Hierarchical Performance Analysis of Uncertain Large Scale Systems

K. Laib

A. Korniienko G. Scorletti F. Morel

Laboratoire Ampère École Centrale de Lyon

GT MOSAR, Grenoble, 6 October, 2015

Introduction

- Motivation
- Problem formulation
- Problem analysis
- Proposed approach
 - Robustness analysis and QC Propagation
 - Hierarchical approach
- 3 Application Example
- 4 Discussion
- 5 Conclusion and future work

A B K A B K

Context : PLL network

Large Scale Systems (LSS) : Phase Locked Loop (PLL) network

- PLL network to deliver clock signal to synchronous multi-core processors
- How to guarantee synchronization?

Context : PLL network

Large Scale Systems (LSS) : Phase Locked Loop (PLL) network

- PLL network to deliver clock signal to synchronous multi-core processors
- How to guarantee synchronization?

Introduce global synchronization error

Context : PLL network

Large Scale Systems (LSS) : Phase Locked Loop (PLL) network

- PLL network to deliver clock signal to synchronous multi-core processors
- How to guarantee synchronization?

- Introduce global synchronization error
- Synchronization specifications (performance) are guaranteed if $T_{r_g \longrightarrow e_g}$ satisfies some frequency constraints

Performance is expressed in frequency domain.

- (E) (E)

Image: A math a math

Performance is expressed in frequency domain.

(I)

Performance is expressed in frequency domain.

Active clock distribution network

Technological dispersions, modeling errors \implies **uncertainties** (Δ)

・ロ・・ (日・・ 日・・ 日・・

Active clock distribution network

- **Technological dispersions, modeling errors** \implies **uncertainties** (Δ)
- Uncertain subsystems

.

Active clock distribution network

- **Technological dispersions, modeling errors** \implies **uncertainties** (Δ)
- Uncertain subsystems

Uncertain Network

Active clock distribution network

- **Technological dispersions, modeling errors** \implies **uncertainties** (Δ)
- Uncertain subsystems

- Uncertain Network
- Robustness analysis :

Perform the worst case robustness analysis for all the uncertainties Δ_i

K. Laib et al. (ECL)

6 Oct 2015 6 / 28

イロト イヨト イヨト イヨト

Motivation

Context : Performance

Synchronization specifications (performance) are guaranteed if the upper bound satisfies the frequency constraints

6 Oct 2015 6 / 28

PLL network Performance

16 PLLs mutually synchronized

- Two uncertain parameters for every PLL \implies 32 uncertain parameters
- Nowadays networks : 100 PLLs ⇒ 200 uncertain parameters ⇒ classic method is not applicable
- 16 PLL network to show classic method results

Objective Compute an upper bound on $||T_{r_g \rightarrow e_g}||$ for all the uncertainties

Large scale robustness analysis : two aspects problem

- Robustness analysis : IQC based analysis (input-output description)
- 2 Large scale : decomposition techniques from graph theory

Problem analysis

Large scale robustness analysis : two aspects problem

- Robustness analysis : IQC based analysis (input-output description)
- 2 Large scale : decomposition techniques from graph theory

Direct application of IQC based analysis \implies important computation time

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Problem analysis

Large scale robustness analysis : two aspects problem

- Robustness analysis : IQC based analysis (input-output description)
- 2 Large scale : decomposition techniques from graph theory

Direct application of IQC based analysis \implies important computation time

Few methods combining the two aspects : [Andersen et al., 2014] Modeling Optimization

Problem analysis

Large scale robustness analysis : two aspects problem

- Robustness analysis : IQC based analysis (input-output description)
- 2 Large scale : decomposition techniques from graph theory

Direct application of IQC based analysis \implies important computation time

Few methods combining the two aspects : [Andersen et al., 2014] Modeling Optimization

Integral Quadratic Constraints (IQC)

Integral Quadratic Constraints (IQC)

$$\int_{-\infty}^{+\infty} \left(\begin{matrix} z(j\omega) \\ w(j\omega) \end{matrix} \right)^* \Phi_P(j\omega) \left(\begin{matrix} z(j\omega) \\ w(j\omega) \end{matrix} \right) d\omega \ge 0$$

Possibility to cover classical characterizations of performance

$$\int_{0}^{+\infty} \|z(t)\|_{2} dt \leq \gamma^{2} \int_{0}^{+\infty} \|w(t)\|_{2} dt \iff \int_{-\infty}^{+\infty} \begin{pmatrix} z(j\omega) \\ w(j\omega) \end{pmatrix}^{*} \begin{pmatrix} -I & 0 \\ 0 & \gamma^{2} \end{pmatrix} \begin{pmatrix} z(j\omega) \\ w(j\omega) \end{pmatrix} d\omega \geq 0$$
Passivity
$$\int_{0}^{+\infty} z(t)^{T} w(t) dt \geq 0 \iff \int_{-\infty}^{+\infty} \begin{pmatrix} z(j\omega) \\ w(j\omega) \end{pmatrix}^{*} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} z(j\omega) \\ w(j\omega) \end{pmatrix} d\omega \geq 0$$

Proposed approach

Linear Time Invariant Systems

- \blacksquare $z(j\omega) = T(j\omega)w(j\omega)$ and QC based analysis
- Frequency domain : frequency response at ω_0

s.t.

Performance : compute an upper bound on the frequency response $(\bar{\sigma}(T) < \gamma)$ $\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} -I & 0 \\ 0 & \gamma^2 I \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0$

min γ

QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies QC \text{ of } T$$

Image: Image:

if and only if

1)
$$\begin{pmatrix} \Delta \\ I \end{pmatrix}^* \begin{pmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^* & \Phi_{22} \end{pmatrix} \begin{pmatrix} \Delta \\ I \end{pmatrix} \ge 0 \quad \forall \Delta \in \underline{\Delta} \implies QC \text{ of } \Delta$$

2) $\begin{pmatrix} M \\ I \end{pmatrix}^* \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^* & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^* & 0 & Z \end{pmatrix} \begin{pmatrix} M \\ I \end{pmatrix} > 0$

QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies QC \text{ of } T$$

Image: A matrix

if and only if

$$1) \begin{pmatrix} \Delta \\ I \end{pmatrix}^* \begin{pmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^* & \Phi_{22} \end{pmatrix} \begin{pmatrix} \Delta \\ I \end{pmatrix} \ge 0 \quad \forall \Delta \in \underline{\Delta} \implies QC \text{ of } \Delta$$
$$2) \begin{pmatrix} M \\ I \end{pmatrix}^* \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^* & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^* & 0 & Z \end{pmatrix} \begin{pmatrix} M \\ I \end{pmatrix} > 0$$

Condition 1) : infinite dimensional

글 🕨 🖌 글

QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies QC \text{ of } T$$

if and only if

1)
$$\begin{pmatrix} \Delta \\ I \end{pmatrix}^* \begin{pmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^* & \Phi_{22} \end{pmatrix} \begin{pmatrix} \Delta \\ I \end{pmatrix} \ge 0 \quad \forall \Delta \in \underline{\Delta} \implies QC \text{ of } \Delta$$

2) $\begin{pmatrix} M \\ I \end{pmatrix}^* \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^* & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^* & 0 & Z \end{pmatrix} \begin{pmatrix} M \\ I \end{pmatrix} > 0$

Condition 1) : infinite dimensional

Parametrize Φ with Φ_{Δ} in 1) and test 2) \Longrightarrow Construct a 'basis' Φ_{Δ} for Φ

(4) (2) (4) (2)

QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies QC \text{ of } T$$

if and only if \implies if (and only if) 1) $\exists \Phi \in \Phi_{\Delta} \implies QC \text{ of } \Delta$

$$2) \binom{M}{I}^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0\\ 0 & X & 0 & Y\\ -\Phi_{12} & 0 & -\Phi_{11} & 0\\ 0 & Y^{*} & 0 & Z \end{pmatrix} \binom{M}{I} > 0$$

Condition 1) : infinite dimensional

Parametrize Φ with Φ_{Δ} in 1) and test 2) \Longrightarrow Construct a 'basis' Φ_{Δ} for Φ

QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies QC \text{ of } T$$

if and only if \implies if (and only if) 1) $\exists \Phi \in \Phi_{\Delta} \implies QC \text{ of } \Delta$

$$2) \binom{M}{I}^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0\\ 0 & X & 0 & Y\\ -\Phi_{12} & 0 & -\Phi_{11} & 0\\ 0 & Y^{*} & 0 & Z \end{pmatrix} \binom{M}{I} > 0$$

- Condition 1) : infinite dimensional
- Parametrize Φ with Φ_{Δ} in 1) and test 2) \Longrightarrow Construct a 'basis' Φ_{Δ} for Φ \Longrightarrow conservative (pessimist) results

イロト イヨト イヨト イヨト

6 Oct 2015 11 / 28

QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies QC \text{ of } T$$

if and only if \implies if (and only if) 1) $\exists \Phi \in \Phi_{\Delta} \implies QC \text{ of } \Delta$

$$2) \binom{M}{I}^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0\\ 0 & X & 0 & Y\\ -\Phi_{12} & 0 & -\Phi_{11} & 0\\ 0 & Y^{*} & 0 & Z \end{pmatrix} \binom{M}{I} > 0$$

- Condition 1) : infinite dimensional
- Parametrize Φ with Φ_{Δ} in 1) and test 2) \Longrightarrow Construct a 'basis' Φ_{Δ} for Φ \Longrightarrow conservative (pessimist) results
- Conservatism depends on Φ_Δ

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem) T is $\{X, Y, Z\}$ dissipative *i.e.* $\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \Delta \in \underline{\Delta}$

if (and only if)

1) $\exists \Phi \in \Phi_{\Delta}$

 $2) \binom{M}{I}^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^{*} & 0 & Z \end{pmatrix} \binom{M}{I} > 0$

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem) $T \text{ is } \{X, Y, Z\} \text{ dissipative } i.e.$ $\binom{T}{I}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \Delta \in \Delta$ if (and only if) $1) \quad \exists \ \Phi \in \Phi_{\Delta}$ $2) \begin{pmatrix} M \\ I \end{pmatrix}^* \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^* & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^* & 0 & Z \end{pmatrix} \begin{pmatrix} M \\ I \end{pmatrix} > 0$

■ Local step : find simple QC for every *T_i*

イロト イポト イヨト イヨト

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem) T is $\{X, Y, Z\}$ dissipative *i.e.* $\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta}$ if (and only if) $\exists \Phi \in \Phi_{\Lambda}$ M_{int} $2) \binom{M}{I}^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & V^{*} & -\Phi_{11} & 0 \end{pmatrix} \binom{M}{I} > 0$

Local step : find simple QC for every $T_i \implies$ reduce the complexity

・ロト ・回ト ・ヨト ・ヨト

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem) $T \text{ is } \{X, Y, Z\} \text{ dissipative } i.e.$ $\binom{T}{I}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \Delta \in \Delta$ if (and only if) 1) $\exists \Phi \in \Phi_\Delta$ $2) \begin{pmatrix} M \\ I \end{pmatrix}^* \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^* & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^* & 0 & Z \end{pmatrix} \begin{pmatrix} M \\ I \end{pmatrix} > 0$

• Local step : find simple QC for every $T_i \Longrightarrow$ reduce the complexity

T_i are seen as uncertainty Δ_i

・ロト ・回ト ・ヨト ・ヨト

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem) T is $\{X, Y, Z\}$ dissipative *i.e.* $\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta}$ if (and only if) $\exists \Phi \in \Phi_{\Lambda}$ Mint $2) \binom{M}{I}^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ -\Phi_{12} & U^{*} & -\Phi_{11} & 0 \end{pmatrix} \binom{M}{I} > 0$

- Local step : find simple QC for every $T_i \implies$ reduce the complexity
- \blacksquare T_i are seen as uncertainty Δ_i
- Global step : use local QC to find global QC

イロト イヨト イヨト イヨト

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem) T is $\{X, Y, Z\}$ dissipative *i.e.* $\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta}$ if (and only if) $\exists \Phi \in \Phi_{\Lambda}$ M_{int} $2) \binom{M}{I}^{*} \begin{pmatrix} -\Psi_{22} & 0 & -\Phi_{12}^{*} & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & W^{*} & -\Phi_{11} & 0 \end{pmatrix} \binom{M}{I} > 0$

- Local step : find simple QC for every $T_i \implies$ reduce the complexity
- \blacksquare T_i are seen as uncertainty Δ_i
- Global step : use local QC to find global QC ⇒ conservative results

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem) T is $\{X, Y, Z\}$ dissipative *i.e.* $\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta}$ if (and only if) $\exists \Phi \in \Phi_{\Lambda}$ Mint $2) \binom{M}{I}^{*} \begin{pmatrix} -\Psi_{22} & 0 & -\Phi_{12}^{*} & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^{*} & -\Phi_{12} & 0 \end{pmatrix} \binom{M}{I} > 0$

- Local step : find simple QC for every $T_i \implies$ reduce the complexity
- \blacksquare T_i are seen as uncertainty Δ_i
- Global step : use local QC to find global QC → conservative results
 - \implies create a basis for QC of T_i (to use as Φ_{Δ} in global step)

Classical interpretation :

For given *X*, *Y* and *Z* find Φ from basis Φ_{Δ}

New interpretation :

- Find basis for *X*, *Y* and *Z* from given $\Phi \in \Phi_{\Delta}$
- Propagate the old basis into the new basis

 \implies QC propagation

Classical interpretation :

For given *X*, *Y* and *Z* find Φ from basis Φ_{Δ}

New interpretation :

Find basis for *X*, *Y* and *Z* from given $\Phi \in \Phi_{\Delta}$

Propagate the old basis into the new basis

 \implies QC propagation

Difficulties

- Size : not too big/small
- Quality : describes the best the uncertain system
- Efficient computation : convex

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))
Robustness Analysis : QC classes

Some classes of QC with geometric interpretations

- disc [Dinh et al., 2013]
- band [Dinh et al., 2014]
- cone [Laib et al., 2015]

- Formulate as convex optimization (no graphical computation)
- Some physical interests : gain, phase, ...

Robustness Analysis : QC classes

Some classes of QC with geometric interpretations

- disc [Dinh et al., 2013]
- band [Dinh et al., 2014]
- cone [Laib et al., 2015]

- Formulate as convex optimization (no graphical computation)
- Some physical interests : gain, phase, ...
- Cone : Phase uncertainty information
 - The phase notion for Single-Input Single-Output (SISO) systems is well defined
 - For Multi-Input Multi-Output (MIMO) systems??

- B - - B

Robustness Analysis : QC classes

Some classes of QC with geometric interpretations

- disc [Dinh et al., 2013]
- band [Dinh et al., 2014]
- cone [Laib et al., 2015]

- Formulate as convex optimization (no graphical computation)
- Some physical interests : gain, phase, ...
- Cone : Phase uncertainty information
 - The phase notion for Single-Input Single-Output (SISO) systems is well defined
 - For Multi-Input Multi-Output (MIMO) systems ? ? → Numerical range

・ロト ・同ト ・ヨト ・ヨト

Robustness Analysis : Numerical Range

For a given a frequency response Γ of a system T

B b 4

• The numerical range $\mathcal{N}(\Gamma)$

$$\mathcal{N}(\Gamma) = \{ w^* z \mid z = \Gamma w, w \in \mathbb{C}^{n_w} \text{ and } \|w\| = 1 \}$$

Robustness Analysis : Numerical Range

For a given a frequency response Γ of a system T

• The numerical range $\mathcal{N}(\Gamma)$

$$\mathcal{N}(\Gamma) = \{ w^* z \mid z = \Gamma w, w \in \mathbb{C}^{n_w} \text{ and } \|w\| = 1 \}$$

Certain numerical range

6 Oct 2015 15 / 28

Robustness Analysis : Numerical Range

For a given a frequency response Γ of a system T

• The numerical range $\mathcal{N}(\Gamma)$

$$\mathcal{N}(\Gamma) = \{ w^* z \mid z = \Gamma w, w \in \mathbb{C}^{n_w} \text{ and } \|w\| = 1 \}$$

Certain numerical range

Uncertain numerical range

6 Oct 2015 15 / 28

Robustness Analysis : Cone QC [Laib et al., 2015]

Theorem

Given the frequency response of an uncertain system *T*

Finding the smallest α :

Image: A matrix

Robustness Analysis : Cone QC [Laib et al., 2015]

Theorem

Given the frequency response of an uncertain system *T*

Finding the smallest α :

- Quasiconvex optimisation problem
- LMI constraints

Robustness Analysis : Cone QC [Laib et al., 2015]

Theorem

⇒ Efficient tools to solve the problem

K. Laib	et al.	(ECL)
---------	--------	-------

イロト イヨト イヨト イヨト

Level 1

<ロ> <同> <同> < 同> < 同>

Level 1

Consider hierarchical structure of the system

・ロト ・回ト ・ヨト ・ヨト

Level 1

Consider hierarchical structure of the system

・ロト ・回ト ・ヨト ・ヨト

1 Consider hierarchical structure of the system

イロト イヨト イヨト イヨト

Consider hierarchical structure of the system

Find basis (QC description) for T_i with Robust Performance Theorem

K. Laib et al. (ECL)

< E.

-

Consider hierarchical structure of the system

- Find basis (QC description) for T_i with Robust Performance Theorem
- Propagate this basis to the global level

-

Consider hierarchical structure of the system

- Find basis (QC description) for T_i with Robust Performance Theorem
- Propagate this basis to the global level
- 2 For global hierarchical level, investigate the performance with Robust Performance Theorem

Computation time is reduced however conservatism may appear

- robustness of feedbacks loops ⇒ simple set may be sufficient
- combination of several simple sets ⇒ increase of the computation time

K. Laib et al. (ECL)

Computation time is reduced however conservatism may appear

- robustness of feedbacks loops ⇒ simple set may be sufficient
- combination of several simple sets ⇒ increase of the computation time

 \implies trade-off conservatism/computation time

(4) The field

PLL network : Local Step

Characterize each PLL with QC with : disc, band and cone

K. Laib et al. (ECL)

6 Oct 2015 19 / 28

Compute an upper bound on $T_{r_g \rightarrow e_g}$ for all the uncertainties

글 🕨 🖌 글

Compute an upper bound on $T_{r_g \rightarrow e_g}$ for all the uncertainties

Compute an upper bound on $T_{r_g \rightarrow e_g}$ for all the uncertainties

・ロト ・回ト ・ヨト ・ヨト

Compute an upper bound on $T_{r_g \rightarrow e_g}$ for all the uncertainties

・ロト ・回ト ・ヨト ・ヨト

Hierarchical approach

≣ ► Ξ ∽ < ↔ 6 Oct 2015 21 / 28

(日)

Hierarchical approach

Special case : Direct approach

K. Laib et al. (ECL)

6 Oct 2015 21 / 28

・ロト ・回ト ・ヨト ・ヨト

・ロト ・回ト ・ヨト ・ヨト

Level 2

K. Laib et al. (ECL)

≣ ► Ξ • ⊃ < . 6 Oct 2015 22 / 28

Level 2

イロト イヨト イヨト イヨト

・ロト ・回 ト ・ ヨト ・ ヨ

Level 1

Level 2

≣ ► Ξ • ⊃ < . 6 Oct 2015 22 / 28

Level 1

Level 1

≣ ► Ξ • ⊃ < . 6 Oct 2015 22 / 28

≣ ► Ξ • ⊃ < . 6 Oct 2015 22 / 28

Many degrees of freedom to handle the trade-off conservatism/computation time

Many degrees of freedom to handle the trade-off conservatism/computation time

- Number of levels
- **Number of** T_i in each level
- Basis for Δ_i
- Basis for T_i in each level
- Parallel computing
Discussion

Robust stability

Network with N systems randomly generated [Andersen et al., 2014].

6 Oct 2015 23 / 28

Discussion

Robust stability

Network with N systems randomly generated [Andersen et al., 2014].

Discussion

Robust stability

Network with N systems randomly generated [Andersen et al., 2014].

K. Laib et al. (ECL)

Hierarchical Robustness Analysis

6 Oct 2015 24 / 28

Conclusion

- Performance analysis of uncertain large scale systems
- Important computation time with direct method
- Exploit hierarchical structure using basis (QC) propagation
- General approach with degrees of freedom
- Reduce computation time with possible conservatism
- Trade-off conservatism/computation time

Perspectives

Perspectives

- Systematic decomposition technique using Graph Theory
- Combine hierarchical method with specific solvers

Thank you for your attention

イロト イポト イヨト イヨ

References

Andersen, M., Pakazad, S., Hanson, A., and Rantzer, A. (2014).

Robust stability analysis of sparsely interconnected uncertain systems. *IEEE Transactions on Automatic Control*, 59(8) :2151–2156.

Dinh, M., Korniienko, A., and Scorletti, G. (2013).

Embedding of uncertainty propagation : application to hierarchical performance analysis. *IFAC Symposium on System, Structure and Control*, 5(1) :190–195.

Dinh, M., Korniienko, A., and Scorletti, G. (2014).

Convex hierarchical rchical analysis for the performance of uncertain large scale systems. *IEEE Conference on Decision and Control*, pages 5979–5984.

Laib, K., Korniienko, A., Scorletti, G., and Morel, F. (2015).

Phase IQC for the hierarchical performance analysis of uncertain large scale systems. *IEEE Conference on Decision and Control (to appear).*