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General problem

We consider a LTI plant G(s). We suppose that G(s) is
stabilizable and detectable.
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r: reference, e: tracking error, d: control disturbance,
u: control, y: measurement output, n: sensor noise.
We want to ensure:

o Stability of the system.
e Performance/Robustness constraints.

by tuning a structured controller K (k,s) that depends on free
parameters k.



Problem

H, approach to Robstness/Performance constraints

Robustness and performance constraints express the desired
behavior of the closed loop system:

o small tracking error.
o small sensitivity to noise and disturbance.
e frequency constraints on actuators.

These constraints are formulated as frequency constraints on
transfer functions.
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We ensure that the answer of the system to inputs w is bounded
in term of gain by the modulus of a constraint function.
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Classical approach

The classical approach is to built an augmented system P(s)

and to solve under the stability constraint:
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Problem

Our H,, approach

The classical approach may not compute a satisfying controller:
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We aim to solve the problem:
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s.t. K(k,s) stabilizes the closed-loop system
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Minmax formulation

Constraints on weighted outputs z; are expressed as inequalities
on analytic functions:
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The problem is a minmax problem:

minsupf(k, iw),
k w>0

s.t. K(k,s) stabilizes the closed-loop system

Where f(k,iw) = max(||Ty—z (k, 10)||oos s || Twsz, (K, iw)]|o0)
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Global Optimization reso.

Interval Analysis

e w is an interval of RT: w = |w,w].
@ k is a vector of interval of controller free parameters k.

Interval analysis provides an inclusion function [f] of f:
F(k,iw) = (k). € by € w} C [f](K, iw)

Stability of the system can be verified with Routh-Hurwitz
criterion, expressed as the satisfaction of a system:

Ri(k) SOA .. AR(K) <0

We also have inclusion function [R;] of R;.
= We can certify that Vk € k, K(k, s) stabilizes or not the
system.
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Inclusion function

An inclusion function provides an over approximation

10 /23



Global Optimization resolution

Computing sup f(k, iw)
w>0
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Global Optimization resolution

Computing sup f(k, iw)
w>0
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Global Optimization resolution

Computing sup f(k, iw)
w>0
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Computing sup f(k, iw)
w>0
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Global Optimization resolution

Computing sup f(k, iw)
w>0
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Computing sup f(k, iw)
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Global Optimizatio olution

Main B&B algorithm

Interval B&B algorithm:

o Initial set of controller parameters K.

o Finite frequency domain [w].

While £ # 0:
@ Choose a box k from L.
@ Contract k w.r.t R(k) <0.
@ Compute [lbg, ubg] an enclosure of sup [f](k,w).

w

@ Try to find a good feasible solution in k.
@ Update best current solution.
Stop criterion: width(k) < €
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Global Optimization resolution

Contraction: remove
unstable parameters



Global Optimization resolution

[lbr, uby]
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Global Optimization resolution
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Global Optimization resolution
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Global Optimization resolution
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Example

Problem under study

We consider a second-order system controlled by a PID, with
contraints on error and control signals:

1 k; kqs
Gls) s241.4s+1’ (k. s) p+s+1—|—s
10s + 100 10s+1 100s + 1
Wi(s) = —ot Wa(s) = Wa(s) = —
1) = 10005 7 1 2(%) = S50 3(8) =170
[~10, 10]
Initial set of coefficient: K = | [-10,10] |, [w] = [1073,10°]
[~10,10]
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Results

Example

Method Cpu (s) | [[F(P, K)|loo | max(]|Tow—z o)
H full (Matlab) 2 1.0258 1.01611
H, structured (Matlab) | 99, 400 rs 1.0411 1.04108
GO structured 83 1.0811 0.99782

e H, full controller:
0.8356s% + 17.88s% + 107.8s2 + 133.7s + 83.56

s5 +22.73s% + 175.153 + 564.3s2 4 858.4s + 0.8578

o H., structured:

0.0736 +

0.0969  0.0305s
+

1+ s

o GO structured:

0.0348 +

0.0993 0.0625
_|_
1+s

Moreover, we guarantee: max(||Ty—z, /o) € [0.905531,0.997827]
(2
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Bode diagram of controllers
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Simulation
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Nichols chart, open loop study

Open-loop gain (dB)

Open-loop phase (deqg)
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Simulation

Example
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Conclusion and next steps

Conclusion

@ Our approach is not sensitive to coupled constraints.

@ We can compute a guaranteed enclosure of
max(||Tw—z o), and therefore prove the existence or not
(2

of a solution to max(||Ty—z||c) < 1.
(2
@ We are able to compute solutions that classical methods
cannot possibly find.

@ Our method is suited for small order controller: the
complexity of our algorithm grows exponentially with the
number of free parameters.
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Conclusion and next steps

Outlooks and future works

o Take parametric uncertainties into account:
G(p.s) = G(p, s).

Time-domain constraints.

Criteria on stability margins.

(]

H, constraints/frequency-domain constraint on one

input/one output channel T, ;.

Weighting functions W;(s) are not limited to rational
functions.
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