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Objectives
Load and vibration control...

Loads alleviation and vibration reduction is crucial in aeronautics for structure stress
and fatigue reduction, potential wing weight reduction, consumption reduction,
lifetime enhancement. . . .

Amount the potential lever:
I Passive solution (earoelasticity, material, shape, . . . )
I Active solutions (control law, actuators, . . . )
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Objectives
... and associated challenges

Many challenges are presents:
I Complex disturbance (discrete, large spectrum ...)
I Limited actuator and computer burden
I System flexibility and aeroelasticity
I Operate over a wide range of flight conditions (subsonic, transonic)
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Objectives
Outline

A control approach...
I Experimental set-up
I Dynamical modelling & control design
I Implementation & results

(video)
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Outlines

Experimental set-up
Wind tunnel set-up (DAFE & DADS, Meudon, France)
Controlled aeroelastic wing (DADS)
Open-loop experiments (DADS & DAFE)

Modelling and identification

Control design

Epilogue
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Experimental set-up
Wind tunnel set-up (DAFE & DADS, Meudon, France)

I Wind Tunnel at Onera S3Ch
I Gust generator
I 2D wing profile, many accelerometers and one single control surface
I Interest in working in a "controlled" area to master the disturbances
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Experimental set-up
Wind tunnel set-up (DAFE & DADS, Meudon, France)

I Wind Tunnel at Onera S3Ch
I Gust generator
I 2D wing profile, many accelerometers and one single control surface
I Interest in working in a "controlled" area to master the disturbances

(i) wind tunnel (ii) gust generator (iii) flow stream trajectory and controlled wing
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Experimental set-up
Controlled aeroelastic wing (DADS)

I Dynamics along vertical and rotational axis
I Additional structure models (torsion, bending, ...)
I Controlled surface along the wingspan (angle) & angle of attack

(i) schematic view of the wing (ii) controlled system facing the wind
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Experimental set-up
Controlled aeroelastic wing (DADS)

I Dynamics along vertical and rotational axis
I Additional structure models (torsion, bending, ...)
I Controlled surface along the wingspan (angle) & angle of attack

(i) schematic view of the wing (ii) controlled system facing the wind
I About 20 accelerometers
I Controlled wind and disturbances
I Acquisition system
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(iii) DADS interface
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Experimental set-up
Open-loop experiments (DADS & DAFE)

I Many weeks of work for calibrating the gust generator
I Many iterations for obtaining open-loop controlled wing surface transfer
I Set-up of an acquisition system

Heave 
(24.8Hz) Pitch 

(40.5Hz)

Bending 
(70.1Hz)

(i) some open-loop results...
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Outlines

Experimental set-up

Modelling and identification
Problem formulation
First approach: Loewner framework
Second approach: subspace with LMI constraint
Some conclusions

Control design

Epilogue
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Modelling and identification
Problem formulation

Problem
Given frequency samples ωi and responses Φi ∈ Cny×nu

H(ıωi) = Φi , i = 1, . . . , N. (1)

where H is the exact transfer function of the system, the objective is to obtain a rth-
order rational LTI model of the form, Ĥ(s) = Ĉ(sÊ − Â)−1B̂ + D̂ ∈ Hny×nu∞ , with
realization defined as:

Ĥ : Ê ˙̂x(t) = Âx̂(t) + B̂u(t) , y(t) = Ĉx̂(t) + D̂u(t), (2)

that well matches the obtained frequency sample {ωi,Φi} and hopefully reproduces
the actual transfer H. Let x̂(t) ∈ Rr, u(t) ∈ Rnu and y(t) ∈ Rny be the states,
inputs and outputs vectors, respectively.

1 based on the Loewner framework,
2 based on the subspace one with LMI constraints.
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Modelling and identification
First approach: Loewner framework1

Set
[ω1, ω2, . . . , ωN ] = [µ1, µ2, . . . , µn] ∪ [λ1, λ2, . . . , λn]

[Φ1,Φ2, . . . ,ΦN] = [ṽ1, ṽ2, . . . , ṽn] ∪ [w̃1, w̃2, . . . , w̃n] (3)

and define
I li ∈ C1×ny (i = 1, . . . , n) and
I rj ∈ Cnu×1 (j = 1, . . . , n)

the n left and n right tangential directions (n + n = N). Using these tangential
directions, one can then compute

I vi = liṽi ∈ C1×nu and
I wj = w̃jrj ∈ Cny×1

the left and right tangential values, respectively.

1 L. Meier III and D. G. Luenberger, "Approximation of linear constant systems", IEEE Transactions on
Automatic Control, vol. 12, no. 5, pp. 585-588, 1967.
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Modelling and identification
First approach: Loewner framework - Exact interpolation 2

General interpolation problem
Given left and right interpolation data:

{(µi, li,vi)|µi ∈ C, li ∈ C1×ny ,vi ∈ C1×nu , i = 1, . . . , n} (4)

{(λj , rj ,wj)|λj ∈ C, rj ∈ Cnu×1,wj ∈ Cny×1, j = 1, . . . , n} (5)

construct a realization H = (E,A,B,C, 0) of appropriate dimensions whose transfer
function H(s) = C(sE −A)−1B both satisfies the left and right constraints:

liH(µi) = vi, i = 1, . . . n (6)

H(λj)rj = wj , j = 1, . . . n. (7)

2 L. Meier III and D. G. Luenberger, "Approximation of linear constant systems", IEEE Transactions on
Automatic Control, vol. 12, no. 5, pp. 585-588, 1967.
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Modelling and identification
First approach: Loewner framework - Exact interpolation 3

Theorem: Loewner interpolation
Given left and right interpolation data as in (4)-(5), and assuming that n = n = n̆,
the n̆-th order rational transfer function H(s) = C(sE − A)−1B, with realization
H = (E,A,B,C, 0) constructed as

E = −L, A = −Lσ , B = V and C = W, (8)

interpolates the left and right constraints (6)-(7), if

[L]ij =
virj − liwj

µi − λj
=

li
(
H(λi)−H(µj)

)
rj

µi − λj

[Lσ ]ij =
µivirj − liwjλj

µi − λj
=
µili
(
H(λi)−H(µj)

)
rjλj

µi − λj

(9)

known as the Loewner and the shifted Loewner matrices, respectively, and W =
[w1, . . . ,wn̆], V T = [vT1 , . . . , vTn̆ ].

3 A. Ionita and A. Antoulas, "Data-driven parametrized model reduction in the Loewner framework", SIAM
Journal on Scientific Computing, vol. 36, no. 3, pp. 984-1007, 2014.
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Modelling and identification
First approach: Loewner framework - Approximation 4

Theorem: Loewner approximation
To obtain a reduced order model Ĥ of order r ≤ n that well approximates H one should
simply apply a SVD as follows:

L =
[
Y1 Y2

] [ Σ1
Σ2

] [
X∗1
X∗2

]
(10)

where Σ1 ∈ Rr×r, Σ2 ∈ R(n−r)×(n−r) and Y1, Y2, X1, X2 of appropriate dimensions.
Then the reduced order model is simply obtained by the Petrov-Galerkin projection:

Ĥ = (Ê, Â, B̂, Ĉ, 0)
= (−Y ∗1 LX1,−Y ∗1 LσX1, Y

∗
1 V,CX1, 0). (11)

4 A. Ionita and A. Antoulas, "Data-driven parametrized model reduction in the Loewner framework", SIAM
Journal on Scientific Computing, vol. 36, no. 3, pp. 984-1007, 2014.
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Modelling and identification
First approach: Loewner framework - MORE toolbox (Mach 0.70, AoA 0deg)

I N = 584 sampled data points, ny = 3 outputs and nu = 2 inputs,
I n = n = n̆ = 292, and r = 20.
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Modelling and identification
First approach: Loewner framework - Some issues
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(i) illustration of a problem (ii) Eigenvalues of the Loewner approximation

→ However, some issues have to be handled:
I interpolant of high dimension,
I and unstable,
I selection of tangential directions.
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Modelling and identification
First approach: Loewner framework - Some issues
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(i) a clue to handle H2 optimality objective and the l2 one

I discrete filtering
I sampling
I ...?
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Modelling and identification
Second approach: subspace with LMI constraint

Define a framework in the discrete-domain:
I Let us first consider the frequency domain discrete state-space representation:

eıωX(ω) = AX(ω) +BU(ω)
Y (ω) = CX(ω) +DU(ω) (12)

I Moreover, if a discrete frequency domain data set {ωi,Φi} (i = 1, . . . , N) is
considered then, one has G(ωi) = Φi and the following relation holds:

G = OXc + ΓW (13)

G =


Φ1 . . . ΦN

eıω1Φ1 . . . eıωNΦN
...

. . .
...

eı(q−1)ω1Φ1 . . . eı(q−1)ωNΦN

 ∈ Cnyq×nuN

C. Poussot-Vassal, F. Demourant & A. Lepage, D. Le Bihan [Onera] Identification and robust load control in response to gust
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Modelling and identification
Second approach: subspace with LMI constraint

G = OXc + ΓW (14)

Xc = [Xc(ıω1), . . . , Xc(ıωN )] ∈ Cn×nuN , O =


C
CA
...

CAq−1

 ∈ Rnyq×n

and

W =


Inu . . . Inu

eıω1Inu . . . eıωN Inu
...

. . .
...

eı(q−1)ω1Inu . . . eı(q−1)ωN Inu

 ∈ Cnuq×nuN

Γ =


D 0 . . . 0
CB D . . . 0
...

...
. . .

...
CAq−2B CAq−3B . . . D

 ∈ Rnyq×nuq .
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Modelling and identification
Second approach: subspace with LMI constraint

I The extended observability matrix O, which depends on A and C, can be written
as a combination of inputs/outputs data G, Xc, and W, only. Then, an elegant
way to extract A and C matrices from O, is to first apply an orthogonal
projection W⊥ defined as

W⊥ = I −WT (WWT )−1W, (15)

I Indeed, by right multiplying with W⊥, the following is obtained:

GW⊥ = OXcW⊥.

I Then, an effective way to extract A and C is to use a QR and a SVD of GW⊥,
and by noticing that

GW⊥ = R22Q
T
2 = ÛΣ̂V̂ TQT2

= [Ûs Û0]
[

Σ̂s 0
0 Σ̂o

][
V̂ Ts
V̂ To

]
QT2 .
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Modelling and identification
Second approach: subspace with LMI constraint

I Â and Ĉ are obtained as
Â = (J1Ûs)†J2Ûs

Ĉ = J3Ûs

where
J1 = [I(q−1)ny 0(q−1)ny×ny ]
J2 = [0(q−1)ny×ny I(q−1)ny ]
J3 = [Iny 0ny×(q−1)ny ]

I B̂ and D̂ are obtained as

{B̂, D̂} = arg min
B̂ ∈ Rn×nu
D̂ ∈ Rny×nu

N∑
k=1

‖Φk − Ĥ(ωk, B̂, D̂)‖2F .
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Modelling and identification
Second approach: subspace with LMI constraint - LMI regions

Equivalence s to z

C. Poussot-Vassal, F. Demourant & A. Lepage, D. Le Bihan [Onera] Identification and robust load control in response to gust

Re(z) < 0 ⇔ z + z < 0 ⇔ left side
Re(z) < −α ⇔ z + z + 2α < 0 ⇔ shifted left side

|z| < r ⇔
(
−r z
z −r

)
< 0 ⇔ disc with radius lower than r

α1 < Re(z) < α2 ⇔
(

(z + z − 2α2 0
0 (z + z + 2α1

)
< 0 ⇔ vertical strips

Re(z)tan(θ) < −|Im(z)| ⇔
(

(z + z)sinθ (z − z)cosθ
(z − z)cosθ (z + z)sinθ

)
< 0 ⇔ conic region
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Modelling and identification
Second approach: subspace with LMI constraint

Proposition
Given P = PT ,Q real matrices, then Â = ϕ†b has its eigenvalues in the stability
domain:

Cstab = {z ∈ C|P +Qz +QT z < 0} (16)

if one can sole the minimization problem under LMI constraints:

min
Ã,Ψ,β∈R

β

P ⊗Ψ +Q⊗ Ã+QT ⊗ ÃT < 0(
I (ϕÃ− bΨ)

(ϕÃ− bΨ)T β

)
> 0

Ψ > 0
β > 0

where Ã = ÂΨ et Ψ = ΨT .

C. Poussot-Vassal, F. Demourant & A. Lepage, D. Le Bihan [Onera] Identification and robust load control in response to gust



Experimental set-up Modelling and identification Control design Epilogue

Modelling and identification
Second approach: subspace with LMI constraint - Algorithm

1. Compute Ã = ÂΨ by solving the following constrained optimization problem:

min
Ã,Ψ,β∈R

β

P ⊗Ψ +Q⊗ Ã+QT ⊗ ÃT < 0(
I (ϕÃ− bΨ)

(ϕÃ− bΨ)T β

)
> 0

Ψ > 0
β > 0

2. Compute Â = ÃΨ−1 and Ĉ = J3Ûs

3. Determine B̂ and D̂ (where Ĥ(ω, B̂, D̂) = Ĉ(eıωI − Â)−1B̂ + D̂)

{B̂, D̂} = arg min
B̂ ∈ Rn×nu
D̂ ∈ Rny×nu

N∑
k=1

‖Φk − Ĥ(ωk, B̂, D̂)‖2F .
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Modelling and identification
Second approach: subspace with LMI constraint - MORE toolbox (Mach 0.70, AoA 0deg)

I N = 584 sampled data points, ny = 3 outputs and nu = 2 inputs,
I LMI region and r = 20.
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Modelling and identification
Second approach: subspace with LMI constraint - MORE toolbox (Mach 0.70, AoA 0deg)

I N = 292 sampled data points, ny = 3 outputs and nu = 2 inputs,
I LMI region and r = 20.
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Modelling and identification
Some conclusions

I Two nice approaches
I However, the Loewner approach cannot guarantee pole location

10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

35

40

45

Frequency (Hz)

M
ax

im
al

 s
in

gu
la

r 
va

lu
e 

(d
B

)

Identification comparison − Mach= 0.65 − AoA=2 deg 

 

 

WT data
Loewner (exact interpolation)
Loewner (r=16)
Sub−space (r=16)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

 1π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T
0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

 1π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T
0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

Real

Im
ag

.

Identification with sub−space & LMI region approach − Mach= 0.65 − AoA=2 deg 

C. Poussot-Vassal, F. Demourant & A. Lepage, D. Le Bihan [Onera] Identification and robust load control in response to gust



Experimental set-up Modelling and identification Control design Epilogue

Outlines

Experimental set-up

Modelling and identification

Control design
Structured LTI robust controller
Real-time implementation (user-friendly interface)
Results

Epilogue
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Control design
Structured LTI robust controller5

K? := argmin
rank(K) = nc
K ∈ K ⊆ H1×2

2

∥∥∥∥∥∥∥
 T

(1)
w̃→z̃(K)

. . .
T

(ns)
w̃→z̃(K)


∥∥∥∥∥∥∥
H∞

(17)

Ĥ WoWi

z(t)w(t)
z̃(t)w̃(t)

K

y(t)u(t)

I K is the set of all stable rational functions with derivative action and roll-off of
second order

I T
(i)
w̃→z̃(G) = WiFl(Ĥ(i), G)Wo, as described on the above figure (i = 1, . . . , ns)

5 P. Apkarian and D. Noll, "Nonsmooth H∞ Synthesis", in IEEE Transaction in Automatic Control, Vol.
51(1), January, 2006, pp. 71-86.
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Control design
Structured LTI robust controller6

Ĥ WoWi

z(t)w(t)
z̃(t)w̃(t)

K

y(t)u(t)

Wo(s) =
[
Wp(s) 0

0 Wu(s)

]
and Wi(s) = 1 (18)

Wp(s) =
G(s/10wp + 1)
s/wp + 1

I2

Wu(s) =
s/wact + 1
s/10wact + 1

(19)

where G is the H∞-norm of the performance transfer, wp = wact = 30× 2πrad/s.

6 P. Apkarian and D. Noll, "Nonsmooth H∞ Synthesis", in IEEE Transaction in Automatic Control, Vol.
51(1), January, 2006, pp. 71-86.
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Control design
Real-time implementation (user-friendly interface)

I Easy to adjust the control law,
I and after some iterations...
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Control design
Results - Angle of Attack 0 deg / Mach 0.30 and 0.73
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I Controller structure high pass and roll-off
I Gain around 10dB at the peak value
I Robust to Mach variations
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Control design
Results - Angle of attack 2 deg / Mach 0.65 and 0.73
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Mach=0.30 − AoA=0 deg − Open−loop
Mach=0.30 − AoA=0 deg − Closed−loop (RMS gain 82%)
Mach=0.73 − AoA=0 deg − Open−loop
Mach=0.73 − AoA=0 deg − Closed−loop (RMS gain 86%)
Mach=0.65 − AoA=2 deg − Open−loop
Mach=0.65 − AoA=2 deg − Closed−loop (RMS gain 84%)
Mach=0.73 − AoA=2 deg − Open−loop
Mach=0.73 − AoA=2 deg − Closed−loop (RMS gain 82%)

I Gain around 10dB at the peak value
I Robust to Mach variations & AoA
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Outlines

Experimental set-up

Modelling and identification

Control design

Epilogue
What to keep in mind?
... and next steps
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Epilogue
What to keep in mind?

I WTT performed at Onera S3Ch
I 2 frequency-domain identification procedures (numerically robust)
I Robust active control solution implemented on a real-time computer
I Attenuation at sub and transonic conditions: first time in Europe
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Epilogue
... and next steps

Forthcoming challenges
Bench Move toward 3D wing profile & more flexible wings [Clean Sky 2]
Publi Publish results [IEEE trans. CST]

Methods Enhanced modelling procedures [Data-based H2 model approximation]a b c

Methods Parametric / adaptive control
Mixed Use additional and/or different actuators (e.g. pulsed fluid)

a Z. Drmac, S. Gugercin and C.A. Beattie, "Vector Fitting for Matrix-valued Rational Approximation",
Submitted. Available as arXiv:1503.00411.

b I. Pontes Duff Pereira, C. Poussot-Vassal and C. Seren, "Realization independent single time-delay
dynamical model interpolation and H2-optimal approximation", submitted.

c C. Poussot-Vassal and P. Vuillemin, "Introduction to MORE: a MOdel REduction Toolbox", In
Proceedings of the IEEE Multi-conference on Systems and Control (MSC CCA’12), Dubrovnik, Croatia, October,
2012, pp. 776-781.
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Epilogue
... and next steps

(Some) Acknowledgements
DADS Arnaud Lepage (project leader),
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DADS Yannick Amosse (mechanical integration),
DAFE Jean-Charles Abart (S3Ch Meudon wind tunnel responsible),
DAFE Vincent Brion (wind tunnel engineer)

MORE toolbox
I http://w3.onera.fr/more/
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moremore
Σ

(A, B,C, D)i

Σ

Σ̂
(Â, B̂, Ĉ, D̂)i

model reduction toolbox

Kr(A, B)
AP + PAT + BBT = 0

WT V

DAE/ODE

State x(t) ∈ Rn, n large or
infinite

Data PDE

Infinite order equations (re-
quire meshing)

Reduced
DAE/ODE

Reduced state x̂(t) ∈ Rr
with r � n
(+) Simulation
(+) Analysis
(+) Control
(+) Optimization

u(f) = [u(f1) . . . u(fi)]
y(f) = [y(f1) . . . y(fi)]

Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

H(s) = e−τs

∂
∂t
u(x, t) = ...
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Announcement
Forthcomming 20th IFAC WC, Toulouse, France (2017)

New invited session format
I classical invited sessions or
I new open invited tracks

More on https://www.ifac2017.org/invited
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Identification and robust load control in response to gust

. . . from subsonic to transonic, a wind tunnel application

C. Poussot-Vassal, F. Demourant &
A. Lepage, D. Le Bihan

April 2015, Onera
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Proof of the subspace approach with LMI constraints
... and next steps

J1ÛsÂ = J2Ûs ⇔ Â = (J1Ûs)†J2Ûs ⇔ Â = ϕ†b avec ϕ = J1Ûs et b = J2Ûs. Or
Â = ϕ†b⇔ ÂΨ = ϕ†bΨ⇔ Ã = ϕ†bΨ⇔ min ‖ϕÃ− bΨ‖22
Moreover

min ‖ϕÃ− bΨ‖22 ⇔
minβ∈R β > 0

(ϕÃ− bΨ)T (ϕÃ− bΨ) < β

From Schur lemma:

(ϕÃ− bΨ)T (ϕÃ− bΨ) < β

⇔ (ϕÃ− bΨ)T (ϕÃ− bΨ)− β < 0

⇔
(

I (ϕÃ− bΨ)
(ϕÃ− bΨ)T β

)
> 0

From Chilali and Gahinet proposition:
P ⊗Ψ +Q⊗ ÂΨ +QT ⊗ (ÂΨ)T < 0⇔ P ⊗Ψ +Q⊗ Ã+QT ⊗ ÃT < 0
where Ã = ÂΨ et Ψ = ΨT > 0
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