Incremental stability of piecewise affine systems

Sérgio Waitman Paolo Massioni, Laurent Bako, Gérard Scorletti

Laboratoire Ampère

Réunion GT MOSAR 16 Mars 2016

Context

Since the 90s \rightarrow important theoretical and methodological developments in control theory

- Emergence of robust control methods
- $\bullet\,$ Appearance of efficient solvers $\rightarrow\,$ optimization problems

Systematically tackle a large number of engineering specifications for linear systems

Tight specifications \rightarrow non negligible nonlinear effects

Engineering expertise (heuristics) \rightarrow no *a priori* guarantees

Need to develop efficient methods for nonlinear performance analysis

Context

Extension of robust control to nonlinear systems

- Most of the literature concerns stability
 - $\,\hookrightarrow\,$ Not able to guarantee some qualitative specifications
- Proposal of incremental stability
- For linear systems: stability = incremental stability

Complexity of necessary and sufficient conditions for nonlinear systems

 $\hookrightarrow\,$ Development of efficient sufficient conditions \rightarrow conservatism

Reduce conservatism \rightarrow piecewise affine representations

- Describe a wide range of nonlinear system dynamics
- Similar to linear systems \rightarrow extension of efficient techniques

Typical control problem

Engineering specifications

- Stability
- Tracking
- Disturbance rejection
- Robustness

Typical control problem

Engineering specifications

- Stability
- Tracking
- Disturbance rejection
- Robustness

VERSITE DE LYON

linear systems \downarrow Weighted H_{∞} norm

CINIS

Typical control problem

Engineering specifications

- Stability
- Tracking
- Disturbance rejection
- Robustness

VERSITE DE LYON

linear systems \downarrow Weighted H_{∞} norm

CINIS

Qualitative and Quantitative properties

NL: Does stability imply qualitative properties?

NL: Does stability imply qualitative properties?

Oscillating response to constant input

NL: Does stability imply qualitative properties?

Oscillating response to constant input

Need of a stronger notion of stability

IVERSITE DE LYON

Towards nonlinear H_{∞} control

Towards nonlinear H_{∞} control

Qualitative properties

- Constant input \rightarrow constant output •
- *T*-periodic input \rightarrow *T*-periodic output
- Unique steady state / Convergence of the unperturbed motions

	LTI	NL
\downarrow Specs \setminus Norm \rightarrow	H_{∞}	\mathcal{L}_2 -gain
Constant input \longrightarrow constant output	YES	NO
T periodic input \longrightarrow T periodic output	YES	NO
Unique steady state	YES	NO
Convergence of the unperturbed motions	YES	NO

 \mathcal{L}_2 -gain stability is not enough

	LTI	NL	NL
\downarrow Specs \setminus Norm \rightarrow	H_{∞}	\mathcal{L}_2 -gain	Incremental \mathcal{L}_2 -gain
Constant input \longrightarrow constant output	YES	NO	YES
T periodic input \longrightarrow T periodic output	YES	NO	YES
Unique steady state	YES	NO	YES
Convergence of the unperturbed motions	YES	NO	YES

 $\mathcal{L}_2\text{-gain stability is not enough} \longrightarrow \text{Incremental } \mathcal{L}_2\text{-gain}$

Incremental \mathcal{L}_2 -gain

 $\exists \eta \geq \mathbf{0} \; / \; \forall \mathbf{w}, \mathbf{\tilde{w}} \in \mathcal{L}_{\mathbf{2}}$:

$$\int_{0}^{\infty} \left\| \boldsymbol{z}(t) - ilde{\boldsymbol{z}}(t)
ight\|^2 \, dt \leq \eta^2 \int_{0}^{\infty} \left\| \boldsymbol{w}(t) - ilde{\boldsymbol{w}}(t)
ight\|^2 \, dt$$

$$\xrightarrow{w(t)} \Sigma \xrightarrow{z(t)}$$

$$\xrightarrow{\tilde{w}(t)} \Sigma \xrightarrow{\tilde{z}(t)}$$

Computation of \mathcal{L}_2 -gain through dissipativity

Dissipative systems

A system Σ is said to be dissipative with respect to the supply rate s(w, z) if there exists a nonnegative storage function *S* such that

$$S(x(t_0)) + \int_{t_0}^{t_1} S(w(t), z(t)) dt \ge S(x(t_1)), \quad \forall t_1 \ge t_0 \ge 0$$

For \mathcal{L}_2 -gain stability:

VERSITE DE LYON

$$s(w, z) = \gamma^2 \|w(t)\|^2 - \|z(t)\|^2$$
$$\xrightarrow{w(t)} \Sigma \xrightarrow{z(t)}$$

Computation of the incremental \mathcal{L}_2 -gain

For incremental \mathcal{L}_2 -gain: $s(w, \tilde{w}, \overline{z}) = \eta^2 \|w - \tilde{w}\|^2 - \|\overline{z}\|^2$

$$S(x_0, \tilde{x}_0) + \eta^2 \int_0^t \|w(\tau) - \tilde{w}(\tau)\|^2 d\tau - \int_0^t \|\overline{z}(\tau)\|^2 d\tau \ge S(x(t), \tilde{x}(t))$$

Finding the storage function

 \mathcal{L}_2 -gain: Find $S : \mathbb{R}^n \to \mathbb{R}_+$ such that:

$$\sup_{w \in \mathcal{L}_2} \left\{ \frac{\partial \mathcal{S}(x)}{\partial x} \cdot f(x, w) - \gamma^2 \|w\|^2 + \|z\|^2 \right\} \leq 0$$

Incremental \mathcal{L}_2 -gain: Find $S : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$ such that:

$$\sup_{w,\tilde{w}\in\mathcal{L}_{2}}\left\{\frac{\partial \mathcal{S}(x,\tilde{x})}{\partial x}\cdot f(x,w)+\frac{\partial \mathcal{S}(x,\tilde{x})}{\partial \tilde{x}}\cdot f(\tilde{x},\tilde{w})-\eta^{2}\left\|w-\tilde{w}\right\|^{2}+\left\|\overline{z}\right\|^{2}\right\}\leq0$$

Not easy to solve in the general (nonlinear) case!

Finding the storage function

 \mathcal{L}_2 -gain: Find $S : \mathbb{R}^n \to \mathbb{R}_+$ such that:

$$\sup_{w \in \mathcal{L}_2} \left\{ \frac{\partial \mathcal{S}(x)}{\partial x} \cdot f(x, w) - \gamma^2 \|w\|^2 + \|z\|^2 \right\} \leq 0$$

Incremental \mathcal{L}_2 -gain: Find $S : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$ such that:

$$\sup_{w,\tilde{w}\in\mathcal{L}_{2}}\left\{\frac{\partial \mathcal{S}(x,\tilde{x})}{\partial x}\cdot f(x,w)+\frac{\partial \mathcal{S}(x,\tilde{x})}{\partial \tilde{x}}\cdot f(\tilde{x},\tilde{w})-\eta^{2}\left\|w-\tilde{w}\right\|^{2}+\left\|\overline{z}\right\|^{2}\right\}\leq0$$

Not easy to solve in the general (nonlinear) case!

Relaxation \rightarrow Sufficient conditions \rightarrow Upper bound \rightarrow Conservatism

→ Piecewise Affine (PWA) representation

PWA representation

PWA regional representation

$$\begin{aligned} \dot{x}(t) &= A_i x(t) + a_i + B_i w(t) \\ z(t) &= C_i x(t) + c_i + D w(t) \\ x(0) &= x_0 \end{aligned} \quad \text{for } x(t) \in X_i \end{aligned}$$

Allows us to:

- describe systems with saturations, relays, dead zones, etc.
- $\bullet\,$ embed more generic nonlinear systems \rightarrow differential inclusions
- assess performance with less conservatism

S-procedure \rightarrow Piecewise quadratic storage function¹

¹M. Johansson and A. Rantzer, IEEE Trans. Autom. Control, 1998.

PWA approximations

 $\hookrightarrow \mbox{Finer description of nonlinear perturbations} + \mbox{Piecewise quadratic} \\ storage function \Rightarrow \mbox{Less conservatism!}$

VIVERSITE DE LYON

 η

Q

PWQ

15

Number of regions

q

VIVERSITE DE LYON

15/29

Incremental \mathcal{L}_2 -gain of PWA systems

• Works of Romanchuk² \rightarrow Upper bound to the incremental \mathcal{L}_2 -gain of PWA systems by means of a global quadratic function

$$S(x, \tilde{x}) = (x - \tilde{x})^T P(x - \tilde{x})$$

 $\bullet~\mbox{Our proposal} \rightarrow \mbox{Continuous piecewise quadratic storage functions}$

$$S(x, \tilde{x}) = \bar{x}^T P_{ij} \bar{x}, \text{ for } \bar{x} \in X_{ij}$$

with $\bar{x} = \begin{bmatrix} x \\ \tilde{x} \\ 1 \end{bmatrix}$ and $X_{ij} = \{(x, \tilde{x}) \mid x \in X_i, \tilde{x} \in X_j\}$

²B. G. Romanchuk and M. C. Smith, Automatica, 1999.

PWA augmented system

$$\overline{y} = \Sigma_f(\overline{u}) \begin{cases} \dot{\overline{x}}(t) = \overline{A}_{ij}\overline{x}(t) + \overline{B}_{ij}\overline{u}(t) \\ \overline{y}(t) = \overline{C}_{ij}\overline{x}(t) + \overline{D}\overline{u}(t) \\ \overline{x}(0) = \overline{x}_0 \end{cases} \text{ for } \overline{x}(t) \in X_{ij}$$

where

$$\overline{x} = \begin{bmatrix} x \\ \tilde{x} \\ 1 \end{bmatrix} \qquad \overline{u} = \begin{bmatrix} u \\ \tilde{u} \end{bmatrix}$$
$$\overline{A}_{ij} = \begin{bmatrix} A_i & 0 & a_i \\ 0 & A_j & a_j \\ 0 & 0 & 0 \end{bmatrix} \qquad \overline{B}_{ij} = \begin{bmatrix} B_i & 0 \\ 0 & B_j \\ 0 & 0 \end{bmatrix}$$
$$\overline{C}_{ij} = \begin{bmatrix} C_i & -C_j & c_i - c_j \end{bmatrix} \qquad \overline{D} = \begin{bmatrix} D & -D \end{bmatrix}$$

and with $X_{ij} = \{\overline{x} \mid x \in X_i \text{ and } \tilde{x} \in X_j\} = \{\overline{x} \mid \overline{G}_{ij}\overline{x} \succeq 0\}$

$$\overline{G}_{ij} = \begin{bmatrix} G_i & 0 & g_i \\ 0 & G_j & g_j \end{bmatrix} \qquad X_{ij} \cap X_{kl} \subseteq \{\overline{x} \in \overline{X} \mid \overline{E}_{ijkl} \overline{x} = 0\}$$

Augmented regions

PWA system: N regions

Augmented regions

Structure of the storage function

Lemma

Let the state x be reachable in finite time from the origin. Then, if S is a storage function for the augmented system Σ_f , S(x, x) = 0.

Hence:

$$S(x, \tilde{x}) = \begin{cases} (x - \tilde{x})^T P_i(x - \tilde{x}) & \text{for } \overline{x} \in X_{ii} \\ \overline{x}^T \overline{P}_{ij} \overline{x} & \text{for } \overline{x} \in X_{ij}, \, i \neq j \end{cases}$$

Problem: Find P_i and \overline{P}_{ij} such that *S* is a storage function for the augmented system

Theorem

If there exist symmetric matrices $P_i \in \mathbb{R}^{n \times n}$ and $\overline{P}_{ii} \in \mathbb{R}^{(2n+1) \times (2n+1)}$; $U_{ii}, R_{ii}, W_{ii} \in \mathbb{R}^{p_{ii} \times p_{ii}}$ with nonnegative coefficients and zero diagonal; $L_{iikl} \in \mathbb{R}^{(2n+1)\times 1}$ and $\sigma_1, \sigma_2, \sigma_3 > 0$ such that $\begin{cases} \mathbf{P}_{i} - \sigma_{1} I_{n} \succeq \mathbf{0} \\ \mathbf{P}_{i} - \sigma_{2} I_{n} \preceq \mathbf{0} \\ \begin{bmatrix} A_{i}^{T} \mathbf{P}_{i} + \mathbf{P}_{i} A_{i} + C_{i}^{T} C_{i} + \sigma_{3} I_{n} & \mathbf{P}_{i} B_{i} + C_{i}^{T} D \\ \bullet & D^{T} D - \boldsymbol{\eta}^{2} I_{p} \end{bmatrix} \preceq \mathbf{0} \end{cases}$ (TH1) $\begin{cases} \overline{\mathbf{P}}_{ij} - \sigma_1 \overline{J}_n - \overline{G}_{ij}^T \mathbf{U}_{ij} \overline{G}_{ij} \succeq 0 \\ \overline{\mathbf{P}}_{ij} - \sigma_2 \overline{J}_n + \overline{G}_{ij}^T \mathbf{R}_{ij} \overline{G}_{ij} \preceq 0 \\ \begin{bmatrix} \overline{\mathbf{A}}_{ij}^T \overline{\mathbf{P}}_{ij} + \overline{\mathbf{P}}_{ij} \overline{A}_{ij} + \overline{C}_{ij}^T \overline{C}_{ij} + \sigma_3 \overline{J}_n + \overline{G}_{ij}^T \mathbf{W}_{ij} \overline{G}_{ij} & \overline{\mathbf{P}}_{ij} \overline{B}_{ij} + \overline{C}_{ij}^T \overline{D} \\ \bullet & \overline{D}^T \overline{D} - \eta^2 \overline{I}_\rho \end{bmatrix} \preceq 0$ (TH2) $\overline{\mathbf{P}}_{ij} = \overline{\mathbf{P}}_{kl} + \mathbf{L}_{ijkl}\overline{E}_{ijkl} + \overline{E}_{iikl}^{\ \prime}\mathbf{L}_{iikl}^{\ T}$ (TH3) are satisfied, then Σ is incrementally \mathcal{L}_2 -gain stable, and has an incremental \mathcal{L}_2 -gain less than or equal to η .

Theorem

If there exist symmetric matrices $P_i \in \mathbb{R}^{n \times n}$ and $\overline{P}_{ii} \in \mathbb{R}^{(2n+1) \times (2n+1)}$; $U_{ii}, R_{ii}, W_{ii} \in \mathbb{R}^{p_{ii} \times p_{ii}}$ with nonnegative coefficients and zero diagonal; $L_{iikl} \in \mathbb{R}^{(2n+1)\times 1}$ and $\sigma_1, \sigma_2, \sigma_3 > 0$ such that $\begin{cases} \mathbf{P}_{i} - \sigma_{1} I_{n} \succeq \mathbf{0} \\ \mathbf{P}_{i} - \sigma_{2} I_{n} \preceq \mathbf{0} \\ \begin{bmatrix} A_{i}^{T} \mathbf{P}_{i} + \mathbf{P}_{i} A_{i} + C_{i}^{T} C_{i} + \sigma_{3} I_{n} & \mathbf{P}_{i} B_{i} + C_{i}^{T} D \\ \bullet & D^{T} D - \boldsymbol{\eta}^{2} I_{p} \end{bmatrix} \preceq \mathbf{0} \end{cases}$ (TH1) $\begin{cases} \overline{\mathbf{P}}_{ij} - \sigma_1 \overline{J}_n - \overline{\mathbf{G}}_{ij}^T \mathbf{U}_{ij} \overline{\mathbf{G}}_{ij} \succeq 0 \\ \overline{\mathbf{P}}_{ij} - \sigma_2 \overline{J}_n + \overline{\mathbf{G}}_{ij}^T \mathbf{R}_{ij} \overline{\mathbf{G}}_{ij} \preceq 0 \\ \begin{bmatrix} \overline{\mathbf{A}}_{ij}^T \overline{\mathbf{P}}_{ij} + \overline{\mathbf{P}}_{ij} \overline{\overline{\mathbf{A}}}_{ij} + \overline{\mathbf{C}}_{ij}^T \overline{\mathbf{C}}_{ij} + \sigma_3 \overline{J}_n + \overline{\mathbf{G}}_{ij}^T \mathbf{W}_{ij} \overline{\mathbf{G}}_{ij} & \overline{\mathbf{P}}_{ij} \overline{\overline{\mathbf{B}}}_{ij} + \overline{\mathbf{C}}_{ij}^T \overline{D} \\ \bullet & \overline{D}^T \overline{D} - \eta^2 \overline{I}_\rho \end{bmatrix} \preceq 0$ (TH2) $\overline{\mathbf{P}}_{ij} = \overline{\mathbf{P}}_{kl} + \mathbf{L}_{ijkl}\overline{E}_{ijkl} + \overline{E}_{iikl}^{\ \prime}\mathbf{L}_{iikl}^{\ T}$ (TH3) are satisfied, then Σ is incrementally \mathcal{L}_2 -gain stable, and has an incremental \mathcal{L}_2 -gain less than or equal to η .

Theorem

If there exist symmetric matrices $P_i \in \mathbb{R}^{n \times n}$ and $\overline{P}_{ii} \in \mathbb{R}^{(2n+1) \times (2n+1)}$; $U_{ii}, R_{ii}, W_{ii} \in \mathbb{R}^{p_{ii} \times p_{ii}}$ with nonnegative coefficients and zero diagonal; $L_{iikl} \in \mathbb{R}^{(2n+1)\times 1}$ and $\sigma_1, \sigma_2, \sigma_3 > 0$ such that $\begin{cases} \mathbf{P}_{i} - \sigma_{1} I_{n} \succeq 0 \\ \mathbf{P}_{i} - \sigma_{2} I_{n} \preceq 0 \\ \begin{bmatrix} A_{i}^{T} \mathbf{P}_{i} + \mathbf{P}_{i} A_{i} + C_{i}^{T} C_{i} + \sigma_{3} I_{n} & \mathbf{P}_{i} B_{i} + C_{i}^{T} D \\ \bullet & D^{T} D - \boldsymbol{\eta}^{2} I_{p} \end{bmatrix} \preceq 0$ (TH1) $\begin{cases} \overline{\mathbf{P}}_{ij} - \sigma_1 \overline{J}_n - \overline{G}_{ij}^T \mathbf{U}_{ij} \overline{G}_{ij} \succeq 0 \\ \overline{\mathbf{P}}_{ij} - \sigma_2 \overline{J}_n + \overline{G}_{ij}^T \mathbf{R}_{ij} \overline{G}_{ij} \preceq 0 \\ \begin{bmatrix} \overline{A}_{ij}^T \overline{\mathbf{P}}_{ij} + \overline{\mathbf{P}}_{ij} \overline{A}_{ij} + \overline{C}_{ij}^T \overline{C}_{ij} + \sigma_3 \overline{J}_n + \overline{G}_{ij}^T \mathbf{W}_{ij} \overline{G}_{ij} & \overline{\mathbf{P}}_{ij} \overline{B}_{ij} + \overline{C}_{ij}^T \overline{D} \\ \bullet & \overline{D}^T \overline{D} - \eta^2 \overline{I}_\rho \end{bmatrix} \preceq 0$ (TH2) $\overline{\mathbf{P}}_{ij} = \overline{\mathbf{P}}_{kl} + \mathbf{L}_{ijkl}\overline{E}_{ijkl} + \overline{E}_{iikl}^{\ \prime}\mathbf{L}_{iikl}^{\ T}$ (TH3) are satisfied, then Σ is incrementally \mathcal{L}_2 -gain stable, and has an incremental \mathcal{L}_2 -gain less than or equal to η .

Norm bounds:

$$\sigma_1 \|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|^2 \leq S(\boldsymbol{x}, \tilde{\boldsymbol{x}})$$

$$P_i - \sigma_1 I_n \succeq 0$$
$$\overline{P}_{ij} - \sigma_1 \overline{J}_n - \overline{G}_{ij}^T U_{ij} \overline{G}_{ij} \succeq 0$$

Norm bounds:

$$\sigma_1 \left\| x - \tilde{x} \right\|^2 \le S(x, \tilde{x}) \le \sigma_2 \left\| x - \tilde{x} \right\|^2$$

$$P_i - \sigma_2 I_n \preceq 0$$
$$\overline{P}_{ij} - \sigma_2 \overline{J}_n + \overline{G}_{ij}^T R_{ij} \overline{G}_{ij} \preceq 0$$

Norm bounds:

$$\sigma_1 \| \boldsymbol{x} - \tilde{\boldsymbol{x}} \|^2 \leq \boldsymbol{S}(\boldsymbol{x}, \tilde{\boldsymbol{x}}) \leq \sigma_2 \| \boldsymbol{x} - \tilde{\boldsymbol{x}} \|^2$$

Integral constraint:

$$\begin{split} S(x(t),\tilde{x}(t)) - S(x_0,\tilde{x}_0) + \int_0^t & \|\overline{z}(\tau)\|^2 \,\,d\tau - \eta^2 \int_0^t \|w(\tau) - \tilde{w}(\tau)\|^2 \,\,d\tau \\ & \leq -\int_0^t \sigma_3 \,\|x(\tau) - \tilde{x}(\tau)\|^2 \,\,d\tau \end{split}$$

$$\begin{bmatrix} A_i^T P_i + P_i A_i + C_i^T C_i + \sigma_3 I_n & P_i B_i + C_i^T D \\ \bullet & D^T D - \eta^2 I_p \end{bmatrix} \preceq 0$$

Norm bounds:

$$\sigma_1 \| \boldsymbol{x} - \tilde{\boldsymbol{x}} \|^2 \leq \boldsymbol{S}(\boldsymbol{x}, \tilde{\boldsymbol{x}}) \leq \sigma_2 \| \boldsymbol{x} - \tilde{\boldsymbol{x}} \|^2$$

Integral constraint:

$$\begin{split} \mathcal{S}(x(t),\tilde{x}(t)) - \mathcal{S}(x_0,\tilde{x}_0) + \int_0^t & \|\overline{z}(\tau)\|^2 \, d\tau - \eta^2 \int_0^t \|w(\tau) - \tilde{w}(\tau)\|^2 \, d\tau \\ & \leq -\int_0^t \sigma_3 \left\|x(\tau) - \tilde{x}(\tau)\right\|^2 \, d\tau \end{split}$$

$$\begin{bmatrix} \overline{A}_{ij}^{T} \overline{P}_{ij} + \overline{P}_{ij} \overline{A}_{ij} + \overline{C}_{ij}^{T} \overline{C}_{ij} + \sigma_{3} \overline{J}_{n} + \overline{G}_{ij}^{T} W_{ij} \overline{G}_{ij} & \overline{P}_{ij} \overline{B}_{ij} + \overline{C}_{ij}^{T} \overline{D} \\ \bullet & \overline{D}^{T} \overline{D} - \eta^{2} \overline{I}_{\rho} \end{bmatrix} \leq 0$$

Norm bounds:

$$\sigma_1 \| \boldsymbol{x} - \tilde{\boldsymbol{x}} \|^2 \leq \boldsymbol{S}(\boldsymbol{x}, \tilde{\boldsymbol{x}}) \leq \sigma_2 \| \boldsymbol{x} - \tilde{\boldsymbol{x}} \|^2$$

Integral constraint:

$$egin{aligned} S(x(t), ilde{x}(t)) - S(x_0, ilde{x}_0) + \int_0^t \|\overline{z}(au)\|^2 \ d au - \eta^2 \int_0^t \|w(au) - ilde{w}(au)\|^2 \ d au \ &\leq -\int_0^t \sigma_3 \left\|x(au) - ilde{x}(au)
ight\|^2 \ d au \end{aligned}$$

Continuity of S

$$\overline{P}_{ij} = \overline{P}_{kl} + L_{ijkl}\overline{E}_{ijkl} + \overline{E}_{ijkl}^T L_{ijkl}^T$$

Norm bounds:

$$\sigma_1 \| \boldsymbol{x} - \tilde{\boldsymbol{x}} \|^2 \leq \boldsymbol{S}(\boldsymbol{x}, \tilde{\boldsymbol{x}}) \leq \sigma_2 \| \boldsymbol{x} - \tilde{\boldsymbol{x}} \|^2$$

Integral constraint:

$$egin{aligned} S(x(t), ilde{x}(t)) - S(x_0, ilde{x}_0) + \int_0^t \lVert \overline{z}(au)
Vert^2 \ d au - \eta^2 \int_0^t \lVert w(au) - ilde{w}(au)
Vert^2 \ d au \ &\leq -\int_0^t \sigma_3 \, \lVert x(au) - ilde{x}(au)
Vert^2 \ d au \end{aligned}$$

Continuity of *S* Dissipativity of the augmented system

 $\Rightarrow \begin{array}{l} \eta \text{ gives an upper bound to the} \\ \text{incremental } \mathcal{L}_{\text{2}}\text{-gain} \end{array}$

Incremental stability

Several different definitions extending Lyapunov stability to the incremental framework:

- Contraction analysis (W. Lohmiller and J.-J. E. Slotine, Automatica, 1998.)
- Convergence (A. Pavlov et al., Sys. & Cont. Let., 2004)
- Incremental asymptotic stability (Angeli, IEEE Trans. Autom. Contol, 2002)

• . . .

Definition (Incremental asymptotic stability)

$$\exists \beta \in \mathcal{KL} \, / \, \forall x_0, \tilde{x}_0 \in \mathcal{X}, \, \forall w \in \mathcal{L}_2^e, \, \forall t \geq 0:$$

$$\|\boldsymbol{x}(t) - \tilde{\boldsymbol{x}}(t)\| \leq \beta(\|\boldsymbol{x}_0 - \tilde{\boldsymbol{x}}_0\|, t)$$

with $x(t) = \phi(t, 0, x_0, w)$ and $\tilde{x}(t) = \phi(t, 0, \tilde{x}_0, w)$.

Incremental stability

Several different definitions extending Lyapunov stability to the incremental framework:

- Contraction analysis (W. Lohmiller and J.-J. E. Slotine, Automatica, 1998.)
- Convergence (A. Pavlov et al., Sys. & Cont. Let., 2004)
- Incremental asymptotic stability (Angeli, IEEE Trans. Autom. Contol, 2002)

• . . .

Definition (Incremental asymptotic stability)

$$\exists \beta \in \mathcal{KL} \, / \, \forall x_0, \tilde{x}_0 \in \mathcal{X}, \, \forall w \in \mathcal{L}_2^e, \, \forall t \geq 0:$$

$$\|\mathbf{x}(t) - \tilde{\mathbf{x}}(t)\| \leq \beta(\|\mathbf{x}_0 - \tilde{\mathbf{x}}_0\|, t)$$

with $x(t) = \phi(t, 0, x_0, w)$ and $\tilde{x}(t) = \phi(t, 0, \tilde{x}_0, w)$.

The transient response fades away

Characterization of incremental asymptotic stability

Incremental Lyapunov function

 $\exists V : X \times X \to \mathbb{R}_+$, called incremental Lyapunov function, $\alpha_1, \alpha_2 \in \mathcal{K}_\infty$ s.t.

$$\alpha_1(\|\mathbf{x} - \tilde{\mathbf{x}}\|) \le V(\mathbf{x}, \tilde{\mathbf{x}}) \le \alpha_2(\|\mathbf{x} - \tilde{\mathbf{x}}\|)$$

and $\forall w \in \mathcal{L}_2^e$, $\forall t \geq 0$

$$V(x(t), ilde{x}(t)) - V(x_0, ilde{x}_0) \leq -\int_0^t
ho ig(\|x(au) - ilde{x}(au)\|ig) d au$$

with $x(t) = \phi(t, 0, x_0, w)$, $\tilde{x}(t) = \phi(t, 0, \tilde{x}_0, w)$ and ρ a positive definite function.

S is also an incremental Lyapunov function

Quadratic storage function: $S(x, \tilde{x}) = (x - \tilde{x})^T P(x - \tilde{x})$

Infeasible problem!

Quadratic storage function: $S(x, \tilde{x}) = (x - \tilde{x})^T P(x - \tilde{x})$

Infeasible problem!

Piecewise quadratic
storage function: $S(x, \tilde{x}) = \begin{cases} (x - \tilde{x})^T P_i(x - \tilde{x}) & \text{for } \overline{x} \in X_{ii} \\ \overline{x}^T \overline{P}_{ij} \overline{x} & \text{for } \overline{x} \in X_{ij}, \ i \neq j \end{cases}$

Upper bound computed: $\eta = 5.005$

Quadratic storage function: $S(x, \tilde{x}) = (x - \tilde{x})^T P(x - \tilde{x})$

Infeasible problem!

Piecewise quadratic storage function:

$$\mathcal{S}(x, \tilde{x}) = egin{cases} (x - \tilde{x})^{\mathsf{T}} \mathcal{P}_i(x - \tilde{x}) & ext{for } \overline{x} \in X_{ii} \ \overline{x}^{\mathsf{T}} \overline{\mathcal{P}}_{ij} \overline{x} & ext{for } \overline{x} \in X_{ij}, \ i
eq j \end{cases}$$

Upper bound computed: $\eta = 5.005$

 \hookrightarrow less conservative!

$$\begin{cases} \dot{x} = -\kappa(x) + u\\ y = x \end{cases}$$

$$\begin{cases} \dot{x} = -\kappa(x) + u\\ y = x \end{cases}$$

 $\mathcal{L}_2\text{-gain}$

Upper bound:
$$\gamma = 2$$

$$\kappa(x) = \begin{cases} x - \frac{9}{8} & x > \frac{9}{4} \\ \frac{1}{10}x + \frac{9}{10} & 1 < x \le \frac{9}{4} \\ x & |x| \le 1 \\ \frac{1}{10}x - \frac{9}{10} & -\frac{9}{4} \le x < -1 \\ x + \frac{9}{8} & x < -\frac{9}{4} \end{cases}$$

$$\begin{cases} \dot{x} = -\kappa(x) + u\\ y = x \end{cases}$$

 \mathcal{L}_2 -gain

Upper bound: $\gamma = 2$

Incremental \mathcal{L}_2 -gain Upper bound: $\eta = 10$ Lower bound: $\eta = 10$ $\kappa(x) = \begin{cases} x - \frac{9}{8} & x > \frac{9}{4} \\ \frac{1}{10}x + \frac{9}{10} & 1 < x \le \frac{9}{4} \\ x & |x| \le 1 \\ \frac{1}{10}x - \frac{9}{10} & -\frac{9}{4} \le x < -1 \\ x + \frac{9}{8} & x < -\frac{9}{4} \end{cases}$

$$\begin{cases} \dot{x} = -\kappa(x) + u\\ y = x \end{cases}$$

 \mathcal{L}_2 -g

Upper bound:

Upper bound: Lower bound:

UNIVERSITE DE LYON

$$\mathcal{L}_{2}\text{-gain}$$
er bound: $\gamma = 2$
Incremental $\mathcal{L}_{2}\text{-gain}$
er bound: $\eta = 10$
er bound: $\eta = 10$
Stronger property!
$$\kappa(x) = \begin{cases} x - \frac{9}{8} & x > \frac{9}{4} \\ \frac{1}{10}x + \frac{9}{10} & 1 < x \le \frac{9}{4} \\ x & |x| \le 1 \\ \frac{1}{10}x - \frac{9}{10} & -\frac{9}{4} \le x < -1 \\ x + \frac{9}{8} & x < -\frac{9}{4} \end{cases}$$

NSA

GINTRALEOCA

 $\kappa(\mathbf{X})$

 $\frac{9}{8}$ 1

9

Х

with

$$\phi(oldsymbol{e}) = egin{cases} h & oldsymbol{e} > rac{h}{\kappa} \ \kappa oldsymbol{e} & |oldsymbol{e}| \leq rac{h}{\kappa} \ -h & oldsymbol{e} < -rac{h}{\kappa} \end{cases}$$

with

$$\phi(m{e}) = egin{cases} h & m{e} > rac{h}{\kappa} \ \kappa m{e} & |m{e}| \leq rac{h}{\kappa} \ -h & m{e} < -rac{h}{\kappa} \end{cases}$$

IVERSITE DE LYON

CITS

S is a continuous piecewise quadratic function of *x* and \tilde{x}

Concluding remarks

- Extension of previous results concerning L₂-gain stability of PWA systems to the incremental framework
- Choice of piecewise quadratic storage function yields less conservative results
- Perspectives:
 - Representation of nonlinear systems as PWA with "perturbations"
 - Efficient computation of an upper bound to the incremental L₂-gain for general nonlinear systems

Thank you for your attention

Questions?

