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Outline of the tutorial

What are switched systems ?

About stability

Stability results for discrete-time switched systems (solving P1)

Stability results with constrained switching law (solving P2)

Stabilization results for discrete-time switched systems (solving P3)

Tutorial switched systems 2 / 58 M. Jungers



Aims of the tutorial

Goals :

• Have an overview about switched systems.
• Consider discrete-time linear autonomous switched systems.
• Understand the main properties of switched systems.
• Be familiar with stability and stabilization of switched systems.
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Outline of the tutorial

What are switched systems ?
Definition and link with hybrid systems
Illustrations and motivation

About stability

Stability results for discrete-time switched systems (solving P1)

Stability results with constrained switching law (solving P2)

Stabilization results for discrete-time switched systems (solving P3)
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Definition of switched systems

Definition :
Switched systems are the association of a finite set of dynamical systems
(modes) and a switching law σ(·) that indicates at each time which mode is
active.

Let I = {1; · · · ; N}, where N ∈ N is the number of modes.

Continuous-time

ẋ(t) = fσ(t)(x(t), u(t), t), ∀t ∈ R+,

where
• x(t) ∈ Rn is the state,
• u(t) the input.

• σ the switching law

σ : R→ I.

Discrete-time

xk+1 = fσ(k)(xk , uk , k), ∀k ∈ N, (1)

where
• xk ∈ Rn is the state,
• uk the input.

• σ the switching law

σ : N→ I.
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Assumptions for the switching law

Several assumptions :

• σ(·) is arbitrary.
σ(·) is seen as a perturbation. The results should be true for all the switching
laws. The generation of the signal k 7→ σ(k) could be very difficult to take into
account.

• σ(·) is state dependent.
Here we have σ(k) = g(xk ).

• σ(·) is time dependent or has time constraints.
This is for instance the case when σ(·) is periodic, or has a time constraint
such a dwell time.

• σ(·) is a control input.
The issue here is to design the switching law σ(·).
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Particular case of hybrid systems

Hybrid system :
Heterogenous interaction between continuous and discrete dynamics :{

If z(t) ∈ C, ż(t) ∈ F (z(t), u(t)), (flow map)

If z(t) ∈ D, z(t+) ∈ G(z(t), u(t)), (jump map).
(2)

For continuous-time switched systems, we have :

C = D = Rn × I, z(t) =

(
x(t)
σ(t)

)
∈ Rn+1, (3)

F (z(t)) =

(
{fi (x(t), u(t))}i∈I

0

)
; G(z(t)) =

(
x(t)
I

)
. (4)
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Illustrations
Saturated systems :
Let x(t) ∈ R2, with

ẋ(t) =

[
−1 1
0 −5

]
x(t) +

[
0.2
1

]
sat
([

1 −1
]

x(t)
)
.

with

sat(u) =


−1 if u < −1,
+1 if u > +1,
u if − 1 ≤ u ≤ +1.
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Illustrations

Boost converter :

C
dvo

dt
= (2− σ)iL −

1
R

vo, σ(t) ∈ {1; 2}

L
diL
dt

= vin − (2− σ)vo.
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Illustrations

Multiagent systems :
The new position of each agent i is a mean of the position of agents, who are in
the current neighborhood (depending on time k ). Existence of a consensus
limk→+∞ x (i)

k = x∗ ?
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Illustrations

Switching controllers :

System

Controller 1

Controller N

...

Switched law
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Illustrations
Sliding modes :

Let x(t) ∈ R, with

ẋ(t) = −sign(x(t)) =


−1 if x(t) > 0,
+1 if x(t) < 0,
undefined if x(t)=0.
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Difficulties : Well-posed solution ? Possible presence of Zeno phenomenon.
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Typical examples of embedded systems
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Framework of the talk

Consider discrete-time switched systems :
• Avoid well-posedness of solutions (different kinds of solutions : Filipov

solution etc),
• Avoid Zeno phenomenon,
• Simplicity and richness of this class of systems.

Assume also for this talk :
• The modes are time invariant,
• The modes are autonomous (or already in their closed-loop form).

To sum up, we consider in the following (with distinct assumptions on σ(·)) :

xk+1 = Aσ(k)xk . (5)
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Outline of the tutorial

What are switched systems ?

About stability
Definitions
Stability of time invariant discrete-time linear systems
Properties/Complexity of switched systems
Main problems

Stability results for discrete-time switched systems (solving P1)

Stability results with constrained switching law (solving P2)

Stabilization results for discrete-time switched systems (solving P3)
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Definitions relative to stability

The definitions are relative to an equilibrium point. Here we assume that the
equilibrium point is the origin x∗ = 0. In addition, the following definitions are
valid for linear switched systems, for which there does not exist finite time
escape.

Global asymptotic stability (GAS) : ensure that

lim
k 7→+∞

xk = 0, ∀(x0, σ(0)) ∈ Rn × I. (6)

Global uniform asymptotic stability (GUAS) : ensure that

lim
k 7→+∞

xk = 0, ∀(x0, σ(0)) ∈ Rn × I, ∀σ : N 7→ I. (7)

The term uniform means uniformly in σ(·).
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Geometric approach

We recall stability results for the time invariant discrete-time linear system :

xk+1 = Axk , ∀k ∈ N. (8)

The solution is given by
xk = Ak x0, ∀k ∈ N.

Theorem : The system (8) is GAS if and only if

ρ(A) = max
i∈
|λi (A)| < 1. (9)
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Lyapunov function approach

Theorem : Consider the system xk+1 = Axk and V : Rn → R, such that
• V (x)→ +∞ as ‖x‖ → +∞. (radially unbounded).
• V (0) = 0 and V (x) > 0 if x 6= 0. (positive definite).
• V (Ax)− V (x) < 0, ∀x 6= 0. (decreasing)

Then the origin x∗ = 0 is GAS.

The function V is called a Lyapunov function and is an extended energy of the
system, which should decrease to zero along all trajectories.
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Converse theorem

Theorem : If the origin x∗ = 0 is GAS for the system xk+1 = Axk , then there
exists a Lyapunov function V (·).

In such a case, the difficulty is to obtain the expression of the Lyapunov function
V (·).
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Stability for linear systems with Lyapunov functions

Theorem : the following statements are equivalent :

1. The linear system xk+1 = Axk is GAS.

2. There is a quadratic Lyapunov function

V (x) = xT Px , (10)

where P is a positive definite matrix P > 0n such that the following Lyapunov
inequality (Linear Matrix Inequality LMI) is satisfied :

AT PA− P < 0. (11)

3. There is a quadratic Lyapunov function

V (x) = xT Px , (12)

where P is the positive definite matrix P > 0n associated with any Q > 0
such that the following Lyapunov equation is satisfied.

AT PA− P = −Q. (13)

Tutorial switched systems 20 / 58 M. Jungers



Sketch of proof
3)⇒ 2) . Trivial

AT PA− P = −Q < 0.
2)⇒ 1) If the inequality AT PA− P < 0 has a positive definite solution

P > 0n, then there exists sufficient small 1 > ε > 0 such that

AT PA− P < −εP < 0.

Then, by considering V (x) = xT Px , and xk 6= 0,

V (xk+1)− V (xk ) = xT
k (AT PA− P)xk < −εxT

k Pxk < 0,

which implies, with λmin(P)‖x‖2 ≤ xT Px ≤ λmax(P)‖x‖2, that

xT
k Pxk ≤ (1− ε)k V (x0); ‖xk‖2 ≤ λmax(P)

λmin(P)
‖x0‖2(1− ε)k .

1)⇒ 3) If the system xk+1 = Axk is GAS, then the Grammian associated
with the pair (Q,A), with any Q > 0 is well-defined (the sum
converges). ∑

k∈N

(
AT
)k

QAk ,

and is a solution of the Lyapunov equation. To end the proof, we
have only to prove that P > 0.
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Main difficulty concerning the stability

The stability of a switched system is not intuitive

xk+1 = Aσ(k)xk , x(0) = x0; xk ∈ R2 (14)

where σ : N→ {1, 2} is the switching rule, which imposes the active mode.

A1 =

[
0.9960 −0.0100
0.0100 0.9960

]
; A2 =

[
0.9960 −0.1992
0.0005 0.9960

]
; (15)

A1 and A2 have the same eigenvalues λ± = 0.9960± 0.0100i and are stable
(Schur : ‖λ±‖ < 1) .
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Stability of mode 1
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Stability of mode 2
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Comparing modal trajectories
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Is the switched system stable for all switching laws ? (I)
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Stable
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Is the switched system stable for all switching laws ? (II)

3000 2500 2000 1500 1000 500 0 500
50

0

50

100

150

200

250

σ(k) = 1 if xk,(1)xk,(2) > 0
σ(k) = 2 if xk,(1)xk,(2) ≤ 0

Unstable
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Main problems

See [LM99].

P1 Find stability conditions such that the switched system is
asymptotically stable for any switching law.

P2 Given a switching law, determine if the switched system is
asymptotically stable.

P3 Give the switching signal which makes the system asymptotically
stable. P3 is called the stabilization problem.
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Outline of the tutorial

What are switched systems ?

About stability

Stability results for discrete-time switched systems (solving P1)
The joint spectral radius
The common Lyapunov function approach

Stability results with constrained switching law (solving P2)

Stabilization results for discrete-time switched systems (solving P3)
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Geometric approach : the joint spectral radius

The joint spectral radius of a set of matrices A = {A1, · · · ,AN}, denoted ρ(A) is
an extension of the radius of a matrix A (i.e. ρ(A)) and gives a necessary and
sufficient condition for the stability of the system (5) and solves P1. See [The05].

Remark : the joint spectral radius is the maximal growing rate which may be
obtained by using long products of matrices from a given set.

We define
ρ(A) = lim supp→+∞ρp(A), (16)

where
ρp(A) = sup

Ai1
,Ai2

,··· ,Aip∈A

∥∥Ai1 Ai2 × · · · × Aip

∥∥ 1
p .

Theorem : The switched system (5) is GAS if and only if

ρ(A) < 1. (17)

Main difficulty : this is difficult in the generic case to practically compute the joint
spectral radius. Several approximations are provided in the literature.
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The common Lyapunov function approach

Theorem If all the modes share a common Lyapunov function, then the switched
system is GUAS.

Theorem If the switched system is GUAS, then all the modes share a common
Lyapunov function.

Remark : be careful, there is no assumption concerning the class of the
Lyapunov function. Especially, this Lyapunov function is not necessary on the
form V (x) = xT Px as it will be seen in the following. This existence result does
not help roughly speaking about how to find this Lyapunov function. In addition,
there exists a common Lyapunov function on the form V (x) = xT P(x)x , where
P(λx) = P(x), ∀λ 6= 0 (homogeneous of degree zero).
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The common Lyapunov function approach : sufficient conditions

The previous theorem suggests to look for a common quadratic Lyapunov
function in the class V (x) = xT Px .

Theorem : Consider the discrete-time linear switched system (5). If there exists a
matrix P ∈ Rn×n such that

P > 0n (18)

and
AT

i PAi − P < 0, ∀i ∈ I, (19)

then the system (5) admits the common quadratic Lyapunov function V (x) and is
GUAS.

Remark : the system (5) may be GUAS without feasible LMI (19).

Tutorial switched systems 32 / 58 M. Jungers



The common Lyapunov function approach : unfeasibility test

To complete the previous remark, we have the following theorem.

Theorem : If there exist positive definite matrices Ri ∈ Rn×n, Ri > 0n such that∑
i∈I

AiRiAT
i − Ri > 0n, (20)

then there does not exist P > 0n such that

AT
i PAi − P < 0, ∀i ∈ I, (21)

Proof : If there exist Ri (∈ I) such that Inequalities (20) hold, then for every
P > 00,

0 < Tr

[
P

(∑
i∈I

AiRiAT
i − Ri

)]
= Tr

[
Ri

(
AT

i PAi − P
)]
,

then there exists i0 ∈ I such that AT
i0 PAi0 − P > 0.
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Multiple Lyapunov functions

Definition : We consider functions of the form

V (σ(k), xk ) = Vσ(k)(xk ) = xT
k P(σ(k), xk )xk . (22)

Theorem : If there exist Pi , i ∈ I such that Pi > 0 and

AT
i PjAi − Pi < 0, ∀(i, j) ∈ I2, (23)

then the discrete-time switched system (5) is GUAS.

Sketch of proof : By chosing i = σ(k) and j = σ(k + 1), we have
Vσ(k+1)(xk+1)− Vσ(k)(xk ) < 0, ∀xk 6= 0. A common Lyapunov function is

Vmax(x) = max
i∈I

xT Pix . (24)
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Outline of the tutorial

What are switched systems ?

About stability

Stability results for discrete-time switched systems (solving P1)

Stability results with constrained switching law (solving P2)
A periodic switching law
Dwell time constraint

Stabilization results for discrete-time switched systems (solving P3)
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Periodic switching law
A K -periodic switching law is defined by σ : N→ I such that

σ(k + K ) = σ(k), k ∈ N. (25)

We define the monodromy matrix as

Φk = Aσ(k+K−1)Aσ(k+K−2) × · · · × Aσ(k). (26)

Theorem : the eigenvalues of the monodromy matrix Φk are called characteristic
multipliers and are independent of i . The system (5) is GUAS if its characteristic
multipliers belong strictly to the unit circle.

Then there exists W > 0n such that ΦT
k W Φk −W < 0. Moreover there exists a

K -periodical Lyapunov function V (xk , k) = xT
k P̃(k)xk ,l with P̃(k + K ) = P̃(k),

such that 0 ≤ ∀k ≤ K − 2 :

AT
σ(k)P̃k+1Aσ(k) − P̃k = 0n; (27)

AT
σ(K−1)P̃0Aσ(K−1) − P̃K−1 < 0n. (28)

Sketch of proof : choose P̃K−1 = W , and because P̃0 = P̃K , then

P̃K−2 = AT
σ(K−2)WAσ(K−2); P̃K−3 = AT

σ(K−3)A
T
σ(K−2)WAσ(K−2)Aσ(K−3); · · · (29)
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Dwell time constraint

Definition : For an integer ∆ ∈ N∗, the set of the switching laws satisfying a dwell
time at least equal to ∆ is defined by

D∆ =
{
σ : N→ I; ∃{`q}q∈N, `q+1 − `q ≥ ∆;

σ(k) = σ(`q), ∀`q ≤ k < `q+1;σ(`q) 6= σ(`q+1)
}
.

Theorem : (See [GC06]) If there exist Pi (i ∈ I) such that

AT
i PiAi − Pi < 0n, ∀i ∈ I (30)

(AT
i )∆PjA∆

i − Pi < 0n, ∀(i, j) ∈ I2, i 6= j, (31)

then the system (5) is GAS for any switching law σ ∈ D∆.
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Outline of the tutorial

What are switched systems ?

About stability

Stability results for discrete-time switched systems (solving P1)

Stability results with constrained switching law (solving P2)

Stabilization results for discrete-time switched systems (solving P3)
Lyapunov–Metzler inequalities
Geometric approach
LMI sufficient condition
Periodic stabilizability
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Stabilization of linear discrete-time switched systems

The problem P3 is to design a switching law that stabilizes the system (5).

Assumption : Ai (∀i ∈ I) are not Schur.

This assumption is to avoid a trivial solution : if there exists i0 such that Ai0 is
Schur, then σ(k) = i0 globally asymptotically stabilizes the system.
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Lyapunov-Metzler BMI conditions : sufficient conditions

Let consider theMd the set of the Metzler matrices in discrete-time, that is the
matrices whose elements are nonnegative and

∑
j∈I πji = 1.

Theorem (see [GC06]. If there exist Pi > 0 (i ∈ I) and π ∈Md such that

AT
i

∑
j∈I

πjiPj

Ai − Pi < 0, ∀i ∈ I (32)

holds, then the switched system is globally asymptotically stabilizable with the
min-switching strategy

σ(k) ∈ arg min
i∈I

xT
k Pixk . (33)

The inequality (32) is a Bilinear Matrix Inequality (BMI). The condition implies
that the homogeneous function induced by

⋃
i∈I E(Pi ) (where

E(P) = {x ∈ Rn, xT Px ≤ 1}) is a control Lyapunov function.
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Sketch of proof
Lyapunov function considered

Vmin :

{
Rn → R,
xk 7→ min

i∈I
xT

k Pixk ,
(34)

Notation : (P)p,i =
∑̀
∈I
π`iP`.

Elements of proof
• By post-multiplying by xk 6= 0 and pre-multiplying by x ′k ,

x ′k+1(P)p,ixk+1 − x ′k Pixk < 0 (35)

• the minimum scalar value of convex polytopes is reached on one of the
vertices

Vmin(xk+1) = min
j∈I

x ′k+1Pjxk+1 = min∑
j∈I λj =1
λj∈R+;

∑
j∈I

λjx ′k+1Pjxk+1. (36)

Each column of the Metzler matrix Π ∈M is in the unit simplex, then

Vmin(xk+1) ≤ x ′k+1(P)p,ixk+1. (37)

⇒ global asymptotic stability holds with

Vmin(xk+1)− Vmin(xk ) < 0, ∀xk 6= 0. (38)
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Example of state-partition

With

A1 =

[
−1.1 0

1 0.4

]
, A2 =

[
0.2 0
0 1.3

]
, x0 =

(
−0.5
0.5

)
we have

Π =

[
0.3 0.7
0.7 0.3

]
,P1 =

[
1.7097 0.3734
0.3734 0.4786

]
, P2 =

[
1.1978 0.6398
0.6398 1.3173

]
.
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Geometric tools

A C-set is a compact, convex set containing the origin in its interior.
Definition A set Ω ⊆ Rn is a C∗-set if it is compact, star-convex with respect to
the origin and 0 ∈ int(Ω).

Notice a set is
• convex if ∀x0 ∈ Ω and ∀x ∈ Ω, then αx0 + (1− α)x ∈ Ω, ∀α ∈ [0, 1].
• star-convex if ∃x0 ∈ Ω, such that ∀x ∈ Ω, then
αx0 + (1− α)x ∈ Ω, ∀α ∈ [0, 1].

Minkowski function of a C∗-set Ω : ΨΩ(x) = min
α
{α ∈ R : x ∈ αΩ}.

• Any C-set is a C∗-set.
• Given a C∗-set Ω, we have that αΩ is a C∗-set and αΩ ⊆ Ω for all α ∈ [0, 1].
• ΨΩ(·) is : defined on Rn ; homogenous of degree one ; positive definite and

radially unbounded. But nonconvex in general !
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Geometric approach

Algorithm 1 Control λ-contractive C-set for the switched
system (5).
• Initialization : given the C∗-set Ω ⊆ Rn, define

Ω0 = Ω and k = 0 ;
• Iteration for k ≥ 0 :

Ωi
k+1 = A−1

i Ωk , ∀i ∈ I,
Ωk+1 =

⋃
i∈I

Ωi
k+1;

• Stop if Ω ⊆ int

 ⋃
j∈Nk+1

Ωj

 ; denote Ň = k + 1 and

Ω̌ =
⋃

j∈{1;···;Ň}
Ωj .
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Geometric approach

Geometrical interpretation :
• the set Ωi

k is the set of x that can be stirred in Ω in k steps by a switching
sequence beginning with i ∈ I ;

• then Ωk is the set of points that can be driven in Ω in k steps ;
• and hence Ω̌ the set of those which can reach Ω in Ň or less steps, by an

adequate switching law.

Necessary and sufficient condition for stabilizability.

Theorem There exists a control Lyapunov function for the switched system if and
only if the Algorithm 1 ends with finite Ň.
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Example 1

Non-Schur switched system with q = n = 2.

A1 =

[
1.2 0
−1 0.8

]
, A2 =

[
−0.6 −2

0 −1.2

]
,
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Example 2

System with q = 4, n = 2 and

A1 =

[
1.5 0
0 −0.8

]
, A2 = 1.1 R( 2π

5 )

A3 = 1.05 R( 2π
5 − 1), A4 =

[
−1.2 0

1 1.3

]
.

The matrices Ai , with i ∈ N4, are not Schur. Notice : only one stable eigenvalue !
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Example 3
Switched system with

A1 =

[
0 −1.01
1 −1

]
, A2 =

[
0 −1.01
1 −0.5

]
.

The technique based on Lyapunov-Metzler inequalities [GC06] has been
numerically checked (gridding) and it results not feasible.

Nevertheless...
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Example 4

Switched system with

A1 =

[
1.3 0
0 0.9

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, A2 =

[
1.4 0
0 0.8

]
,

for θ = 0 (left) and θ = π
5 (right).
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LMI sufficient condition

Our next aim is to formulate an alternative condition that could be checked
efficiently, a convex one.
Theorem The switched system is stabilizable if there exist N ∈ N and η ∈ RN̄

such that η ≥ 0,
∑
i∈I

ηi = 1 and ∑
i∈I

ηiAT
i Ai < I.

with Ai =
k∏

j=1

Aij = Aik · · ·Ai1 .

The condition is just sufficient (except for particular cases), is it also necessary ?
No !
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Counterexample
Consider the three modes given by the matrices

A1 = AR(0), A2 = AR
(

2π
3

)
, A3 = AR

(
−2π

3

)
, with A =

[
a 0
0 a−1

]
and a = 0.6. The geometric condition holds with N = 1.

−2 −1 0 1 2
−2

−1

0

1

2

For every N and every Bi with i ∈ I, the related Ai is such that det(AT
i Ai ) = 1

and Tr(AT
i Ai ) ≥ 2.

Notice that, for all the matrices Q > 0 in R2×2 such that det(Q) = 1, then
Tr(Q) ≥ 2 and Tr(Q) = 2 if and only if Q = I.

Thus, for every subset K ⊆ I, we have that
∑
i∈K

ηiAT
i Ai < I, cannot hold, since

either Tr(AT
i Ai ) > 2 or AT

i Ai = I.
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Periodic stabilizability

A periodic switching law is given by σ(k + K ) = σ(k).

The stabilizability through periodic switching law, i.e. periodic stabilizability, is
formalized below.
definition The switched system is periodic stabilizable if there exist a periodic
switching law σ : N→ I, such that the system is stabilizable for all x ∈ Rn.

Notice that for stabilizability the switching function might be state-dependent,
hence a state feedback, whereas for having periodic stabilizability the switching
law must be independent on the state.

Is there an equivalence relation between periodic stabilizability and the LMI
condition ? The answer is below.

Theorem : A stabilizing periodic switching law for the switched system exists if
and only if the LMI condition holds.
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Sum up on the stabilizability

Lyapunov-Metzler
CS

Condition
LMI

Geometric
condition

Stabilisability
issue

Periodic
Stabilisability
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Contact

Contact :

Marc.Jungers@univ-lorraine.fr

Thank you very much !
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