1/23

Global optimization approach to H_{∞} synthesis problem under structural constraint

Dominique Monnet, Jordan Ninin, Benoît Clément LAB-STICC / ENSTA-Bretagne This work is supported by the city of Brest and the DGA (Direction Générale de l'Armement)

March 16, 2016

Problem	Global Optimization resolution	Conclusion and next steps
Plan		

2 Global Optimization resolution

4 Conclusion and next steps

D .	1	
Pro	D.	lem

General problem

We consider a LTI plant G(s). We suppose that G(s) is stabilizable and detectable.

r: reference, e: tracking error, d: control disturbance, u: control, y: measurement output, n: sensor noise. We want to ensure:

- Stability of the system.
- Performance/Robustness constraints.

by tuning a structured controller K(k, s) that depends on free parameters k.

H_{∞} approach to Robstness/Performance constraints

Robustness and performance constraints express the desired behavior of the closed loop system:

- small tracking error.
- small sensitivity to noise and disturbance.
- frequency constraints on actuators.

These constraints are formulated as frequency constraints on transfer functions.

$$||T_{w \to e}(k, s)W_e(s)||_{\infty} \le 1$$
$$\iff \forall \omega, \sqrt{\lambda(T_{w \to e}(i\omega)T_{w \to e}(i\omega)^*)} \le |W_e(i\omega)^{-1}|$$

We ensure that the answer of the system to inputs w is bounded in term of gain by the modulus of a constraint function.

Problem	Global Optimization resolution		Conclusion and next steps
Classical app	roach		
The clas	ssical approach is to built an	augmented s	ystem $P(s)$

and to solve under the stability constraint:

Problem	Global Optimization resolution	Conclusion and next steps
Our H_{∞} appr	roach	

The classical approach may not compute a satisfying controller:

$$||T_{w \to z}(k,s)||_{\infty} = || \begin{pmatrix} T_{w \to z_1}(k,s) \\ \vdots \\ T_{w \to z_p}(k,s) \end{pmatrix} ||_{\infty}$$

$$\geq \max(||T_{w \to z_1}(k,s)||_{\infty}, ..., ||T_{w \to z_p}(k,s)||_{\infty})$$

We aim to solve the problem:

$$\begin{cases} \min_{k} \max(||T_{w \to z_1}(k, s)||_{\infty}, ..., ||T_{w \to z_p}(k, s)||_{\infty}), \\ s.t. \quad K(k, s) \text{ stabilizes the closed-loop system} \end{cases}$$

Problem	Global Optimization resolution	Conclusion and next steps

Minmax formulation

Constraints on weighted outputs z_i are expressed as inequalities on analytic functions:

$$\begin{split} ||T_{w \to z_j}(k,s)||_{\infty} &= \sup_{\omega \ge 0} \sqrt{\lambda_{max}(T_{w \to z_j}(k,i\omega)\overline{T_{w \to z_j}(k,i\omega)}^T)} \\ &= \sup_{\omega \ge 0} \sqrt{\sum_{i=1}^n Re(T_{w_i \to z_j}(k,i\omega))^2 + Im(T_{w_i \to z_j}(k,i\omega))^2} \end{split}$$

The problem is a minmax problem:

$$\begin{cases} \min_{k} \sup_{\omega \ge 0} f(k, i\omega), \\ s.t. \quad K(k, s) \text{ stabilizes the closed-loop system} \end{cases}$$

Where $f(k, i\omega) = \max(||T_{w \to z_1}(k, i\omega)||_{\infty}, ..., ||T_{w \to z_p}(k, i\omega)||_{\infty})_{z \to \infty}$

Problem	Global Optimization resolution	Conclusion and next steps
Plan		

2 Global Optimization resolution

4 Conclusion and next steps

\mathbf{Pr}	ь	0	m
1 1		LC.	111

Interval Analysis

- $\boldsymbol{\omega}$ is an interval of \mathbb{R}^+ : $\boldsymbol{\omega} = [\underline{\omega}, \overline{\omega}].$
- k is a vector of interval of controller free parameters k. Interval analysis provides an inclusion function [f] of f:

$$f(\boldsymbol{k},i\boldsymbol{\omega}) = \{f(k,i\omega), k \in \boldsymbol{k}, \omega \in \boldsymbol{\omega}\} \subseteq [f](\boldsymbol{k},i\boldsymbol{\omega})$$

Stability of the system can be verified with Routh-Hurwitz criterion, expressed as the satisfaction of a system:

$$R_1(k) \le 0 \land \dots \land R_t(k) \le 0$$

We also have inclusion function $[R_i]$ of R_i .

 \implies We can certify that $\forall k \in \mathbf{k}, K(k, s)$ stabilizes or not the system.

Problem	Global Optimization resolution		Conclusion and next steps
Inclusion f	function		
An ir	nclusion function provides an	over approxi	imation

Froblem	Global Optimization resolution	Example	Conclusion and next steps
Computing s	$\sup_{\omega\geq 0} f(oldsymbol{k},i\omega)$		
f(k) ub_k lb_k			
			ω

Problem	Global Optimization resolution	Example	Conclusion and next steps
Computing	$\sup_{\omega\geq 0} f(oldsymbol{k},i\omega)$		
$f(oldsymbol{k})$			
ub_k -			
$lb_{m k}$ -			

ω

Problem	Global Optimization resolution	Example	Conclusion and next steps
Computing	$\sup_{\omega\geq 0} f(oldsymbol{k},i\omega)$		

Problem	Global Optimization resolution	Example	Conclusion and next steps
Computing	$\sup_{\omega\geq 0} f(oldsymbol{k},i\omega)$		

Problem	Global Optimization resolution	Example	Conclusion and next steps
Computing s ω	$\sup_{0 \geq 0} f(oldsymbol{k}, i\omega)$		
f(k) ub_k ub_k			ω

Problem	Global Optimization resolution	Conclusion and next steps
Main B&B a	lgorithm	

Interval B&B algorithm:

- Initial set of controller parameters $\mathbb K.$
- Finite frequency domain $[\omega]$.

While $\mathcal{L} \neq \emptyset$:

- Choose a box k from \mathcal{L} .
- **2** Contract \boldsymbol{k} w.r.t $R(\boldsymbol{k}) \leq 0$.
- **③** Compute $[lb_{k}, ub_{k}]$ an enclosure of sup $[f](k, \omega)$.
- **4** Try to find a good feasible solution in k.
- Update best current solution.

Stop criterion: $width(\mathbf{k}) < \epsilon$

k	

Problem	Global Optimization resolution	Example	Conclusion and next steps
Plan			

2 Global Optimization resolution

4 Conclusion and next steps

Problem	Global Optimization re	solution I	Example	Conclusion and next steps
Problem und	ler study			
We contrain	sider a second-or ats on error and o	der system co control signals	ontrolled by a s:	a PID, with
G(s) =	$\frac{1}{s^2 + 1.4s + 1}, F$	$K(k,s) = k_p + $	$-\frac{k_i}{s} + \frac{k_d s}{1+s}$	
$W_1(s)$:	$=\frac{10s+100}{1000s+1},$	$W_2(s) = -\frac{1}{2}$	$\frac{10s+1}{s+10}$	$W_3(s) = \frac{100s + 1}{s + 10}$
Initial s	set of coefficient:	$\mathbb{K} = \begin{pmatrix} [-10, 1] \\ [-10, 1] \\ [-10, 1] \end{pmatrix}$	$ \begin{pmatrix} 10\\ 10\\ 10\\ 10 \end{bmatrix} $, $ [\omega] = [$	$10^{-3}, 10^3]$

Problem	Global Optimization	resolution	Example	Conclusion and next steps
Results				
Method		Cpu (s)	$ F(P,K) _{\infty}$	$\max_{i}(T_{w\to z_i} _{\infty})$
H_{∞} full (M	latlab)	2	1.0258	1.01611
H_{∞} structu	ured (Matlab)	99,400 rs	1.0411	1.04108
GO structu	red	83	1.0811	0.99782

• H_{∞} full controller:

$$\frac{0.8356s^4 + 17.88s^3 + 107.8s^2 + 133.7s + 83.56}{s^5 + 22.73s^4 + 175.1s^3 + 564.3s^2 + 858.4s + 0.8578}$$

• H_{∞} structured:

$$0.0736 + \frac{0.0969}{s} + \frac{0.0305s}{1+s}$$

• GO structured:

$$0.0348 + \frac{0.0993}{s} + \frac{0.0625}{1+s}$$

Moreover, we guarantee: $\max_{i}(||T_{w \to z_{i}}||_{\infty}) \in [0.905531, 0.997827]$

Bode diagram of controllers

\mathbf{Pr}	ь	$ \phi$	m
1 1		LC.	111

Simulation

Nichols chart, open loop study

Simulation

Problem	Global Optimization resolution	Conclusion and next steps
Plan		

2 Global Optimization resolution

- Our approach is not sensitive to coupled constraints.
- We can compute a guaranteed enclosure of $\max_{i}(||T_{w\to z_{i}}||_{\infty})$, and therefore prove the existence or not of a solution to $\max_{i}(||T_{w\to z_{i}}||_{\infty}) \leq 1$.
- We are able to compute solutions that classical methods cannot possibly find.
- Our method is suited for small order controller: the complexity of our algorithm grows exponentially with the number of free parameters.

Outlooks and future works

- Take parametric uncertainties into account: $G(p,s) \rightarrow G(\mathbf{p},s)$.
- Time-domain constraints.
- Criteria on stability margins.
- H_{∞} constraints/frequency-domain constraint on one input/one output channel $T_{w_i \to z_j}$.
- Weighting functions $W_i(s)$ are not limited to rational functions.