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Parametrized PDE

Let µ = {µ1, . . . , µp} a random variable, modeling uncertainty
parameters, a perturbed parameter, an unknown dynamics...

Let a(ξ, µ) = 0 be a Partial Differential Equation parametrized by
µ whose solution is ξ

Let y be the to-be-controlled output: deterministic function:
y = y(ξ)

Natural question: What is the impact of random variable µ on y?
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Toy-model

Consider
−ξxx + µξx = 1
ξ(0) = ξ(1) = 1

Assume µ ∼ U(0, 50), where U(0, 50) is the uniform distribution
on (0, 50).
Define the to-be-controlled output: f (µ) = ξ(0.5, µ).
Statistical property under interest: mean value E(y(µ))
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How to compute E(µ) = E(ξ(0.5, µ))?

Bad idea Monte-Carlo estimator E(µ) h 1
N

∑N
i=1 y(µi )

with large N

Good idea If you compute a sample of e.g. 10 solutions, the 11th
should be ”close” to it ξ(., µ11) h

∑10
i=1λ

iξ(., µi )
and thus by computing the to-be-controlled output, we should find
an estimation of E(µ)
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Goal: Global sensitivity analysis in a boundary control problem.

the nonlinear Shallow Water equations:
balance laws with effect of bottom slope and the slope’s
friction;

the boundary actions are defined as the position of both
spillways located at the extremities of the reach.

In [Coron, Bastin, d’Andréa-Novel; 08] & [Dos Santos, CP; 08],
the authors designed stabilizing boundary ouput feedback
controllers, with an exponential convergence to the
equilibrium of water level and water flow.

Issue: we want to determine which factors (bottom slope, slope’s
friction, . . . ) are influent in this process. Je
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Probabilistic methods

The problem is related to probabilistic methods for control system
design as considered by e.g., R. Tempo. Given µ a vector of
random variables, define

f (µ) =
+∞ if Gµ is unstable
‖Gµ‖∞ otherwise

Consider the reliability estimation problem. Given γ > 0,
estimate Pr{f (µ) ≤ γ}

Consider the performance level estimation problem. Given
ε > 0, estimate γ such that Pr{f (µ) ≤ γ} ≥ 1− ε

[Calafiore, Dabbene, Tempo, Automatica; 2011]
The connection with this literature is still not fully understood, at
least for me.
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Outline

1 Modeling by means of Shallow Water equations
when considering boundary actions, slope, friction...

2 Global sensitivity analysis (GSA)
of uncertain physical parameters

for boundary control stability of an open channel

3 Numerical results
First and total order Sobol indices

What are the most influent parameters on the output,
when closing the loop?

What about alone and combined impacts on the stability?

Use of a model reduction

4 Conclusion and perspectives
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1 – Shallow water equations

One considers the classical Shallow Water equations for describing
the flow dynamics inside an open-channel, ∀(x , t) ∈ [0, L]× R+,

∂t

(
H
V

)
+

(
V H
g V

)
∂x

(
H
V

)
+

(
0

g(Sf − Sb)

)
= 0 ,

U0

H(x , t)

Sb

V (x , t)

UL

x = 0 x = L

hs
zup
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∂t

(
H
V

)
+

(
V H
g V

)
∂x

(
H
V

)
+

(
0

g(Sf − Sb)

)
= 0 ,

U0

H(x , t)

Sb

V (x , t)

UL

x = 0 x = L

hs
zup

The friction slope is given Sf = C
V 2

H
.

Different models are possible (see in particular
[Bastin, Coron, d’Andréa-Novel; 09] & [Dos Santos, CP; 08]).
C is a constant friction coefficient
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U0

H

Sb

V

UL

x = 0 x = L

hs
zup

Denoting the channel width by B and the water flow by Q = BHV ,
the controls are the position U0 and UL of both spillways:

• a submerged underflow gate:

Q(0, t) = U0Bp0

√
2g(zup − H(0, t)), (1)

• a submerged overflow gate:

H(L, t) =

(
Q2(L, t)

2gB2pL2

)1/3

+ hs + UL, (2)

where p0, pL are water flow coefficients of the gates.
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Linearization around an equilibrium

The steady state equilibrium of Shallow Water equations satisfies:

V ? =
(
SbQ

?

BC

)1/3
, H? = Q?

BV ? .

We first define
v(x , t) = V (x , t)− V ?

h(x , t) = H(x , t)− H?

We then introduce the classical characteristic coordinates:

ξ1(x , t) = v(x , t) + h(x , t)
√

g
H?

ξ2(x , t) = v(x , t)− h(x , t)
√

g
H?

and the characteristic velocities:

λ1 = V ? +
√
gH?

−λ2 = V ? −
√
gH?
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The linearized Shallow Water equations is

∂t

(
ξ1
ξ2

)
+

(
λ1 0
0 −λ2

)
∂x

(
ξ1
ξ2

)
+

(
γ δ
γ δ

)(
ξ1
ξ2

)
= 0

(3)
with

γ = gC
(V ?)2

H?

(
1

V ?
− 1

2
√
gH?

)
, δ = gC

(V ?)2

H?

(
1

V ?
+

1

2
√
gH?

)
.

Linear hyperbolic system of balance laws in Riemann coordinates.
For suitable controllers, boundary conditions are simple. Indeed:
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Proposition 1

Given any constant values k0 and kL, defining the controls U0 and
UL by, for all t ≥ 0,

U0(t)=
H(0, t)

(
V ? − 1+k0

1−k0 (H(0, t)− H?)
√

g
H?

)
p0
√

2g(zup − H(0, t))

UL(t)=−

H(L, t)
(
V ? + 1+kL

1−kl (H(L, t)− H?)
√

g
H?

)
√

2gpL


2
3

+H(L, t)− hs ,

the boundary conditions (1) and (2) may be rewritten as(
ξ1(0, t)
ξ2(L, t)

)
=

(
0 k0
kL 0

)(
ξ1(L, t)
ξ2(0, t)

)
. (4)

Note that U0 and UL depend only on water heights at both
extremities of the channel.
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Applying Lyapunov techniques, we may compute stabilizing
controllers:

Proposition 2 ([Bastin, Coron, d’Andréa-Novel, 09])

For any (k0, kL) ∈ R such that

max

{
|k0|
√
λ1γ

λ2δ
, |kL|

√
λ2δ

λ1γ

}
< 1 ,

defining U0 and UL with Proposition 1, the linear hyperbolic
system of balance laws is exponentially stable, that is, it holds

‖(H(·, t),V (·, t))− (H?,V ?)‖L2((0,L);R2)

≤ Me−νt‖(H0,V 0)− (H?,V ?)‖L2((0,L);R2)

where H0 and V 0 stand for the initial conditions, and M, ν are
two positive values.
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For any (k0, kL) ∈ R such that

max

{
|k0|
√
λ1γ

λ2δ
, |kL|

√
λ2δ

λ1γ

}
< 1 ,

defining U0 and UL with Proposition 1, the linear hyperbolic
system of balance laws is exponentially stable, that is, it holds

‖(H(·, t),V (·, t))− (H?,V ?)‖L2((0,L);R2)

≤ Me−νt‖(H0,V 0)− (H?,V ?)‖L2((0,L);R2)

where H0 and V 0 stand for the initial conditions, and M, ν are
two positive values.

Remark In the previous result, we may consider other norms
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system of balance laws is exponentially stable, that is, it holds

‖(H(·, t),V (·, t))− (H?,V ?)‖L2((0,L);R2)

≤ Me−νt‖(H0,V 0)− (H?,V ?)‖L2((0,L);R2)

where H0 and V 0 stand for the initial conditions, and M, ν are
two positive values.

Global sensitivity analysis: How is the asymp. stability property
impacted by the not well-known physical parameters?
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2 – GSA for boundary control of an open channel

Let µ =
(
hs ,B, p0, pL,Sb,C , zup, ξ

0
1 , ξ

0
2

)
be the uncertain

parameters,
i.e. random variables around the nominal values µnom =(
hs,nom,Bnom, p0,nom, pL,nom,Sb,nom,Cnom, zup,nom, ξ

0
1,nom, ξ

0
2,nom

)
Name Nominal value N (m, σ): normal distribution
µ µnom U(a, b): uniform distribution

hs 4m N (4, 0.03)
B 80m N (80, 1.03)
p0, pL 0.65 N (0.65, 0.0066)
Sb 0.0002 N

(
2× 10−4, 2.5× 10−6

)
C 0.001 U

(
9× 10−4, 0.0011

)
zup 10m N (10, 0.13)
ξ01 0 initial state component U (−0.01, 0.01)
ξ02 0 initial state component U (−0.01, 0.01)

k0, kl 0.6, 0.7 known
Q?, g 50, 9.81 known
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Given any constant values k0 and kL, defining the controls U0 and
UL by Proposition 1 with µnom instead of µ, the boundary
conditions (1) and (2) for with the parameters µ are linearized as(

1−
B +

√
g/H?

2
√
g/H?

)
ξ1(0, t) +

B +
√
g/H?

2
√
g/H?

ξ2(0, t) = A

−
D −

√
g/H?

2
√
g/H?

ξ1(L, t) +

(
1 +
D −

√
g/H?

2
√
g/H?

)
ξ2(L, t) = C

where A, B, C and D are values which depends linearly on µ.

Remark Of course, if µ = µnom, then we recover the same
boundary conditions than the previous ones for Riemann
coordinates.
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To-be-controlled-output

Definition of the to-be-controlled output (output of interest):

f (µ) =

√∫ T?

t=0

∫ L

x=0
ξ1(x , t)2 + ξ2(x , t)2 dx dt ,

where T ? is a given time horizon.
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√∫ T?

t=0

∫ L

x=0
ξ1(x , t)2 + ξ2(x , t)2 dx dt ,

where T ? is a given time horizon.

PDE for (H,V )bound. conditions

to-be-controlled

to-be-measured

control U0, UL

initial conditions

output f (µnom)

outputs
H(0, t) and H(L, t)

Closed loop when they are no uncertainties
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Definition of the to-be-controlled output (output of interest):

f (µ) =

√∫ T?

t=0

∫ L

x=0
ξ1(x , t)2 + ξ2(x , t)2 dx dt ,

where T ? is a given time horizon.

PDE for (H,V )bound. conditions

to-be-controlled

to-be-measured

control U0, UL

random variables

initial conditions

output f (µ)

outputs
H(0, t) and H(L, t)

Closed loop in presence of random variables
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GSA by means of Sobol indices

The to-be-controlled output can then be considered as a scalar
random variable Y = f (µ).

The conditional expectation E(Y |µi ) is a random variable which
gives the mean of Y over the distributions of the µj (j 6= i)
Its variance quantifies the influence of µi on the dispersion of Y .

The relative influence of µi is given by the first-order Sobol’
index

S{i} =
Var (E(f (µ)|µi ))

Var(f (µ))
∈ [0, 1]

Examples: If S{i} = 1, then only µi has an impact on Y
If S{i} = 0, then Y does not depend on µi .

S total
i measures the influence of µi combined with other physical

parameters in µ on the output Y
(we may also define second, third... order Sobol’ indices)
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How to compute S{i} = Var(E(f (µ)|µi ))
Var(f (µ)) ?

For any i ∈ {1, . . . , p}, let µj ,1i and µj ,2i , j = 1, . . . , n be two
independent samples of size n of the parameter µi .

We define:

µj ,1 = (µj ,11 , . . ., µj ,1i−1, µ
j ,1
i , µj ,1i+1, . . ., µ

j ,1
p ) j = 1, . . . , n

µj ,2{i} = (µj ,21 , . . ., µj ,2i−1, µ
j ,1
i , µj ,2i+1, . . ., µ

j ,2
p ) j = 1, . . . , n , i = 1, . . . , p

Let us consider the following quantities

Y j ,1 = f (µj ,1) j = 1, . . . , n

Y j ,2
{i} = f (µj ,2{i}) j = 1, . . . , n , i = 1, . . . , p.

To estimate all Y j ,1 and Y j ,2
{i}, we have to evaluate (1 + p)n times

the output, where n is the sample size.
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Estimator of first order indices

Monte Carlo estimator: [Monod et al.; 06], [Janon et al., 14]

Ŝ{i},n =

1

n

n∑
j=1

Y j,1Y j,2
{i} −

1

n

n∑
j=1

Y j,1 + Y j,2
{i}

2

2

1

n

n∑
j=1

(Y j,1)2 + (Y j,2
{i})

2

2
−

1

n

n∑
j=1

Y j,1 + Y j,2
{i}

2

2 .

Global Sensitivity Analysis, a many-query context:
We have to evaluate (1 + p)n times the output
=⇒ a model reduction is needed.

This reduction is done by using a metamodel, that is instead of
considering the linear hyperbolic equation, we discretize it
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Theorem

Assume that E(Y 4) <∞. Let α ∈ (0, 1) (typically α = 0.05 or
0.10). Then an asymptotic confidence interval of level 1− α for
S{i} is given by[

Ŝ{i},n − z1−α2
σ̂{i}√
n
, Ŝ{i},n + z1−α2

σ̂{i}√
n

]
,

with z1−α
2

is the 1− α
2 quantile of the N (0, 1) distribution and

where σ̂ is any consistant estimator of σ{i} defined by

σ2
{i} =

Var
(
(Y − EY )(Y{i} − EY )− Su

2

(
(Y − EY )2 + (Y{i} − EY )2

))
(VarY )2

.

Analogous result for Stotal
i .
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First-order Sobol’ indices

T ? = 75s, numerical results of the uncertain parameters
µ =

(
hs ,B, p0, pL, Sb,C , zup, ξ

0
1 , ξ

0
2

)
Parameter 95% confidence interval

hs [0.090335; 0.11281]
B [0.12559; 0.14833]
p0 [−0.014771; 0.0078236]
pL [0.27415; 0.29626]
Sb [0.067575; 0.090251]
C [0.32127; 0.34233]
zup [−0.01477; 0.0078226]
ξ01 [0.017666; 0.040285]
ξ02 [−0.0079254; 0.014667]

Thus, the parameters hs , B, pL, Sb, C and ξ01 are influent on the
to-controlled-output Y . C is the most influent one.
The other parameter are not influent (with a confidence of 95%):
p0, zup, ξ02
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Parameter 95% confidence interval

hs [0.090335; 0.11281]
B [0.12559; 0.14833]
p0 [−0.014771; 0.0078236]
pL [0.27415; 0.29626]
Sb [0.067575; 0.090251]
C [0.32127; 0.34233]
zup [−0.01477; 0.0078226]
ξ01 [0.017666; 0.040285]
ξ02 [−0.0079254; 0.014667]

Thus, the parameters hs , B, pL, Sb, C and ξ01 are influent on the
to-controlled-output Y . C is the most influent one.
The other parameter are not influent (with a confidence of 95%):
p0, zup, ξ02
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Total Sobol’ indices

What about the combined influence on Y ?

Parameter 95% confidence interval for

hs [0.098833; 0.11604]
B [0.13818; 0.15573]
p0 [−0.0077521; 0.0077808]
pL [0.28348; 0.30269]
Sb [0.074616; 0.091309]
C [0.33443; 0.35435]
zup [−0.007758; 0.0077727]
ξ01 [0.025303; 0.041345]
ξ02 [−0.0018308; 0.013773]

For each parameter, as the difference between the total and the
first-order indices is not significant
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Total Sobol’ indices
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zup [−0.007758; 0.0077727]

ξ01 [0.025303; 0.041345]

ξ02 [−0.0018308; 0.013773]

It implies that the interactions are negligible.
Thus the to-be-controlled output is additive in the parameters:

fdiscrete(µ) ≈
∑

µi∈{hs ,B,p0,pL,Sb,C ,zup ,ξ01 ,ξ02}

gi

where gi are appropriate univariate functions. And even:

fdiscrete(µ) ≈
∑

µi∈{hs ,B,pL,Sb,C ,ξ01}
gi

≈
∑

µi∈{B,Sb,C} gi
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Conclusion, perspectives

Conclusion

Global sensitivity analysis (GSA) requires many evaluations of
the output of interest, thus the need of model reduction

GSA allows to determine which parameters are the most
influent on a given to-be-controlled output

B, Sb, C are the most influent parameters, with an additive
effect.

Perspectives

Analyze the sensitivity using the decay rate as the output?

Considering the tuning parameters k0 and kL as random
variables, to find the ”best” insensitizing controller?

GSA for nonlinear output? For nonlinear model?
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