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General problem

We consider a LTI plant G(s). We suppose that G(s) is
stabilizable and detectable.
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r: reference, e: tracking error, d: control disturbance,
u: control, y: measurement output, n: sensor noise.
We want to ensure:

Stability of the system.

Performance/Robustness constraints.

by tuning a structured controller K(k, s) that depends on free
parameters k.
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H∞ approach to Robstness/Performance constraints

Robustness and performance constraints express the desired
behavior of the closed loop system:

small tracking error.

small sensitivity to noise and disturbance.

frequency constraints on actuators.

These constraints are formulated as frequency constraints on
transfer functions.

||Tw→e(k, s)We(s)||∞ ≤ 1

⇐⇒ ∀ω,
√
λ(Tw→e(iω)Tw→e(iω)∗) ≤ |We(iω)−1|

We ensure that the answer of the system to inputs w is bounded
in term of gain by the modulus of a constraint function.
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Classical approach

The classical approach is to built an augmented system P (s)
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and to solve under the stability constraint:
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≤ 1 ⇐⇒ ||Tw→z(k, s)||∞ ≤ 1
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Our H∞ approach

The classical approach may not compute a satisfying controller:

||Tw→z(k, s)||∞ = ||

Tw→z1(k, s)
...

Tw→zp(k, s)

 ||∞
≥ max(||Tw→z1(k, s)||∞, ..., ||Tw→zp(k, s)||∞)

We aim to solve the problem:
min
k

max(||Tw→z1(k, s)||∞, ..., ||Tw→zp(k, s)||∞),

s.t. K(k, s) stabilizes the closed-loop system
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Minmax formulation

Constraints on weighted outputs zi are expressed as inequalities
on analytic functions:

||Tw→zj (k, s)||∞ = sup
ω≥0

√
λmax(Tw→zj (k, iω)Tw→zj (k, iω)

T
)

= sup
ω≥0

√√√√ n∑
i=1

Re(Twi→zj (k, iω))2 + Im(Twi→zj (k, iω))2

The problem is a minmax problem:
min
k

sup
ω≥0

f(k, iω),

s.t. K(k, s) stabilizes the closed-loop system

Where f(k, iω) = max(||Tw→z1(k, iω)||∞, ..., ||Tw→zp(k, iω)||∞)
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Interval Analysis

ω is an interval of R+: ω = [ω, ω].

k is a vector of interval of controller free parameters k.

Interval analysis provides an inclusion function [f ] of f :

f(k, iω) = {f(k, iω), k ∈ k, ω ∈ ω} ⊆ [f ](k, iω)

Stability of the system can be verified with Routh-Hurwitz
criterion, expressed as the satisfaction of a system:

R1(k) ≤ 0 ∧ ... ∧Rt(k) ≤ 0

We also have inclusion function [Ri] of Ri.
=⇒ We can certify that ∀k ∈ k, K(k, s) stabilizes or not the

system.
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Inclusion function

An inclusion function provides an over approximation

x g(x)

[g](x)

g

[g]
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Main B&B algorithm

Interval B&B algorithm:

Initial set of controller parameters K.

Finite frequency domain [ω].

While L 6= ∅:
1 Choose a box k from L.

2 Contract k w.r.t R(k) ≤ 0.

3 Compute [lbk, ubk] an enclosure of sup
ω

[f ](k, ω).

4 Try to find a good feasible solution in k.

5 Update best current solution.

Stop criterion: width(k) < ε
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Problem under study

We consider a second-order system controlled by a PID, with
contraints on error and control signals:

G(s) =
1

s2 + 1.4s+ 1
, K(k, s) = kp +

ki
s

+
kds

1 + s

W1(s) =
10s+ 100

1000s+ 1
, W2(s) =

10s+ 1

s+ 10
W3(s) =

100s+ 1

s+ 10

Initial set of coefficient: K =

[−10, 10]
[−10, 10]
[−10, 10]

, [ω] = [10−3, 103]
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Results

Method Cpu (s) ||F (P,K)||∞ max
i

(||Tw→zi ||∞)

H∞ full (Matlab) 2 1.0258 1.01611

H∞ structured (Matlab) 99, 400 rs 1.0411 1.04108

GO structured 83 1.0811 0.99782

H∞ full controller:

0.8356s4 + 17.88s3 + 107.8s2 + 133.7s+ 83.56

s5 + 22.73s4 + 175.1s3 + 564.3s2 + 858.4s+ 0.8578

H∞ structured:

0.0736 +
0.0969

s
+

0.0305s

1 + s

GO structured:

0.0348 +
0.0993

s
+

0.0625

1 + s

Moreover, we guarantee: max
i

(||Tw→zi ||∞) ∈ [0.905531, 0.997827]
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Bode diagram of controllers
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Simulation
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Nichols chart, open loop study
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Simulation
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Conclusion

Our approach is not sensitive to coupled constraints.

We can compute a guaranteed enclosure of
max

i
(||Tw→zi ||∞), and therefore prove the existence or not

of a solution to max
i

(||Tw→zi ||∞) ≤ 1.

We are able to compute solutions that classical methods
cannot possibly find.

Our method is suited for small order controller: the
complexity of our algorithm grows exponentially with the
number of free parameters.
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Outlooks and future works

Take parametric uncertainties into account:
G(p, s)→ G(p, s).

Time-domain constraints.

Criteria on stability margins.

H∞ constraints/frequency-domain constraint on one
input/one output channel Twi→zj .

Weighting functions Wi(s) are not limited to rational
functions.
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