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General Context
Brief ANC overview

Duct

I Propagative waves
I Feedforward + feedback

Headphone

I SISO control
I Co-located actuator and sensor

Headrest

I SISO control
I Co-located actuator and sensor
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General Context
Active Noise Control (ANC) in a cavity

Cavity

Feedback

Feedforward

Sensor

Feedback

Feedforward

Cavity

Sensor

Characteristics of ANC in a cavity
I Stationary waves
I Actuators and sensors co-located or not
I feedback or feedback + feedforward
I d narrow or broadband noise
I SISO or MIMO control
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PhD objective
Active control of broadband low frequency noise in car cabin

Engine noise

Aeroacoustic noise

ROAD noise

(Line spectrum)

(Low frequency, Broadband spectrum)

(Mainly in high frequency)

I Passive treatments for low frequency noise ⇒ Addition of weight
I Active Noise Control (ANC) is a great opportunity to simultaneously:

I Reduce road noise
I Achieve car weight reduction
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PhD objective
Active Noise Control of broadband noise

Cavity

Feedback Feedback

Cavity

ANC problem characteristics
I 3D enclosure
I Actuators and sensors not co-located
I No measure of w is available
I d broadband low frequency noise

Limitations involved
I Waterbed effect (Bode integral)
I Non minimum phase zeros

6



State of Art
Adaptive feedforward control (FxLMS)

1

1T. Sutton, S. J. Elliott, M. McDonald, et al., “Active control of road noise
inside vehicles”, Noise Control Engineering Journal, vol. 42, no. 4,
pp. 137–147, 1994.
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State of Art
Internal Model Control (feedback)

2

2J. Cheer, “Active control of the acoustic environment in an automobile
cabin”, PhD thesis, University of Southampton, Southampton, 2012, p. 346.
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Scope of the presentation

Feedback

Cavity Problem
I Attenuate broadband low frequency noise;
I In a closed cavity;
I by feedback.

Goal of the presentation
Compare SISO and MIMO achievable performances.
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Experimental set up

Top view of the cavity

RC filter

Preamplifier

ADC DAC

Amplifier

Acquisition Card
NI PCIe 6259 Cavity characteristics

I One predominant dimension: 1D acoustic field in low frequency;
I One biased side: Attenuation of the first longitudinal mode;
I Frequency complexity: Similar to vehicle one.
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MIMO Identification
Frequency Domain, Continuous time model

Identification
I Algorithm: Subspace;
I Model structure: Modal;
I Frequency range: [20-1000]Hz;
I Order: 80.

Fit indicator
LS1 LS2 LS3

M1 86.2326 84.1038 91.1196
M2 84.6231 88.8484 91.1542

Remark: SISO transfers contain RHP zeros.
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Bode Diagram N = 80 (FIT : 84.1038)
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Control problem formulation

|W1|

fmin fmax

1
|W2|

fmaxG

Optimization problem

min
K

∥∥W1Tw→e1

∥∥
∞

subject to



∥∥W2Tw→ui

∥∥
∞

< 1∥∥∥W3Td′
j →ei

∥∥∥
∞

< 1

|piK | < fe/N

Re(piK ) < 0

i = 1, 2 and j = 1, 2
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Control problem formulation
Additional robustness needed

Environment conditions modify acoustic transfers
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Measured frequency responses from LS2 to M1

Frequency  (Hz)

FRF1

FRF2

FRF3 (nominal plant)

A multi-model approach was used to tackle system variations
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Control problem formulation

|W1|

fmin fmax

1
|W2|

fmaxG

Optimization problem

min
K

max
1,...,N

∥∥W1Tw→e1

∥∥
∞

subject to



max1,...,N

∥∥W2Tw→ui

∥∥
∞

< 1

max1,...,N

∥∥∥W3Td′
j →ei

∥∥∥
∞

< 1

|piK | < fe/N

Re(piK ) < 0

i = 1, 2 and j = 1, 2
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Multi-objective and Multi-model optimization

Motivations
I Be able to consider various constraints without pessimism;
I Clearly distinguish objective and constraints;
I Have the possibility to mix H2 and H∞ objectives, if needed;
I Be able to structure the controller;
I Be able to consider reduce order controller.

Optimization tool: systune
I Specialized in tuning fixed-structure control systems;
I Based on non smooth optimization;
I P. Apkarian, “Tuning controllers against multiple design

requirements”, in American Control Conference (ACC),
Washington, 2013, pp. 3888–3893

Drawback
I May lead to local optima;
I Necessity of ”good” initialization and controller structure.
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Controller Structure
State feedback observer

Model of the system
I No real time measure of w
I Gp is known{

ẋ = Ax + Buu + Bw w
e = Cx + Duu + Dw w

Model of the controller{
˙̂x = Ax̂ + Buu + Kf (e − ê)
u = −Kcx̂

Remarks
I Kf : observation gain
I Kc : state feedback gain
I full order controller
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Initialization
LQG

LQ criteria

JLQ = min
Kc
‖WLQe‖2

2 + ρ‖u‖2
2

I WLQ is a bandpass filter (attenuation frequency range)
I ρ manages trade-off between performances and control energy

Kalman filter {
ẋa = Aaxa + Bua u + Bwa w
e = Caxa + Dua u + Dwa w + v

I Tuning parameters are the covariances of noises v and w
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Results
Narrow attenuation: [190-220] Hz
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Results
Narrow attenuation: [190-300] Hz
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Results
Experimentation: 190-300 Hz (MIMO)
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Conclusions and Perspectives

Conclusions
I A general framework (for identification and control) was presented;
I It allows to quantify and compare SISO and MIMO achievable performances

according to :
I Frequency range of attenuation ;
I Actuators and sensors position ;
I Cavity geometry
I . . .

Ongoing work
I Compare feedback and feedforward control
I Apply methodology to the industrial problem where:

I Gp is unknown
I System order and dimensions are higher
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