Preliminaries 0000

 \mathcal{H}_2 -state delay

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

I. Pontes Duff, Charles Poussot-Vassal, C. Seren

27th September, GT MOSAR and GT SAR meeting

 \mathcal{H}_2 -state delay

Conclusions and perspectives

Table of Contents

Introduction

- Preliminaries on \mathcal{H}_2 model approximation
- \mathcal{H}_2 optimal model reduction with I/O delay structure
- \mathcal{H}_2 optimality conditions for reduced state-delay systems
- Conclusions and perspectives

Introduction	Preliminaries 0000	\mathcal{H}_2 l/O delay 000000000000000000000000000000000000	\mathcal{H}_2 -state delay 0000000000000	Conclusions and perspect
				Outlines

Introduction

- Preliminaries on \mathcal{H}_2 model approximation
- \mathcal{H}_2 optimal model reduction with I/O delay structure
- \mathcal{H}_2 optimality conditions for reduced state-delay systems
- Conclusions and perspectives

				2.6	
m		m	0	Ŀт	n
			~		

ONERA

000

H₂ I/O delay

 \mathcal{H}_2 -state delay

Conclusions and perspectives

Some motivating examples in the simulation & control domains...

Digitalized and computer-based modeling and studies are crucial steps for any system / concept or physical phenomena understanding

ntre	o du	Ctu	nn.
II CI C		CLIV	

Prelimi

 \mathcal{H}_2 -state delay

Conclusions and perspectives

Large-scale models

Some motivating examples in the simulation & control domains...

Digitalized and computer-based modeling and studies are crucial steps for any system / concept or physical phenomena understanding

Problem: involved numerical dynamical models are too complex

Due to finite machine precision, computation burden and memory management,

- difficulties with system simulation, analysis, optimization, controller design
- results are not accurate, time consumption
- inappropriate actual numerical tools

✤ Highly accurate and/or flexible aircraft
 ✤ Spacecraft, launcher, satellites,
 ✤ Fluid dynamics physics (Navier and Stokes)

ONERA	0000	000000000000000000000000000000000000000	000000000000000	scalo models
THE FEENCH AEROSPACE LAB			Large-	scale mouels

... e.g. in aeronautics

✤ Highly accurate and/or flexible aircraft
 ✤ Spacecraft, launcher, satellites,
 ✤ Fluid dynamics physics (Navier and Stokes)

Introduction	Preliminaries 0000	\mathcal{H}_2 l/O delay 000000000000000000000000000000000000	\mathcal{H}_2 -state delay 0000000000000	Conclusions and perspectives
				Introduction

Topics addressed in this presentation :

- \mathcal{H}_2 -model approximation with I/O delay structure.
- \blacktriangleright \mathcal{H}_2 optimality conditions for reduced state-delay systems.

Introduction	Preliminaries 0000	\mathcal{H}_2 l/O delay 000000000000000000000000000000000000	\mathcal{H}_2 -state delay 00000000000000	Conclusions and perspectiv
	-			Introduction

Topics addressed in this presentation :

- \mathcal{H}_2 -model approximation with I/O delay structure.
- \blacktriangleright \mathcal{H}_2 optimality conditions for reduced state-delay systems.

Goal: find a $\ensuremath{n\mathrm{th}}$ order rational model approximation in the form

$$\mathbf{\hat{H}}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}$$

Introduction	Preliminaries 0000	\mathcal{H}_2 I/O delay 000000000000000000000000000000000000	${\cal H}_2$ -state delay 0000000000000	Conclusions and perspectives
	-			Introduction

Topics addressed in this presentation :

- \mathcal{H}_2 -model approximation with I/O delay structure.
- \mathcal{H}_2 optimality conditions for reduced state-delay systems.

Delay Goal: find a $\mathit{n}\text{th}$ order rational I/O delay structured model approximation in the form

$$\hat{\mathbf{H}}_{\boldsymbol{d}}(s) = \hat{\Delta}_{\boldsymbol{o}}(s)\hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}\hat{\Delta}_{\boldsymbol{i}}(s)$$

where $\hat{\Delta}_i(s) = \operatorname{diag}(e^{-s\hat{\tau}_1}, \dots, e^{-s\hat{\tau}_{n_u}})$ and $\hat{\Delta}_o(s) = \operatorname{diag}(e^{-s\hat{\gamma}_1}, \dots, e^{-s\hat{\gamma}_{n_y}})$

Example 1: Ladder network¹

$$\mathbf{G}_{Ladder} := \begin{cases} E \dot{\mathbf{x}}(t) &= A \mathbf{x}(t) + B \mathbf{u}(t) \\ \mathbf{y}(t) &= C \mathbf{x}(t) \end{cases}$$
(1)

- Finite dimensional model of order N = 100.
- It has an intrinsic input-delay behavior.

¹ Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "*Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems*", Automatica, 48(9):1963–1974.

- Finite dimensional model of order N = 100.
- It has an intrinsic input-delay behavior.

I. Pontes Duff et al. [Onera]

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

¹ Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "*Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems*", Automatica, 48(9):1963–1974.

Introduction	Preliminaries 0000	\mathcal{H}_2 l/O delay 000000000000000000000000000000000000	\mathcal{H}_2 -state delay 00000000000000	Conclusions and perspective
	-			Benchmarks

Example 1: Ladder network¹

- Finite dimensional model of order N = 100.
- It has an intrinsic input-delay behavior.

I. Pontes Duff et al. [Onera]

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

¹ Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "*Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems*", Automatica, 48(9):1963–1974.

- Finite dimensional model of order N = 100.
- It has an intrinsic input-delay behavior.

¹ Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems", Automatica, 48(9):1963–1974.

 $[\]mathcal{H}_2$ optimal model approximation by structured time-delay reduced order models

- Finite dimensional model of order N = 100.
- It has an intrinsic input-delay behavior.

I. Pontes Duff et al. [Onera]

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

¹ Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems", Automatica, 48(9):1963–1974.

- Finite dimensional model of order N = 100.
- It has an intrinsic input-delay behavior.

¹ Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems", Automatica, 48(9):1963–1974.

Example 1: Ladder network¹

- Finite dimensional model of order N = 100.
- It has an intrinsic input-delay behavior.

I. Pontes Duff et al. [Onera]

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

¹ Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems", Automatica, 48(9):1963–1974.

St-Venant²

PDE St-Venant equations... toward linearisation

 $\frac{\partial S}{\partial t} + \frac{\partial Q}{\partial x} = 0$ $\frac{\partial Q}{\partial t} + \frac{\partial (Q^2/S)}{\partial x} + gS\frac{\partial H}{\partial x} = gS(I-J),$

(1)

- $x \in [0; L]$ is the spatial variable, H(x, t) the water depth,
- ► S(x, t) the wetted area,
- ► Q(x,t) the discharge...
- Step 1: Apply linearisation at (H_0, Q_0) , which are both x dependent.
- Step 2: Apply Laplace transformation around equilibrium.
- Step 3: Find solutions of h(s, x), q(s, x) and identify coefficient with boundary conditions

² Dalmas, V., Robert, G., Poussot-Vassal, C., Pontes Duff, I. and Seren, C., "Parameter dependent irrational and infinite dimensional modelling and approximation of an open-channel dynamics", in Proceedings of the 15th European Control Conference, (ECC'16), Aalborg, Denmark, July, 2016.

St-Venant

$$\mathbf{H}(s, x, Q_0) = \begin{bmatrix} \mathbf{G}_{\mathbf{e}}(s, x, Q_0) & -\mathbf{G}_{\mathbf{s}}(s, x, Q_0) \end{bmatrix} \begin{bmatrix} q_e(s) \\ q_s(s) \end{bmatrix}$$
(2)

where

$$\mathbf{G}_{\mathbf{e}}(s, x, Q_0) = \frac{\lambda_1(s)e^{\lambda_2(s)L+\lambda_1(s)x} - \lambda_2(s)e^{\lambda_1(s)L+\lambda_2(s)x}}{B_0s(e^{\lambda_1(s)L} - e^{\lambda_2(s)L})}
\mathbf{G}_{\mathbf{s}}(s, x, Q_0) = \frac{\lambda_1(s)e^{\lambda_1(s)x} - \lambda_2(s)e^{\lambda_2(s)x}}{B_0s(e^{\lambda_1(s)L} - e^{\lambda_2(s)L})}$$
(3)

- Irrational transfer function.
- infinite model order.

$$\mathbf{H}(s, x, Q_0) = \begin{bmatrix} \mathbf{G}_{\mathbf{e}}(s, x, Q_0) & -\mathbf{G}_{\mathbf{s}}(s, x, Q_0) \end{bmatrix} \begin{bmatrix} q_e(s) \\ q_s(s) \end{bmatrix}$$
(2)

- Experience and simulations shows I/O-delay behavior.
- ► Try to search I/O delay approximation.

Introduction

Preliminaries on \mathcal{H}_2 model approximation

 \mathcal{H}_2 optimal model reduction with I/O delay structure

 \mathcal{H}_2 optimality conditions for reduced state-delay systems

Conclusions and perspectives

Model approximation \sim Mathematical optimization

Objectives: find a reduced order system $\hat{\mathbf{H}}$ for which:

- the approximation error is small;
- ✓ and the stability is preserved...
- ... based on a procedure computationally stable and efficient.

The quality of the approximation can be evaluated using some mathematical norms. For any given system G of order $N \in \mathbb{N}^*$, let find $\hat{\mathbf{H}}$ defined by:

$$\hat{\mathbf{H}} := \begin{cases} \hat{E}\dot{x}(t) = \hat{A}x(t) + \hat{B}u(t) \\ y(t) = \hat{C}x(t) \end{cases}$$

s.t.:

 $\mathcal{J} = \|\mathbf{G} - \mathbf{\hat{H}}\|^2$ is minimum \rightarrow optimisation problem to solve

Delay-free \mathcal{H}_2 model approximation

Recall:
$$\langle \mathbf{G}, \hat{\mathbf{H}} \rangle_{\mathcal{H}_2} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \overline{\mathbf{G}(i\omega)} \hat{\mathbf{H}}(i\omega) d\omega$$

Mathematical formulation

Find $\hat{\mathbf{H}}^{\star}$ of order $n \ll N$ which minimizes:

$$\hat{\mathbf{H}}^{\star} := \underset{\substack{\hat{\mathbf{H}} \in \mathcal{H}_{2} \\ \dim(\hat{\mathbf{H}}) = n}}{\arg \min} ||\mathbf{G} - \hat{\mathbf{H}}||_{\mathcal{H}_{2}}$$
(3)

Delay-free \mathcal{H}_2 model approximation

Recall:
$$\langle \mathbf{G}, \hat{\mathbf{H}} \rangle_{\mathcal{H}_2} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \overline{\mathbf{G}(i\omega)} \hat{\mathbf{H}}(i\omega) d\omega$$

Mathematical formulation

Find $\hat{\mathbf{H}}^{\star}$ of order $n \ll N$ which minimizes:

 $\hat{\mathbf{H}}^{\star} := \underset{\substack{\hat{\mathbf{H}} \in \mathcal{H}_{2} \\ \dim(\hat{\mathbf{H}}) = n}}{\arg \min} ||\mathbf{G} - \hat{\mathbf{H}}||_{\mathcal{H}_{2}}$ (3)

Rational Interpolation: Given shift points $\sigma_1, \ldots, \sigma_r \in \mathbb{C}$ find $\hat{\mathbf{H}} = (\hat{E}, \hat{A}, \hat{B}, \hat{C})$ s.t.

$$\begin{array}{lll} \mathbf{H}(\sigma_j) & = & \mathbf{\hat{H}}(\sigma_j) \\ \left. \frac{d}{ds} \mathbf{H}(s) \right|_{s=\sigma_j} & = & \left. \frac{d}{ds} \mathbf{\hat{H}}(s) \right|_{s=\sigma_j} \end{array}$$

 \mathcal{H}_2 optimality conditions³

Let

$$\hat{\mathbf{H}}(s) = \sum_{k=1}^{n} \frac{\hat{\phi}_k}{s - \hat{\lambda}_k}$$

delay-free \mathcal{H}_2 -optimality conditions (SISO)

If $\hat{\mathbf{H}}$ is a local optimum of \mathcal{H}_2 approximation problem, then

for k = 1, ..., n.

³ S. Gugercin, A.C. Antoulas and C. Beattie, "*H*₂ model reduction for large-scale linear dynamical systems", SIAM Journal on matrix analysis and applications, vol. 30, no. 2, pp. 609–638, 2008.

 $[\]mathcal{H}_2$ optimal model approximation by structured time-delay reduced order models

 \mathcal{H}_2 optimality conditions⁴

Given a system $\mathbf{G} \in \mathcal{H}_2$,

- Point-fixed iterative techniques: IRKA, TF-IRKA,
- Rational interpolation: Krylov subspaces, Loewner framework, ...

⁴ S. Gugercin, A.C. Antoulas and C. Beattie, " \mathcal{H}_2 model reduction for large-scale linear dynamical systems", SIAM Journal on matrix analysis and applications, vol. 30, no. 2, pp. 609–638, 2008.

I. Pontes Duff et al. [Onera]

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

 \mathcal{H}_2 I/O delay

Conclusions and perspectives

Introduction

Preliminaries on \mathcal{H}_2 model approximation

\mathcal{H}_2 optimal model reduction with I/O delay structure

 \mathcal{H}_2 optimality conditions for reduced state-delay systems

Conclusions and perspectives

Problem formulation and goals

Let $\mathbf{\hat{H}}=(\hat{E},\hat{A},\hat{B},\hat{C},0)$ be defined as:

$$\begin{cases} \hat{E}\dot{x}(t) = \hat{A}x(t) + \hat{B}u(t) \\ y(t) = \hat{C}x(t) \end{cases}$$
(5)

whose transfer function is

$$\hat{\mathbf{H}}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}$$
 (6)

\mathcal{H}_2 model approximation

Given a system $\mathbf{G}\in\mathcal{H}_2,$ the goal is to find a system $\hat{\mathbf{H}}^\star$

$$\mathbf{\hat{H}}^{\star} := \mathop{\text{arg min}}_{\mathbf{\hat{H}} \in \mathcal{H}_{2}, \dim(\mathbf{\hat{H}}) \leq r} \|\mathbf{G} - \mathbf{\hat{H}}\|_{\mathcal{H}_{2}}.$$

Problem formulation and goals

Let
$$\mathbf{\hat{H}}=(\hat{E},\hat{A},\hat{B},\hat{C},0)$$
 be defined as:

$$\begin{cases} \hat{E}\dot{x}(t) = \hat{A}x(t) + \hat{B}u(t) \\ y(t) = \hat{C}x(t) \end{cases}$$
(5)

whose transfer function is

$$\hat{\mathbf{H}}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}$$
 (6)

\mathcal{H}_2 model approximation

Given a system $\mathbf{G}\in\mathcal{H}_2,$ the goal is to find a system $\hat{\mathbf{H}}^\star$

$$\mathbf{\hat{H}}^{\star} := \mathop{\text{arg min}}_{\mathbf{\hat{H}} \in \mathcal{H}_2, \dim(\mathbf{\hat{H}}) \leq r} \| \mathbf{G} - \mathbf{\hat{H}} \|_{\mathcal{H}_2}.$$

Let $\hat{\mathbf{H}}_d = (\hat{E}, \hat{A}, \hat{B}, \hat{C}, \hat{\Delta}_i(s), \hat{\Delta}_o(s))$ be defined as:

$$\begin{cases} \hat{E}\dot{x}(t) = \hat{A}x(t) + \hat{B}\hat{\Delta}_{i}(u(t)) \\ y(t) = \hat{\Delta}_{o}(\hat{C}x(t)) \end{cases}$$
(7)

whose transfer function is

$$\mathbf{\hat{H}}_d(s) = \hat{\Delta}_o(s)\hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}\hat{\Delta}_i(s)$$
(8)

where
$$\hat{\Delta}_i(s) = \text{diag}(e^{-s\hat{\tau}_1}, \dots, e^{-s\hat{\tau}_{n_u}})$$

and $\hat{\Delta}_o(s) = \text{diag}(e^{-s\hat{\gamma}_1}, \dots, e^{-s\hat{\gamma}_{n_y}})$

I/O Delay \mathcal{H}_2 model approximation

Given a system $\mathbf{G} \in \mathcal{H}_2$, the goal is to find a system $\hat{\mathbf{H}}_d^{\star} = (\hat{E}, \hat{A}, \hat{B}, \hat{C}, \hat{\Delta}_i(s), \hat{\Delta}_o(s))$

$$\hat{\mathbf{H}}_d^\star := \mathop{\arg\min}_{\hat{\mathbf{H}}_d \in \mathcal{H}_2, \dim(\hat{\mathbf{H}}_d) \leq r} \|\mathbf{G} - \hat{\mathbf{H}}_d\|_{\mathcal{H}_2}.$$

Problem formulation and goals

Let
$$\mathbf{\hat{H}} = (\hat{E}, \hat{A}, \hat{B}, \hat{C}, 0)$$
 be defined as:

$$\begin{cases} \hat{E}\dot{x}(t) = \hat{A}x(t) + \hat{B}u(t) \\ y(t) = \hat{C}x(t) \end{cases}$$
(9)

whose transfer function is

$$\hat{\mathbf{H}}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}$$
 (10)

\mathcal{H}_2 model approximation

Given a system $\mathbf{G}\in\mathcal{H}_2,$ the goal is to find a system $\hat{\mathbf{H}}^\star$

$$\mathbf{\hat{H}}^{\star} := \mathop{\text{arg min}}_{\mathbf{\hat{H}} \in \mathcal{H}_2, \dim(\mathbf{\hat{H}}) \leq r} \|\mathbf{G} - \mathbf{\hat{H}}\|_{\mathcal{H}_2}.$$

Let $\mathbf{\hat{H}}_d = (\hat{E}, \hat{A}, \hat{B}, \hat{C}, \boldsymbol{\tau})$ be defined as:

$$\begin{cases} \hat{E}\dot{x}(t) = \hat{A}x(t) + \hat{B}u(t-\tau) \\ y(t) = \hat{C}x(t) \end{cases}$$
(11)

whose transfer function is

$$\hat{\mathbf{H}}_{\mathbf{d}}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}e^{-\tau s}$$
 (12)

(SISO) Input-Delay \mathcal{H}_2 model approximation

Given a system $\mathbf{G} \in \mathcal{H}_2$, the goal is to find a system $\hat{\mathbf{H}}_d = (\hat{E}, \hat{A}, \hat{B}, \hat{C}, \tau)$

$$\hat{\mathbf{H}}_{\mathbf{d}}^{\star} := \mathop{\arg\min}_{\hat{\mathbf{H}}_{\mathbf{d}} \in \mathcal{H}_2, \dim(\hat{\mathbf{H}}_d) \leq r} \|\mathbf{G} - \hat{\mathbf{H}}_d\|_{\mathcal{H}_2}.$$

Given a stable N-th order system $\mathbf{G} \in \mathcal{H}_2$, find a reduced n-th order (such that $n \ll N$) stable input-delay delays model $\hat{\mathbf{H}}_d = (\hat{E}, \hat{A}, \hat{B}, \hat{C}, \hat{\tau})$ which minimizes

$$\mathcal{J}_2 = \|\mathbf{G} - \hat{\mathbf{H}}_d\|_{\mathcal{H}_2}^2.$$
(13)

Suppose that $\mathbf{\hat{H}}_d = \mathbf{\hat{H}} e^{-s\hat{ au}}$, and both models have the pole residue decomposition

$$\mathbf{G}(s) = \sum_{j=1}^{N} \frac{\psi_j}{s - \mu_j} \text{ and } \hat{\mathbf{H}}(s) = \sum_{k=1}^{n} \frac{\hat{\phi}_k}{s - \hat{\lambda}_k}$$

Then,

$$\mathcal{J}_2 = \|\mathbf{G} - \hat{\mathbf{H}}_d\|_{\mathcal{H}_2}^2 = \|\mathbf{G}\|_{\mathcal{H}_2}^2 - 2\langle \mathbf{G}, \hat{\mathbf{H}}e^{-s\tau} \rangle_{\mathcal{H}_2} + \|\hat{\mathbf{H}}e^{-s\tau}\|_{\mathcal{H}_2}^2.$$

$$(14)$$

Compute H₂ inner product in the presence of a input delay.

Given a stable N-th order system $\mathbf{G} \in \mathcal{H}_2$, find a reduced n-th order (such that $n \ll N$) stable input-delay delays model $\hat{\mathbf{H}}_d = (\hat{E}, \hat{A}, \hat{B}, \hat{C}, \hat{\tau})$ which minimizes

$$\mathcal{J}_2 = \|\mathbf{G} - \hat{\mathbf{H}}_d\|_{\mathcal{H}_2}^2.$$
(13)

Suppose that $\mathbf{\hat{H}}_d = \mathbf{\hat{H}} e^{-s\hat{ au}}$, and both models have the pole residue decomposition

$$\mathbf{G}(s) = \sum_{j=1}^{N} \frac{\psi_j}{s - \mu_j} \text{ and } \hat{\mathbf{H}}(s) = \sum_{k=1}^{n} \frac{\hat{\phi}_k}{s - \hat{\lambda}_k}$$

Then,

$$\begin{aligned} \mathcal{J}_2 &= \|\mathbf{G} - \hat{\mathbf{H}}_d\|_{\mathcal{H}_2}^2 \\ &= \|\mathbf{G}\|_{\mathcal{H}_2}^2 - 2\langle \mathbf{G}, \hat{\mathbf{H}}e^{-s\tau}\rangle_{\mathcal{H}_2} + \|\hat{\mathbf{H}}e^{-s\tau}\|_{\mathcal{H}_2}^2. \end{aligned}$$
(14)

• Compute \mathcal{H}_2 inner product in the presence of a input delay.

ONFRA	0000	000000000000000000000000000000000000000		
Introduction	Preliminaries	\mathcal{H}_2 I/O delay	\mathcal{H}_2 -state delay	Conclusions and perspectives

Recall:
$$\langle \mathbf{G}, \hat{\mathbf{H}} \rangle_{\mathcal{H}_2} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \overline{\mathbf{G}(i\omega)} \hat{\mathbf{H}}(i\omega) d\omega.$$

First, $\|\hat{\mathbf{H}}e^{-s\tau}\|_{\mathcal{H}_2}$?

 H_2 -norm input-delay invariance

Let $\hat{\mathbf{H}} \in \mathcal{H}_2$ and $\tau > 0$. Then $\hat{\mathbf{H}}e^{-s\tau} \in \mathcal{H}_2$ and

 $\|\mathbf{\hat{H}}\|_{\mathcal{H}_2} = \|\mathbf{\hat{H}}e^{-s\tau}\|_{\mathcal{H}_2}$

Proof.

$$2\pi \|\mathbf{H}e^{-s\tau}\|_{\mathcal{H}_{2}}^{2} = \int_{-\infty}^{\infty} \overline{\mathbf{H}(j\omega)}e^{j\omega}\mathbf{H}(j\omega)e^{-j\omega}d\omega = \int_{-\infty}^{\infty} \overline{\mathbf{H}(j\omega)}\mathbf{H}(j\omega)d\omega = 2\pi \|\mathbf{H}\|_{\mathcal{H}_{2}}^{2}$$

ONERA	0000			
Introduction	Preliminaries	\mathcal{H}_2 I/O delay	\mathcal{H}_2 -state delay	Conclusions and perspectives

Recall:
$$\langle \mathbf{G}, \hat{\mathbf{H}} \rangle_{\mathcal{H}_2} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \overline{\mathbf{G}(i\omega)} \hat{\mathbf{H}}(i\omega) d\omega.$$

First, $\|\hat{\mathbf{H}}e^{-s\tau}\|_{\mathcal{H}_2}$?

H_2 -norm input-delay invariance

Let $\mathbf{\hat{H}} \in \mathcal{H}_2$ and $\tau > 0$. Then $\mathbf{\hat{H}}e^{-s\tau} \in \mathcal{H}_2$ and

$$\|\mathbf{\hat{H}}\|_{\mathcal{H}_2} = \|\mathbf{\hat{H}}e^{-s\tau}\|_{\mathcal{H}_2}$$

Proof.

$$2\pi \|\mathbf{H}e^{-s\tau}\|_{\mathcal{H}_{2}}^{2} = \int_{-\infty}^{\infty} \overline{\mathbf{H}(j\omega)}e^{j\omega}\mathbf{H}(j\omega)e^{-j\omega}d\omega = \int_{-\infty}^{\infty} \overline{\mathbf{H}(j\omega)}\mathbf{H}(j\omega)d\omega = 2\pi \|\mathbf{H}\|_{\mathcal{H}_{2}}^{2}$$

Recall:
$$\langle \mathbf{G}, \hat{\mathbf{H}} \rangle_{\mathcal{H}_2} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \overline{\mathbf{G}(i\omega)} \hat{\mathbf{H}}(i\omega) d\omega.$$

First, $\|\hat{\mathbf{H}}e^{-s\tau}\|_{\mathcal{H}_2}$?

H_2 -norm input-delay invariance

Let $\hat{\mathbf{H}} \in \mathcal{H}_2$ and $\tau > 0$. Then $\hat{\mathbf{H}}e^{-s\tau} \in \mathcal{H}_2$ and

$$\|\mathbf{\hat{H}}\|_{\mathcal{H}_2} = \|\mathbf{\hat{H}}e^{-s\tau}\|_{\mathcal{H}_2}$$

Proof.

$$2\pi \|\mathbf{H}e^{-s\tau}\|_{\mathcal{H}_{2}}^{2} = \int_{-\infty}^{\infty} \overline{\mathbf{H}(j\omega)}e^{j\omega}\mathbf{H}(j\omega)e^{-j\omega}d\omega = \int_{-\infty}^{\infty} \overline{\mathbf{H}(j\omega)}\mathbf{H}(j\omega)d\omega = 2\pi \|\mathbf{H}\|_{\mathcal{H}_{2}}^{2}$$

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

Recall : If both systems are real,
$$\langle \mathbf{G}, \hat{\mathbf{H}} \rangle_{\mathcal{H}_2} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \overline{\mathbf{G}(i\omega)} \hat{\mathbf{H}}(i\omega) d\omega.$$

Delay-less \mathcal{H}_2 -inner product expression

Let $\mathbf{G} \in \mathcal{H}_2$ to be a strictly proper real model, $\phi \in \mathbb{C}$ and $\hat{\lambda} \in \mathbb{C}^-$. Then

$$\langle \mathbf{G}, \frac{\phi}{s-\hat{\lambda}} \rangle_{\mathcal{H}_2} = \mathbf{G}(-\hat{\lambda})\phi.$$

Recall : If both systems are real,
$$\langle \mathbf{G}, \hat{\mathbf{H}} \rangle_{\mathcal{H}_2} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \overline{\mathbf{G}(i\omega)} \hat{\mathbf{H}}(i\omega) d\omega.$$

Delay-less \mathcal{H}_2 -inner product expression

Let $\mathbf{G} \in \mathcal{H}_2$ to be a strictly proper real model, $\phi \in \mathbb{C}$ and $\hat{\lambda} \in \mathbb{C}^-$. Then

$$\langle \mathbf{G}, \frac{\phi}{s-\hat{\lambda}} \rangle_{\mathcal{H}_2} = \mathbf{G}(-\hat{\lambda})\phi.$$

Proof Cauchy's residues theorem

Input delay \mathcal{H}_2 -inner product expression

Let $\mathbf{G} \in \mathcal{H}_2$ to be a strictly proper real model expressed by

$$\mathbf{G}(s) = \sum_{j=1}^{N} \frac{\psi_j}{s - \mu_j}.$$

Let $\tau > 0$ and $\hat{\lambda} \in \mathbb{C}^-$. Then

$$\langle \mathbf{G}, \frac{e^{-s\tau}}{s-\hat{\lambda}} \rangle_{\mathcal{H}_2} = \sum_{j=1}^{N} \frac{\psi_j e^{-\mu_j \tau}}{-\hat{\lambda} - \mu_j}.$$
 (15)

The expression depends on the pole residue decomposition of G.

▶ The delay "break the structure" of G.

Input delay \mathcal{H}_2 -inner product expression

Let $\mathbf{G} \in \mathcal{H}_2$ to be a strictly proper real model expressed by

$$\mathbf{G}(s) = \sum_{j=1}^{N} \frac{\psi_j}{s - \mu_j}.$$

Let $\tau > 0$ and $\hat{\lambda} \in \mathbb{C}^-$. Then

$$\langle \mathbf{G}, \frac{e^{-s\tau}}{s-\hat{\lambda}} \rangle_{\mathcal{H}_2} = \sum_{j=1}^{N} \frac{\psi_j e^{-\mu_j \tau}}{-\hat{\lambda} - \mu_j}.$$
 (15)

- The expression depends on the pole residue decomposition of G.
- ▶ The delay "break the structure" of G.

Proof Cauchy's theorem

▶ NOT POSSIBLE!! Because of exponential growth $e^{-s\tau}$

Proof Cauchy's theorem

Use other contour encircling the poles of G

Finally we are able to characterize the inner product.

Input delay \mathcal{H}_2 inner product computation

Let ${\bf G}, \; \hat{{\bf H}}$ be two SISO systems in ${\cal H}_2$ whose respective transfer functions

$$\mathbf{G}(s) = \sum_{j=1}^{N} \frac{\psi_j}{s - \mu_j} \text{ and } \hat{\mathbf{H}}(s) = \sum_{k=1}^{n} \frac{\hat{\phi}_k}{s - \hat{\lambda}_k},$$

and let $\tau > 0$. Hence, if $\hat{\mathbf{H}}_d = \hat{\mathbf{H}} e^{-s\tau}$, the inner product $\langle \mathbf{G}, \hat{\mathbf{H}}_d \rangle_{\mathcal{H}_2}$ is given by:

$$\langle \mathbf{G}, \hat{\mathbf{H}}_d \rangle_{\mathcal{H}_2} = \sum_{j=1}^N \hat{\mathbf{H}}(-\mu_j) \psi_j e^{\tau \mu_j}.$$
 (16)

Finally we are able to characterize the inner product.

Input delay \mathcal{H}_2 inner product computation

Let ${\bf G}, \; \hat{{\bf H}}$ be two SISO systems in ${\cal H}_2$ whose respective transfer functions

$$\mathbf{G}(s) = \sum_{j=1}^{N} \frac{\psi_j}{s - \mu_j} \text{ and } \hat{\mathbf{H}}(s) = \sum_{k=1}^{n} \frac{\hat{\phi}_k}{s - \hat{\lambda}_k},$$

and let $\tau > 0$. Hence, if $\hat{\mathbf{H}}_d = \hat{\mathbf{H}} e^{-s\tau}$, the inner product $\langle \mathbf{G}, \hat{\mathbf{H}}_d \rangle_{\mathcal{H}_2}$ is given by:

$$\langle \mathbf{G}, \hat{\mathbf{H}} e^{-s\tau} \rangle_{\mathcal{H}_2} = \sum_{j=1}^{N} \hat{\mathbf{H}} (-\mu_j) \psi_j e^{\tau \mu_j}$$

= $\langle \tilde{\mathbf{G}}, \hat{\mathbf{H}} \rangle_{\mathcal{H}_2}$ (16)

where

$$\tilde{\mathbf{G}}(s) = \sum_{j=1}^{N} \frac{\psi_j e^{\tau \mu_j}}{s - \mu_j}$$

Let
$$\mathbf{G}(s) = \frac{1}{s+1} = \frac{\psi}{s-\mu}$$
 and $\mathbf{H}(s) = \frac{1}{s+2} = \frac{\phi}{s-\lambda}$.

Delay-free case:

$$\langle \mathbf{G}, \mathbf{H} \rangle_{\mathcal{H}_2} = \psi \mathbf{H}(-\mu) = \psi \frac{\phi}{-\mu - \lambda} = \frac{1}{3} = \phi \frac{\psi}{-\lambda - \mu} = \phi \mathbf{G}(-\lambda) = \langle \mathbf{H}, \mathbf{G} \rangle_{\mathcal{H}_2}$$

 \mathcal{H}_2 inner product can be computed using pole-residues decomposition of ${f G}$ or ${f H}$.

duction Prelimina

 \mathcal{H}_2 -state delay

\mathcal{H}_2 optimal model reduction with I/O delay structure

Input delay \mathcal{H}_2 inner product

Let
$$\mathbf{G}(s) = \frac{1}{s+1} = \frac{\psi}{s-\mu}$$
 and $\mathbf{H}(s) = \frac{1}{s+2} = \frac{\phi}{s-\lambda}$.

Delay-free case:

$$\langle \mathbf{G}, \mathbf{H} \rangle_{\mathcal{H}_2} = \psi \mathbf{H}(-\mu) = \psi \frac{\phi}{-\mu - \lambda} = \frac{1}{3} = \phi \frac{\psi}{-\lambda - \mu} = \phi \mathbf{G}(-\lambda) = \langle \mathbf{H}, \mathbf{G} \rangle_{\mathcal{H}_2}$$

 \mathcal{H}_2 inner product can be computed using pole-residues decomposition of ${f G}$ or ${f H}$.

• Input-delay case: Let $\tau = 1$. By noticing that, $\langle \mathbf{G}, \hat{\mathbf{H}}e^{-s} \rangle_{\mathcal{H}_2} = \langle \mathbf{G}e^s, \hat{\mathbf{H}} \rangle_{\mathcal{H}_2}$, one apply the symmetric version as follows :

$$\frac{1}{3}e^{-1} = \langle \mathbf{G}, \hat{\mathbf{H}}e^{-s} \rangle_{\mathcal{H}_2} = \underbrace{\langle \mathbf{G}e^s, \hat{\mathbf{H}} \rangle_{\mathcal{H}_2} \neq \hat{\phi}\mathbf{G}(-\lambda)e^{-\tau\hat{\lambda}}}_{\text{incorrect symmetric version}} = \hat{\phi}\frac{\psi}{-\hat{\lambda}-\mu}e^{-\lambda\tau} = \frac{1}{3}e^2.$$

Symmetric version of the \mathcal{H}_2 inner product does not provide the same result any more.

 \mathcal{H}_2 optimal model reduction with I/O delay structure

Input delay \mathcal{H}_2 inner product

Let
$$\mathbf{G}(s) = \frac{1}{s+1} = \frac{\psi}{s-\mu}$$
 and $\mathbf{H}(s) = \frac{1}{s+2} = \frac{\phi}{s-\lambda}$.

Delay-free case:

$$\langle \mathbf{G}, \mathbf{H} \rangle_{\mathcal{H}_2} = \psi \mathbf{H}(-\mu) = \psi \frac{\phi}{-\mu - \lambda} = \frac{1}{3} = \phi \frac{\psi}{-\lambda - \mu} = \phi \mathbf{G}(-\lambda) = \langle \mathbf{H}, \mathbf{G} \rangle_{\mathcal{H}_2}$$

 \mathcal{H}_2 inner product can be computed using pole-residues decomposition of ${f G}$ or ${f H}$.

▶ Input-delay case: Let us compute \mathcal{H}_2 inner product between $\mathbf{H}e^{-s}$ and \mathbf{G} using the extended formula:

$$\langle \mathbf{G}, \mathbf{H} e^{-s\tau} \rangle_{\mathcal{H}_2} = \psi \mathbf{H}(-\mu) e^{\tau\mu} = \psi \frac{\phi}{-\mu - \lambda} e^{\tau\mu} = \frac{1}{3} e^{-1}.$$

Which modifies the optimality conditions.

Input delay \mathcal{H}_2 Optimality conditions

Recall:
$$\mathbf{G}(s) = \sum_{k=1}^{N} \frac{\psi_k}{s-\mu_k}$$
 and $\hat{\mathbf{H}}(s) = \sum_{k=1}^{n} \frac{\hat{\phi}_k}{s-\hat{\lambda}_k}$

delay-free \mathcal{H}_2 -optimality conditions

If $\hat{\mathbf{H}}$ is a local optimum of \mathcal{H}_2 problem, then (interpolation condition on $\tilde{\mathbf{G}}$).

$$\hat{\mathbf{H}}(-\hat{\lambda}_k) = \mathbf{G}(-\hat{\lambda}_k) \hat{\mathbf{H}}'(-\hat{\lambda}_k) = \mathbf{G}'(-\hat{\lambda}_k)$$
(17)

for k = 1, ..., n.

Introduction	Preliminaries 0000	<i>H</i> 2 I/O delay ○○○○○○○○○○●○○○○○○	\mathcal{H}_2 -state delay 0000000000000	Conclusions and perspective
ONERA	\mathcal{H}_2 op	timal model reductio	n with I/O delay	/ structure

Input delay \mathcal{H}_2 Optimality conditions

$$\mathbf{G}(s)=\sum_{k=1}^{N}\frac{\psi_k}{s-\mu_k}$$
 and $\mathbf{\hat{H}}(s)=\sum_{k=1}^{n}\frac{\hat{\phi}_k}{s-\hat{\lambda}_k}{}^5$

Input-delay \mathcal{H}_2 -optimality conditions

If $\hat{\mathbf{H}}_d = \hat{\mathbf{H}}e^{-s\hat{\tau}}$ is a local optimum of input delay \mathcal{H}_2 problem, then (interpolation condition on $\tilde{\mathbf{G}}$)

$$\hat{\mathbf{H}}(-\hat{\lambda}_k) = \tilde{\mathbf{G}}(-\hat{\lambda}_k) \hat{\mathbf{H}}'(-\hat{\lambda}_k) = \tilde{\mathbf{G}}'(-\hat{\lambda}_k)$$
(18)

for $k = 1, \ldots, n$ where $\tilde{\mathbf{G}}(s)$ is given by

$$\tilde{\mathbf{G}}(s) = \sum_{k=1}^{N} \frac{\psi_k e^{\mu_k \tau}}{s - \mu_k}$$

and (delay condition)

 $[\]sum_{k=1}^{\mu_k \varphi_k} \left(\sum_{j=1}^{\mu_k} \mu_k + \hat{\lambda}_j \right)^c = 0.$ (19)

⁵ I. Pontes Duff Pereira, C. Poussot-Vassal and C. Seren, "Optimal \mathcal{H}_2 model approximation based on multiple input/output delays systems", arXiv preprint arXiv:1511.05252.

Introduction	Preliminaries 0000	<i>H</i> ₂ I/O delay ○○○○○○○○○○○○○○○○○○	${\cal H}_2$ -state delay 000000000000000	Conclusions and perspective
ONERA	\mathcal{H}_2 op	timal model reductio	on with I/O dela	y structure

Input delay \mathcal{H}_2 Optimality conditions

$$\mathbf{G}(s)=\sum_{k=1}^{N}\frac{\psi_k}{s-\mu_k}$$
 and $\mathbf{\hat{H}}(s)=\sum_{k=1}^{n}\frac{\hat{\phi}_k}{s-\hat{\lambda}_k}{}^5$

Input-delay \mathcal{H}_2 -optimality conditions

If $\hat{\mathbf{H}}_d = \hat{\mathbf{H}}e^{-s\hat{\tau}}$ is a local optimum of input delay \mathcal{H}_2 problem, then (interpolation condition on $\tilde{\mathbf{G}}$)

$$\hat{\mathbf{H}}(-\hat{\lambda}_k) = \tilde{\mathbf{G}}(-\hat{\lambda}_k) \hat{\mathbf{H}}'(-\hat{\lambda}_k) = \tilde{\mathbf{G}}'(-\hat{\lambda}_k)$$
(18)

for $k = 1, \ldots, n$ where $\mathbf{\tilde{G}}(s)$ is given by

$$\tilde{\mathbf{G}}(s) = \sum_{k=1}^{N} \frac{\psi_k e^{\mu_k \tau}}{s - \mu_k}$$

and (delay condition)

$$\sum_{k=1}^{N} \mu_k \psi_k \bigg(\sum_{j=1}^{n} \frac{\phi_j}{\mu_k + \hat{\lambda_j}} \bigg) e^{\mu_k \tau} = 0.$$
 (19)

⁵ I. Pontes Duff Pereira, C. Poussot-Vassal and C. Seren, "Optimal H₂ model approximation based on multiple input/output delays systems", arXiv preprint arXiv:1511.05252.

 $[\]mathcal{H}_2$ optimal model approximation by structured time-delay reduced order models

IO-dIRKA Algorithm

IO-dIRKA Given G, compute pole residue decomposition. Then,

IO-dIRKA Algorithm

$$\blacktriangleright \text{ Take } \mathbf{G}_{delay}(s) = \frac{\psi}{s^2 + 2\xi\omega_0 s + \omega_0^2} e^{-\tau s} \text{, where } \tau = 2, \omega_0 = 1 \text{ and } \xi = 1/4.$$

- Loewner framework for uniformly spaced interpolation points $i\omega_k$, k = 1, ..., 100 $\Rightarrow \mathbf{G} = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}$ of order N = 34, a delay-free model interpolating \mathbf{G}_{delay} .
- IRKA for $n = 2, \ldots, 8$; I/O IRKA for n = 2.

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

- Original model of order =100.
- \mathcal{H}_2 optimal delay-free approximations n = 6, 12 and 20.

- Original model of order =100.
- \mathcal{H}_2 optimal delay-free approximations n = 6, 12 and 20.

- Original model of order =100.
- \mathcal{H}_2 optimal delay-free approximations n = 6, 12 and 20.

- Original model of order =100.
- \mathcal{H}_2 optimal delay-free approximations n = 6, 12 and 20.

- Original model of order =100.
- \mathcal{H}_2 optimal delay-free approximations n = 20.
- \mathcal{H}_2 optimal input-delay approximations n = 6, $\tau_{opt} = 19.27$ s.

\mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

30/49

EDF Rhin flow benchmark

- Irrational model filtered.
- Loewner exact interpolation n = 103 (filtered and stable).

EDF Rhin flow benchmark

- Impulse response of the models.
- This example illustrates the benefit of delay structured reuced order models for specific transport phenomena.

H₂ I/O delay

 \mathcal{H}_2 -state delay

Conclusions and perspectives

Introduction

- Preliminaries on \mathcal{H}_2 model approximation
- \mathcal{H}_2 optimal model reduction with I/O delay structure

\mathcal{H}_2 optimality conditions for reduced state-delay systems

Conclusions and perspectives

Let $\mathbf{\hat{H}}=(\hat{E},\hat{A},\hat{B},\hat{C},0)$ be defined as:

$$\begin{cases} \hat{E}\dot{x}(t) = \hat{A}x(t) + \hat{B}u(t) \\ y(t) = \hat{C}x(t) \end{cases}$$
(20)

whose transfer function is

$$\hat{\mathbf{H}}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}$$
 (21)

\mathcal{H}_2 model approximation

Given a system $\mathbf{G}\in\mathcal{H}_2,$ the goal is to find a system $\mathbf{\hat{H}}$

$$\hat{\mathbf{H}}^{\star} := \mathop{\text{arg min}}_{\hat{\mathbf{H}} \in \mathcal{H}_2, \dim(\hat{\mathbf{H}}) \leq r} \|\mathbf{G} - \hat{\mathbf{H}}\|_{\mathcal{H}_2}.$$

Let
$$\mathbf{\hat{H}} = (\hat{E}, \hat{A}, \hat{B}, \hat{C}, 0)$$
 be defined as:

$$\begin{cases} \hat{E}\dot{x}(t) = \hat{A}x(t) + \hat{B}u(t) \\ y(t) = \hat{C}x(t) \end{cases}$$
(20)

whose transfer function is

$$\hat{\mathbf{H}}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}$$
 (21)

\mathcal{H}_2 model approximation

Given a system $\mathbf{G}\in\mathcal{H}_2,$ the goal is to find a system $\hat{\mathbf{H}}$

$$\mathbf{\hat{H}}^{\star} := \mathop{\text{arg min}}_{\mathbf{\hat{H}} \in \mathcal{H}_2, \dim(\mathbf{\hat{H}}) \leq r} \|\mathbf{G} - \mathbf{\hat{H}}\|_{\mathcal{H}_2}.$$

Let $\mathbf{\hat{H}}_{d} = (\hat{E}, \hat{A}, \hat{B}, \hat{C}, \boldsymbol{\tau})$ be defined as:

$$\begin{cases} \hat{E}\dot{x}(t) = \hat{A}x(t-\tau) + \hat{B}u(t) \\ y(t) = \hat{C}x(t) \end{cases}$$
(22)

whose transfer function is

$$\mathbf{\hat{H}}_d(s) = \hat{C}(s\hat{E} - \hat{A}e^{-\tau s})^{-1}\hat{B}$$
 (23)

Single-state delay \mathcal{H}_2 model approximation

Given a system $\mathbf{G}\in\mathcal{H}_2$, the goal is to find a system $\hat{\mathbf{H}}_d=(\hat{E},\hat{A},\hat{B},\hat{C},\tau)$

$$\hat{\mathbf{H}}_d^\star := \mathop{\arg\min}_{\hat{\mathbf{H}}_d \in \mathcal{H}_2, \dim(\hat{\mathbf{H}}_d) \leq r} \|\mathbf{G} - \hat{\mathbf{H}}_d\|_{\mathcal{H}_2}.$$

One dimension single-state delay problem

Given $\mathbf{G} \in \mathcal{H}_2$ and a fixed $\tau > 0$, find a reduced order single state delay model order 1,

$$\hat{\mathbf{H}}_d := \left\{ \begin{array}{rl} \dot{x}(t) &=& \hat{\alpha} x(t-\tau) + \hat{\phi} u(t) \\ y(t) &=& x(t) \end{array} \right.$$

whose transfer function is given by

$$\hat{\mathbf{H}}_d(s) = \frac{\hat{\phi}}{s - \hat{\alpha}e^{-s\tau}} \in \mathcal{H}_2.$$
(24)

such that:

$$\|\mathbf{G} - \hat{\mathbf{H}}_d\|_{\mathcal{H}_2} = \min_{(\hat{\phi}, \hat{\alpha}) \in \mathbb{R}^2} \|\mathbf{G} - \frac{\hat{\phi}}{s - \hat{\alpha} e^{-s\tau}}\|_{\mathcal{H}_2}$$
(25)

- Reduced order system is defined only by two real parameters.
- It has infinitely many poles.
- What are the optimality conditions ? Are they interpolation conditions ?

I. Pontes Duff et al. [Onera]

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

Recall: if \mathbf{G} & $\hat{\mathbf{H}}$ have semi-simple poles, they read s.t.:

$$\hat{\mathbf{H}}(s) = \sum_{i=1}^{n} \frac{\hat{\phi}_i}{s - \hat{\lambda}_i}$$
(26)

\mathcal{H}_2 -optimality conditions

If both G and \hat{H} are $\in \mathcal{H}_2$ and \hat{H} is a local minimum of the \mathcal{H}_2 approximation problem, then the following interpolation equalities hold:

$$\begin{cases} \mathbf{G}(-\hat{\lambda}_i) = \hat{\mathbf{H}}(-\hat{\lambda}_i) \\ \mathbf{G}'(-\hat{\lambda}_i) = \hat{\mathbf{H}}'(-\hat{\lambda}_i) \end{cases}, \ \forall i = 1 \dots r$$
(27)

In Equation (27), $\hat{\lambda}_i$ corresponds to the i^{th} pole of $\hat{\mathbf{H}}$.

- What are the poles of $\hat{\mathbf{H}}_d$?
- From now on, the model $\mathbf{\hat{H}}_d$ will be decomposed as

$$\hat{\mathbf{H}}_d(s) = \hat{\phi} \mathbf{P}_\tau(s) = \frac{\hat{\phi}}{s - \hat{\alpha} e^{-s\tau}}$$

I. Pontes Duff et al. [Onera]

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

Spectral decomposition of $\hat{\mathbf{H}}_d(s)^{\mathbf{6}}$

The Lambert function $\mathbf{W}_{\mathbf{k}}$

The Lambert function $\mathbf{W}_{\mathbf{k}}(s)$ is a multivalued (except at 0) complex function associating for the k^{th} complex branch, a complex number $\mathbf{W}_{\mathbf{k}}(s)$ such that :

$$s = \mathbf{W}_{\mathbf{k}}(s)e^{\mathbf{W}_{\mathbf{k}}(s)}, \quad k \in \mathbb{Z}$$
(28)

i.e., given a $s \in \mathbb{C}$, for each complex branch. Equation (28) has one solution in the *k*-th complex branch, namely $\mathbf{W}_{\mathbf{k}}(s)$.

⁶ Corless, Robert M., et al., "On the LambertW function", Advances in Computational mathematics 5.1 (1996): 329-359..

Spectral decomposition of $\hat{\mathbf{H}}_d(s)^{\mathbf{6}}$

The Lambert function $\mathbf{W}_{\mathbf{k}}$

The Lambert function $\mathbf{W}_{\mathbf{k}}(s)$ is a multivalued (except at 0) complex function associating for the k^{th} complex branch, a complex number $\mathbf{W}_{\mathbf{k}}(s)$ such that :

$$s = \mathbf{W}_{\mathbf{k}}(s)e^{\mathbf{W}_{\mathbf{k}}(s)}, \quad k \in \mathbb{Z}$$
(28)

i.e., given a $s \in \mathbb{C}$, for each complex branch. Equation (28) has one solution in the k-th complex branch, namely $\mathbf{W}_{\mathbf{k}}(s)$.

⁶ Corless, Robert M., et al., "On the LambertW function", Advances in Computational mathematics 5.1 (1996): 329-359..

I. Pontes Duff et al. [Onera]

Spectral decomposition of $\hat{\mathbf{H}}_d(s)$

Spectral decomposition of \mathbf{H}_d

The model $\hat{\mathbf{H}}_d$ has infinite poles which can be computed using the Lambert function as follows :

$$\lambda_k = \frac{1}{\tau} \mathbf{W}_{\mathbf{k}}(\tau \hat{\alpha}), \quad \text{for} \quad k \in \mathbb{Z}.$$
 (29)

Moreover, if $\hat{\mathbf{H}}_d = \hat{\phi} \mathbf{P}_{\tau}$, the infinite partial fraction decomposition of $\mathbf{P}_{\tau} = \frac{1}{s - \hat{\alpha} e^{-s\tau}}$ is given by

$$\mathbf{P}_{\tau}(s) = \sum_{k=-\infty}^{\infty} \phi_k \frac{1}{s-\lambda_k} \text{ where } \phi_k = \frac{1}{1+\tau\lambda_k}.$$
 (30)

• \mathcal{H}_{∞} convergence⁷, and \mathcal{H}_2 -weak convergence.

⁷ Partington, JR and Glover, K and Zwart, HJ and Curtain, Ruth F, " L_{∞} approximation and nuclearity of delay systems", Systems & control letters 10,1 (1988): 59-65.

 $[\]mathcal{H}_2$ optimal model approximation by structured time-delay reduced order models

Spectral decomposition of $\hat{\mathbf{H}}_d(s)$

Spectral decomposition of \mathbf{P}_{τ}^{2} . Let $\mathbf{P}_{\tau} = \frac{1}{s - \hat{\alpha}e^{-s\tau}} \in \mathcal{H}_{2}$. Then $\mathbf{P}_{\tau}^{2}(s) = \sum_{k=-\infty}^{\infty} \psi_{k} \frac{1}{(s - \lambda_{k})^{2}} + \rho_{k} \frac{1}{s - \lambda_{k}}$ (31) where $\psi_{k} = \frac{1}{(1 + \tau \lambda_{k})^{2}} \text{ and } \rho_{k} = \frac{2\tau^{2}\lambda_{k}}{(1 + \tau \lambda_{k})^{3}}.$

Spectral \mathcal{H}_2 -inner product :

Spectral \mathcal{H}_2 -inner product :

Let $\mathbf{F} \in \mathcal{H}_2$ and $\mathbf{P}_{ au} = \frac{1}{s - \hat{lpha} e^{-s au}} \in \mathcal{H}_2$. Then :

$$\langle \mathbf{F}, \mathbf{P}_{\tau} \rangle_{\mathcal{H}_2} = \sum_{k=-\infty}^{\infty} \phi_k \mathbf{F}(-\lambda_k),$$
 (32)

where $\phi_k = \frac{1}{1+\tau\lambda_k}$. In addition,

$$\langle \mathbf{F}, \mathbf{P}_{\tau}^{2} \rangle_{\mathcal{H}_{2}} = \sum_{k=-\infty}^{\infty} \rho_{k} \mathbf{F}(-\lambda_{k}) - \psi_{k} \mathbf{F}'(-\lambda_{k})$$
 (33)

where $\psi_k = \frac{1}{(1+\tau\lambda_k)^2}$ and $\rho_k = \frac{2\tau^2\lambda_k}{(1+\tau\lambda_k)^3}$.

Single-state delay \mathcal{H}_2 -optimality conditions:

Let $\mathcal{E}(\hat{\phi}, \hat{\alpha})$ be the \mathcal{H}_2 error, *i.e.*,

$$\mathcal{E}(\hat{\phi}, \hat{\alpha}) = \|\mathbf{G} - \mathbf{\hat{H}}_{\mathbf{d}}\|_{\mathcal{H}_{2}}^{2} = \langle \mathbf{G} - \mathbf{\hat{H}}_{d}, \mathbf{G} - \mathbf{\hat{H}}_{\mathbf{d}} \rangle_{\mathcal{H}_{2}}$$

Partial derivatives:

The partial derivative of the \mathcal{H}_2 error $\mathcal E$ with respect to the parameters are given analytically by :

$$\begin{cases} \frac{\partial \mathcal{E}}{\partial \dot{\phi}} &= -2\langle \mathbf{G} - \hat{\mathbf{H}}_d, \mathbf{P}_\tau \rangle_{\mathcal{H}_2} \\ \frac{\partial \mathcal{E}}{\partial \dot{\alpha}} &= \frac{2 \dot{\phi}}{\dot{\alpha} \tau} \langle \mathbf{G} - \hat{\mathbf{H}}_d, \mathbf{P}_\tau + \mathbf{P}_\tau^2 \rangle_{\mathcal{H}_2} \end{cases}$$

Proof Sketch:

$$\frac{\partial \mathcal{E}}{\partial \Theta} = -2\langle \mathbf{G} - \hat{\mathbf{H}}_d, \frac{\partial \hat{\mathbf{H}}_d}{\partial \Theta} \rangle_{\mathcal{H}_2}.$$
(34)

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

Single-state delay \mathcal{H}_2 -optimality conditions:

Single-state delay \mathcal{H}_2 -optimality conditions version 1

Let $\hat{\mathbf{H}}_d = \frac{\phi}{s - \hat{\alpha}e^{-s\tau}} \in \mathcal{H}_2$ and $\mathbf{G} \in \mathcal{H}_2$. Let us suppose also that $\mathbf{G}' \in \mathcal{H}_2$. If $\hat{\mathbf{H}}_d$ is the best \mathcal{H}_2 approximation of \mathbf{G} , then :

$$\langle \mathbf{G}, \mathbf{P}_{\tau} \rangle_{\mathcal{H}_2} = \langle \hat{\mathbf{H}}_d, \mathbf{P}_{\tau} \rangle_{\mathcal{H}_2}$$
(35)

$$\langle \mathbf{G}, \mathbf{P}_{\tau}{'} + \mathbf{P}_{\tau}{}^{2} \rangle_{\mathcal{H}_{2}} = \langle \hat{\mathbf{H}}_{d}, \mathbf{P}_{\tau}{'} + \mathbf{P}_{\tau}{}^{2} \rangle_{\mathcal{H}_{2}}$$
(36)

Single-state delay \mathcal{H}_2 -optimality conditions:⁸

Single-state delay \mathcal{H}_2 -optimality conditions version 2

Let $\hat{\mathbf{H}}_d = \frac{\phi}{s - \hat{\alpha} e^{-s\tau}} \in \mathcal{H}_2$ and $\mathbf{G} \in \mathcal{H}_2$. Let us suppose also that $\mathbf{G}' \in \mathcal{H}_2$. If $\hat{\mathbf{H}}_d$ is the best \mathcal{H}_2 approximation of \mathbf{G} , then :

$$\sum_{k=-\infty}^{\infty} \mathbf{G}(-\lambda_k)\phi_k = \sum_{k=-\infty}^{\infty} \hat{\mathbf{H}}_{\mathbf{d}}(-\lambda_k)\phi_k,$$
(37)

$$\sum_{k=-\infty}^{\infty} \mathbf{G}'(-\lambda_k)(\phi_k - \psi_k) + \sum_{k=-\infty}^{\infty} \mathbf{G}(-\lambda_k)\rho_k = \sum_{k=-\infty}^{\infty} \mathbf{\hat{H}}'_d(-\lambda_k)(\phi_k - \psi_k) + \sum_{k=-\infty}^{\infty} \mathbf{\hat{H}}_d(-\lambda_k)\rho_k$$
(38)

where λ_k , for $k \in \mathbb{Z}$, are the poles of $\hat{\mathbf{H}}_d$, $\phi_k = \frac{1}{1+\tau\lambda_k}$, $\psi_k = \frac{1}{(1+\tau\lambda_k)^2}$ and $\rho_k = \frac{2\tau^2\lambda_k}{(1+\tau\lambda_k)^3}$.

Generalized interpolation conditions.

• if
$$\tau = 0$$
, $\mathbf{G}(-\hat{\alpha}) = \hat{\mathbf{H}}(-\hat{\alpha})$ and $\mathbf{G}'(-\hat{\alpha}) = \hat{\mathbf{H}}'(-\hat{\alpha})$.

I. Pontes Duff et al. [Onera]

⁸ Pontes Duff, I., Gugercin, S., Beattie, C., Poussot-Vassal, C. and Seren, C., "*H*₂-optimality conditions for reduced time-delay systems of dimension one", in Proceedings of the 13th IFAC Workshop on Time Delay Systems, 2016.

Application

Let

$$\mathbf{G}(s) = \frac{10}{s^2 + 11s + 10}$$

Find $\hat{\phi} \in \mathbb{R}$ and $\hat{\alpha} \in (-\pi/2, 0)$ which minimizes :

 $\mathcal{E}(\hat{\phi}, \hat{\alpha}) = \|\mathbf{G} - \mathbf{H}_d\|_{\mathcal{H}_2}^2 = \|\mathbf{E}(\hat{\phi}, \hat{\alpha})\|_{\mathcal{H}_2}^2$

where $\mathbf{H}_{d}(s) = rac{\hat{\phi}}{s - \hat{lpha} e^{-s}}.$

Application

Hence,

$$\mathbf{E}(\hat{\phi}, \hat{\alpha}) := \begin{cases} \dot{\mathbf{x}}(t) &=& \mathbf{A}\mathbf{x}(t) + \mathbf{A}_{\tau}\mathbf{x}(t-\tau) + \mathbf{B}u(t) \\ y(t) &=& \mathbf{C}\mathbf{x}(t) \end{cases}$$

where

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -10 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{A}_{\tau} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \hat{\alpha} \end{bmatrix}$$

$$B = \begin{bmatrix} 10/9 \\ -10/9 \\ -\hat{\phi} \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}.$$

- Use delay Lyapunov equations⁹ to compute the Norm
- MATLAB function fminunc $\Rightarrow \hat{\alpha}^* \approx -0.5371 \quad \hat{\phi}^* \approx 0.4986.$
- Verify generalized interpolation condition by truncation.

⁹ Jarlebring, E., Vanbiervliet, J., and Michiels, W., "Characterizing and computing the H2 norm of timedelay systems by solving the delay lyapunov equation.", Automatic Control, IEEE Transactions on, 56(4), 814–825. roduction

Prelimina

H₂ I/O delay

 \mathcal{H}_2 -state delay

\mathcal{H}_2 optimality conditions for reduced state-delay systems

Application

N	$S_{1,\mathbf{G},N}$	$S_{1,\hat{\mathbf{H}}_{\mathbf{d}},N}$	$S_{2,\mathbf{G},N}$	$S_{2,\hat{\mathbf{H}}_{\mathbf{d}},N}$
2	0.80890	0.80326	0.15280	0.15361
6	0.81620	0.81234	0.15302	0.15310
10	0.81656	0.81410	0.15306	0.15308
200	0.81667	0.81655	0.15307	0.15307

$$s_{1,\mathbf{G},N} = \sum_{k=-N}^{N-1} \mathbf{G}(-\lambda_k) \phi_k \approx \sum_{k=-N}^{N-1} \hat{\mathbf{H}}_{\mathbf{d}}(-\lambda_k) \phi_k = s_{1,\hat{\mathbf{H}}_{\mathbf{d}},N}$$

$$\begin{split} s_{2,\mathbf{G},N} &= \sum_{\substack{k=-N\\N-1}}^{N-1} \mathbf{G}'(-\lambda_k)(\phi_k - \psi_k) + \sum_{\substack{k=-N\\N-1}}^{N-1} \mathbf{G}(-\lambda_k)\rho_k \approx \\ s_{2,\hat{\mathbf{H}}_{\mathbf{d}},N} &= \sum_{\substack{k=-N\\k=-N}}^{N-1} \hat{\mathbf{H}}'_{\mathbf{d}}(-\lambda_k)(\phi_k - \psi_k) + \sum_{\substack{k=-N\\k=-N}}^{N-1} \hat{\mathbf{H}}_{\mathbf{d}}(-\lambda_k)\rho_k. \end{split}$$

Introduction	Preliminaries 0000	\mathcal{H}_2 I/O delay 000000000000000000000000000000000000	\mathcal{H}_2 -state delay 0000000000000	Conclusions and perspectives
				Outlines

Introduction

- Preliminaries on \mathcal{H}_2 model approximation
- \mathcal{H}_2 optimal model reduction with I/O delay structure
- \mathcal{H}_2 optimality conditions for reduced state-delay systems

Conclusions and perspectives

Introduction	
ONERA	

Conclusions and perspectives

Scientific contributions

- ► H₂ optimal model reduction with I/O structure : I/O H₂ inner product expression, interpolation conditions on G̃, I/O IRKA algorithm, application to industrial benchmark.
- ► Single-state delay *H*₂-optimality conditions :*H*₂ spectral inner product expression, generalized interpolation conditions.

Future work

- I/O delay 1)Isometry structure (In progress conjoint work with Christoph Zimmer -TU Berlin)
- state-delay 1) Generalize interpolation conditions to general framework. (In progress (conjoint work with S. Gugercin and C. Beattie - VT)) 2) Find a way to deal with them.

Preliminaries 0000

 \mathcal{H}_2 -state delay

 \mathcal{H}_2 optimal model approximation by structured time-delay reduced order models

I. Pontes Duff, Charles Poussot-Vassal, C. Seren

27th September, GT MOSAR and GT SAR meeting

