support Function $R^n \rightarrow R$

- direction $d \rightarrow$ position of supporting halfspace

$$\rho_P(d) = \max_{x \in P} d^T x$$

- exact set representation

- black box representation of a convex set
- implementation: function objects

- black box representation of a convex set
- implementation: function objects

- black box representation of a convex set
- implementation: function objects

Reachability in High Dimensions

• Scalability Trick 2:

Change data structures (data-dependent)

Computing Time Elapse

Computing Transition Successors

• Intersection with guard

- use outer poly approximation
- Linear map & Minkowski sum
 - with polyhedra if invertible (map regular, input set a point)
 - otherwise use support functions

• Intersection with target invariant

- use outer poly approximation

Computing Transition Successors

Example: Switched Oscillator

• Switched oscillator

- 2 continuous variables
- 4 discrete states
- similar to many circuits (Buck converters,...)
- plus linear filter
 - *m* continuous variables
 - dampens output signal

• affine dynamics

- total 2 + m continuous variables

Example: Switched Oscillator

• Scalability Measurements:

- fixpoint reached in $O(nm^2)$ time
- box constraints: $O(n^3)$

- octagonal constraints: $O(n^5)$

Reachability in High Dimensions

• Scalability Trick 3:

Work in Space-Time (exploit pointwise convexity)

Approximation in Space-Time

Improve the approximation by adding time...

Approximation in Space-Time

Approximation in Space-Time

Support Function over Time

convex set per time interval = piecewise constant scalar functions

Support Function over Time

interpolation with piecewise linear scalar functions

Support Function over Time

infinite union of template polyhedra (one for each t)

Convexification

finite union of non-template polyhedra (one for each concave piece)

Example: Bouncing Ball

Clustering up to total error 0.1 = 8 pieces

Example: Bouncing Ball

Clustering up to total error 1.0 = 2 pieces

Example: Controlled Helicopter

• 28-dim model of a Westland Lynx helicopter

- 8-dim model of flight dynamics
- 20-dim continuous $H\infty$ controller for disturbance rejection
- stiff, highly coupled dynamics

Example: Helicopter

• 28 state variables + clock

Example: Helicopter

• 28 state variables + clock

HSCC'13: 32 sets in 15.2s (4.8s clustering)

2 -- 3300 time steps, median 360

Example: Chaotic Circuit

- piecewise linear Rössler-like circuit Pisarchik, Jaimes-Reátegui. ICCSDS'05
- added nondet. disturbances

Outline

- Modeling with Hybrid Automata
- Reachability versus Simulation
- Reachability Algorithms
 - piecewise constant dynamics
 - piecewise affine dynamics
- Case Study: Controller Implementation
- SpaceEx Tool Platform
- Bibliography

• Controller Implementation

- discrete time
- fixed-point arithmetic
- multi-tasking processor: scheduling with uncertain frequency
- worst-case analysis too conservative

• Typical Worst-Case Execution Time

 limit missed schedules per time interval

# deadline misses	consecutive executions
2	2
3	18
4	20
5	56

93

current

physical properties: maximum impulse on contact (measured via current)

Outline

- Modeling with Hybrid Automata
- Reachability versus Simulation
- Reachability Algorithms
 - piecewise constant dynamics
 - piecewise affine dynamics
- Case Study: Controller Implementation
- SpaceEx Tool Platform
- Bibliography

SpaceEx Verification Platform

	Home About SpaceEx Documen	tation Run SpaceEx Downloads Contact
Model Specification Options Output Advanced	Console	Reports
Model editor Download Model file Browse_ Configuration file Load Save User input file User file Examples Bouncing Ball (.xml, .cfg) Timed Bouncing Ball (.xml, .cfg) Timed Bouncing Ball (.xml, .cfg)	Iteration 6 8 sym states passed, 1 waiting 0.457s Iteration 7 9 sym states passed, 1 waiting 0.941s Iteration 8 10 sym states passed, 1 waiting 0.434s Iteration 9 11 sym states passed, 1 waiting 0.936s Iteration 10 12 sym states passed, 1 waiting 0.457s Iteration 11 13 sym states passed, 1 waiting 0.929s Iteration 12 14 sym states passed, 1 waiting 0.455s Iteration 13 14 sym states passed, 0 waiting 0.917s Found fixpoint after 14 iterations. Computing reachable states done after 10.058s Output of reachable states 0.823s	<pre>11.05s elapsed 29516KB memory SpaceEx output file : output (jvx). </pre>
 Circle (.xml, .cfg) Filtered Oscillator 6 (.xml, .cfg) Filtered Oscillator 18 (.xml, .cfg) Filtered Oscillator 18 (.xml, .cfg) Filtered Oscillator 34 (.xml, .cfg) Filtered Oscillator 34 (.xml, .cfg) Filtered Oscillator 34 (.xml, .cfg) A filtered oscillator 34 (.xml, .cfg) The analysis with octagonal constraints to be computed at every time step. The analysis with 2*34=68 box constraints remains cheap. Browseer-baased GUU -2D/3D output -runs remotely	Graphics	

SpaceEx Model Editor

SpaceEx Model Editor

99

SpaceEx Reachability Algorithms

PHAVer

-constant dynamics (LHA)

-formally sound and exact

Support Function Algo

-many continuous variables

-low discrete complexity

Simulation

-nonlinear dynamics

-based on CVODE

spaceex.imag.fr

Outline

- Modeling with Hybrid Automata
- Reachability versus Simulation
- Reachability Algorithms
 - piecewise constant dynamics
 - piecewise affine dynamics
- Case Study: Controller Implementation
- SpaceEx Tool Platform
- Bibliography

Bibliography

• Hybrid Systems Theory

- Alur, Courcoubetis, Halbwachs, Henzinger, Ho, Nicollin, Olivero, Sifakis, Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 1995
- Henzinger. The theory of hybrid automata. LICS'96

• Linear Hybrid Automata

- Henzinger, Ho, Wong-Toi, HyTech: The next generation. RTSS'95
- Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past HyTech. HSCC'05
- Frehse. Tools for the verification of linear hybrid automata models. Handbook of Hybrid Systems Control. 2009.

Bibliography

• Affine Dynamics

- Asarin, Bournez, Dang, Maler. Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems. HSCC'00
- Girard, Le Guernic, Maler. Efficient computation of reachable sets of linear time-invariant systems with inputs. HSCC'06

• Support Functions

- Le Guernic, Girard. Reachability analysis of hybrid systems using support functions. CAV'09
- Frehse, Le Guernic, Donzé, Ray, Lebeltel, Ripado, Girard, Dang, Maler.
 SpaceEx: Scalable verification of hybrid systems. CAV'11.
- Frehse, Kateja, Le Guernic. Flowpipe approximation and clustering in spacetime. HSCC'13

Bibliography

• Ellipsoids

- Kurzhanskiy, Varaiya. Ellipsoidal toolbox (et). CDC, 2006.
- Kurzhanskiy, Varaiya. Ellipsoidal techniques for reachability analysis of discrete-time linear systems. IEEE Transactions on Automatic Control, 2007.

• Zonotopes

- Antoine Girard. Reachability of uncertain linear systems using zonotopes. HSCC'05
- M. Althoff and B. Krogh. Reachability analysis of nonlinear differential-algebraic systems. IEEE Transactions on Automatic Control, 2013

Verification Tools for Hybrid Systems

• HyTech: LHA

– http://embedded.eecs.berkeley.edu/research/hytech/

• Matisse Toolbox: zonotopes

- http://www.seas.upenn.edu/~agirard/Software/MATISSE/

• Cora Toolbox: zonotopes, nonlinear systems

– http://www6.in.tum.de/Main/SoftwareCORA

• HSOLVER: nonlinear systems

– http://hsolver.sourceforge.net/

• Flow*: nonlinear systems

- http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/
- and more...: http://wiki.grasp.upenn.edu/hst/

Conclusions

• Reachability in continuous time is hard

- even for simple dynamics

• Handle affine systems with 100+ variables

- exploiting properties of affine dynamics
- lazy set representations (support functions)

• Further Work...

- abstraction refinement
- extension to nonlinear dynamics