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Large-scale models
Some motivating examples in the simulation & control domains...

Digitalized and computer-based modeling and studies are crucial steps for any
system / concept or physical phenomena understanding
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Large-scale models
Some motivating examples in the simulation & control domains...

Digitalized and computer-based modeling and studies are crucial steps for any
system / concept or physical phenomena understanding

Problem: involved numerical dynamical models are too complex

Due to finite machine precision, computation burden and memory management,
I difficulties with system simulation, analysis, optimization, controller design
I results are not accurate, time consumption
I inappropriate actual numerical tools

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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Large-scale models
... e.g. in aeronautics

Physical system

Partial Differential
Equations (PDEs)

−
−→
∇p + ρ−→g = ρ−→a

∂ρ

∂t
+−→∇.(ρ−→v ) = 0

fluid mechanics,
structure, etc.

Differential Algebraic Equations
(DAEs) or Rational Functions

Eẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

H(s) = H1(s)+Hde
−τs+...

rigid behaviour

Discretisation
finite elements, fi-
nite volume, etc.

simulation,
control,
analysis,

optimisation, etc.

Large-scale

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models

� Highly accurate and/or flexible aircraft

� Spacecraft, launcher, satellites,
� Fluid dynamics physics (Navier and Stokes)



5/49

Introduction Preliminaries H2 I/O delay H2-state delay Conclusions and perspectives

Large-scale models
... e.g. in aeronautics

Physical system

Partial Differential
Equations (PDEs)

−
−→
∇p + ρ−→g = ρ−→a

∂ρ

∂t
+−→∇.(ρ−→v ) = 0

fluid mechanics,
structure, etc.

Differential Algebraic Equations
(DAEs) or Rational Functions
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� Highly accurate and/or flexible aircraft

� Spacecraft, launcher, satellites,
� Fluid dynamics physics (Navier and Stokes)objective: alleviate numerical burden
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Introduction

Topics addressed in this presentation :
I H2-model approximation with I/O delay structure.
I H2 optimality conditions for reduced state-delay systems.
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Introduction

Topics addressed in this presentation :
I H2-model approximation with I/O delay structure.
I H2 optimality conditions for reduced state-delay systems.

Goal: find a nth order rational model approximation
in the form

Ĥ(s) = Ĉ(sÊ − Â)−1B̂
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Introduction

Topics addressed in this presentation :
I H2-model approximation with I/O delay structure.
I H2 optimality conditions for reduced state-delay systems.

Delay Goal: find a nth order rational I/O delay structured model approximation
in the form

Ĥd(s) = ∆̂o(s)Ĉ(sÊ − Â)−1B̂∆̂i(s)

where ∆̂i(s) = diag(e−sτ̂1 , . . . , e−sτ̂nu ) and ∆̂o(s) = diag(e−sγ̂1 , . . . , e−sγ̂ny )

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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Benchmarks
Example 1: Ladder network1

GLadder :=
{

Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) (1)

I Finite dimensional model of order N = 100.
I It has an intrinsic input-delay behavior.

1 Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "Structure-preserving tangential
interpolation for model reduction of port-Hamiltonian systems", Automatica„ 48(9):1963–1974.
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Benchmarks
Example 1: Ladder network1
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I Finite dimensional model of order N = 100.
I It has an intrinsic input-delay behavior.

1 Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "Structure-preserving tangential
interpolation for model reduction of port-Hamiltonian systems", Automatica„ 48(9):1963–1974.
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Ladder Network

I Finite dimensional model of order N = 100.
I It has an intrinsic input-delay behavior.

1 Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "Structure-preserving tangential
interpolation for model reduction of port-Hamiltonian systems", Automatica„ 48(9):1963–1974.
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Benchmarks
Example 1: Ladder network1
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Impulse response−Balanced Truncation Order = 6

I Finite dimensional model of order N = 100.
I It has an intrinsic input-delay behavior.

1 Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "Structure-preserving tangential
interpolation for model reduction of port-Hamiltonian systems", Automatica„ 48(9):1963–1974.
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Benchmarks
Example 1: Ladder network1
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I Finite dimensional model of order N = 100.
I It has an intrinsic input-delay behavior.

1 Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "Structure-preserving tangential
interpolation for model reduction of port-Hamiltonian systems", Automatica„ 48(9):1963–1974.
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Benchmarks
Example 1: Ladder network1
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I Finite dimensional model of order N = 100.
I It has an intrinsic input-delay behavior.

1 Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "Structure-preserving tangential
interpolation for model reduction of port-Hamiltonian systems", Automatica„ 48(9):1963–1974.
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Benchmarks
Example 1: Ladder network1
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I Finite dimensional model of order N = 100.
I It has an intrinsic input-delay behavior.

1 Gugercin, S., Polyuga R., G., Beattie C., van der Schaft, A., "Structure-preserving tangential
interpolation for model reduction of port-Hamiltonian systems", Automatica„ 48(9):1963–1974.
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Benchmarks
St-Venant2

PDE St-Venant equations... toward linearisation

∂S

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+
∂(Q2/S)

∂x
+ gS

∂H

∂x
= gS(I − J),

(1)

I x ∈ [0;L] is the spatial variable, H(x, t) the water depth,
I S(x, t) the wetted area,
I Q(x, t) the discharge...

Step 1: Apply linearisation at (H0, Q0), which are both x dependent.
Step 2: Apply Laplace transformation around equilibrium.
Step 3: Find solutions of h(s, x), q(s, x) and identify coefficient with boundary conditions

2 Dalmas, V., Robert, G., Poussot-Vassal, C., Pontes Duff, I. and Seren, C. , "Parameter dependent
irrational and infinite dimensional modelling and approximation of an open-channel dynamics", in Proceedings of
the 15th European Control Conference, (ECC’16), Aalborg, Denmark, July, 2016..

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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Benchmarks
St-Venant

H(s, x,Q0) =
[
Ge(s, x,Q0) −Gs(s, x,Q0)

] [qe(s)
qs(s)

]
(2)

where

Ge(s, x,Q0) =
λ1(s)eλ2(s)L+λ1(s)x − λ2(s)eλ1(s)L+λ2(s)x

B0s(eλ1(s)L − eλ2(s)L)

Gs(s, x,Q0) =
λ1(s)eλ1(s)x − λ2(s)eλ2(s)x

B0s(eλ1(s)L − eλ2(s)L)

(3)

I Irrational transfer function.
I infinite model order.

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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Benchmarks
St-Venant

H(s, x,Q0) =
[
Ge(s, x,Q0) −Gs(s, x,Q0)
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I Experience and simulations shows I/O-delay behavior.
I Try to search I/O delay approximation.
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Delay-free H2 model approximation problem formulation
Model approximation ∼ Mathematical optimization

Objectives: find a reduced order system Ĥ for which:
4 the approximation error is small;
4 and the stability is preserved. . .

. . . based on a procedure computationally stable and efficient.

The quality of the approximation can be evaluated using some mathematical norms.
For any given system G of order N ∈ N?, let find Ĥ defined by:

Ĥ :=
{
Êẋ(t) = Âx(t) + B̂u(t)
y(t) = Ĉx(t)

s.t.:
J = ‖G− Ĥ‖2 is minimum→ optimisation problem to solve

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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Preliminaries on H2 model approximation
Delay-free H2 model approximation

Recall: 〈G, Ĥ〉H2 =
1

2π

∫ +∞

−∞
G(iω)Ĥ(iω)dω

Mathematical formulation
Find Ĥ? of order n << N which minimizes:

Ĥ? := arg min
Ĥ ∈ H2

dim(Ĥ) = n

||G− Ĥ||H2 (3)

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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Rational Interpolation: Given shift points
σ1, . . . , σr ∈ C find Ĥ = (Ê, Â, B̂, Ĉ) s.t.

H(σj) = Ĥ(σj)
d
ds

H(s)
∣∣
s=σj

= d
ds

Ĥ(s)
∣∣
s=σj
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Preliminaries on H2 model approximation
H2 optimality conditions3

Let

Ĥ(s) =
n∑
k=1

φ̂k

s− λ̂k

delay-free H2-optimality conditions (SISO)
If Ĥ is a local optimum of H2 approximation problem, then

Ĥ(−λ̂k) = G(−λ̂k)
Ĥ′(−λ̂k) = G′(−λ̂k)

(4)

for k = 1, . . . , n.

3 S. Gugercin, A.C. Antoulas and C. Beattie, " H2 model reduction for large-scale linear dynamical
systems", SIAM Journal on matrix analysis and applications, vol. 30, no. 2, pp. 609–638, 2008.

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models



14/49

Introduction Preliminaries H2 I/O delay H2-state delay Conclusions and perspectives

Preliminaries on H2 model approximation
H2 optimality conditions4

Given a system G ∈ H2,

initial shift points {σ1, . . . , σr}

Rational interpolation
(Êit, Âit, B̂it, Ĉit)

it=it+1

reduced order system
Ĥ := (Êit, Âit, B̂it, Ĉit)

convergence ? Λ (Âit, Êit) = (λ̂1, . . . , λ̂r)
no

New shift points
{σ1, . . . , σr} = {−λ̂1, . . . ,−λ̂r}

I Point-fixed iterative techniques: IRKA, TF-IRKA, . . .
I Rational interpolation: Krylov subspaces, Loewner framework, . . .
4 S. Gugercin, A.C. Antoulas and C. Beattie, " H2 model reduction for large-scale linear dynamical

systems", SIAM Journal on matrix analysis and applications, vol. 30, no. 2, pp. 609–638, 2008.
I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Problem formulation and goals

Let Ĥ = (Ê, Â, B̂, Ĉ, 0) be defined as:{
Êẋ(t) = Âx(t) + B̂u(t)
y(t) = Ĉx(t)

(5)

whose transfer function is

Ĥ(s) = Ĉ(sÊ − Â)−1B̂ (6)

H2 model approximation
Given a system G ∈ H2, the goal is to find
a system Ĥ?

Ĥ? := arg min
Ĥ∈H2,dim(Ĥ)≤r

‖G− Ĥ‖H2 .

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Problem formulation and goals

Let Ĥ = (Ê, Â, B̂, Ĉ, 0) be defined as:{
Êẋ(t) = Âx(t) + B̂u(t)
y(t) = Ĉx(t)

(5)

whose transfer function is

Ĥ(s) = Ĉ(sÊ − Â)−1B̂ (6)

H2 model approximation
Given a system G ∈ H2, the goal is to find
a system Ĥ?

Ĥ? := arg min
Ĥ∈H2,dim(Ĥ)≤r

‖G− Ĥ‖H2 .

Let Ĥd = (Ê, Â, B̂, Ĉ, ∆̂i(s), ∆̂o(s)) be
defined as:{

Êẋ(t) = Âx(t) + B̂∆̂i(u(t))
y(t) = ∆̂o(Ĉx(t))

(7)

whose transfer function is

Ĥd(s) = ∆̂o(s)Ĉ(sÊ − Â)−1B̂∆̂i(s) (8)

where ∆̂i(s) = diag(e−sτ̂1 , . . . , e−sτ̂nu )
and ∆̂o(s) = diag(e−sγ̂1 , . . . , e−sγ̂ny )

I/O Delay H2 model approximation
Given a system G ∈ H2, the goal is to find
a system Ĥ?

d = (Ê, Â, B̂, Ĉ, ∆̂i(s), ∆̂o(s))

Ĥ?
d := arg min

Ĥd∈H2,dim(Ĥd)≤r
‖G− Ĥd‖H2 .

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Problem formulation and goals

Let Ĥ = (Ê, Â, B̂, Ĉ, 0) be defined as:{
Êẋ(t) = Âx(t) + B̂u(t)
y(t) = Ĉx(t)

(9)

whose transfer function is

Ĥ(s) = Ĉ(sÊ − Â)−1B̂ (10)

H2 model approximation
Given a system G ∈ H2, the goal is to find
a system Ĥ?

Ĥ? := arg min
Ĥ∈H2,dim(Ĥ)≤r

‖G− Ĥ‖H2 .

Let Ĥd = (Ê, Â, B̂, Ĉ, τ) be defined as:{
Êẋ(t) = Âx(t) + B̂u(t−τ)
y(t) = Ĉx(t)

(11)

whose transfer function is

Ĥd(s) = Ĉ(sÊ − Â)−1B̂e−τs (12)

(SISO) Input-Delay H2 model ap-
proximation
Given a system G ∈ H2, the goal is to find
a system Ĥd = (Ê, Â, B̂, Ĉ, τ)

Ĥ?
d := arg min

Ĥd∈H2,dim(Ĥd)≤r
‖G− Ĥd‖H2 .

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Given a stable N -th order system G ∈ H2, find a reduced n-th order (such that
n� N) stable input-delay delays model Ĥd = (Ê, Â, B̂, Ĉ, τ̂) which minimizes

J2 = ‖G− Ĥd‖2
H2
. (13)

Suppose that Ĥd = Ĥe−sτ̂ , and both models have the pole residue decomposition

G(s) =
N∑
j=1

ψj

s− µj
and Ĥ(s) =

n∑
k=1

φ̂k

s− λ̂k

Then,
J2 = ‖G− Ĥd‖2

H2
= ‖G‖2

H2
− 2〈G, Ĥe−sτ 〉H2 + ‖Ĥe−sτ‖2

H2
.

(14)

I Compute H2 inner product in the presence of a input delay.

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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G(s) =
N∑
j=1

ψj

s− µj
and Ĥ(s) =

n∑
k=1

φ̂k

s− λ̂k

Then,
J2 = ‖G− Ĥd‖2

H2
= ‖G‖2

H2
− 2〈G, Ĥe−sτ 〉H2 + ‖Ĥe−sτ‖2

H2
.

(14)

I Compute H2 inner product in the presence of a input delay.
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Recall : 〈G, Ĥ〉H2 =
1

2π

∫ +∞

−∞
G(iω)Ĥ(iω)dω.

First, ‖Ĥe−sτ‖H2 ?

H2-norm input-delay invariance
Let Ĥ ∈ H2 and τ > 0. Then Ĥe−sτ ∈ H2 and

‖Ĥ‖H2 = ‖Ĥe−sτ‖H2

Proof.

2π‖He−sτ‖2
H2 =

∫ ∞
−∞

H(jω)ejωH(jω)e−jωdω =

∫ ∞
−∞

H(jω)H(jω)dω = 2π‖H‖2
H2
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Recall : If both systems are real, 〈G, Ĥ〉H2 =
1

2π

∫ +∞

−∞
G(iω)Ĥ(iω)dω.

Delay-less H2-inner product expression
Let G ∈ H2 to be a strictly proper real model, φ ∈ C and λ̂ ∈ C−. Then

〈G,
φ

s− λ̂
〉H2 = G(−λ̂)φ.

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Recall : If both systems are real, 〈G, Ĥ〉H2 =
1

2π

∫ +∞

−∞
G(iω)Ĥ(iω)dω.

Delay-less H2-inner product expression
Let G ∈ H2 to be a strictly proper real model, φ ∈ C and λ̂ ∈ C−. Then

〈G,
φ

s− λ̂
〉H2 = G(−λ̂)φ.

Proof Cauchy’s residues theorem

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Input delay H2-inner product expression
Let G ∈ H2 to be a strictly proper real model expressed by

G(s) =
N∑
j=1

ψj

s− µj
.

Let τ > 0 and λ̂ ∈ C−. Then

〈G,
e−sτ

s− λ̂
〉H2 =

N∑
j=1

ψje
−µjτ

−λ̂− µj
. (15)

I The expression depends on the pole residue decomposition of G.
I The delay "break the structure" of G.

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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Let τ > 0 and λ̂ ∈ C−. Then
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I The expression depends on the pole residue decomposition of G.
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Proof Cauchy’s theorem
I NOT POSSIBLE!! Because of exponential growth e−sτ

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Proof Cauchy’s theorem
I Use other contour encircling the poles of G

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Finally we are able to characterize the inner product.
Input delay H2 inner product computation

Let G, Ĥ be two SISO systems in H2 whose respective transfer functions

G(s) =
N∑
j=1

ψj

s− µj
and Ĥ(s) =

n∑
k=1

φ̂k

s− λ̂k
,

and let τ > 0. Hence, if Ĥd = Ĥe−sτ , the inner product 〈G, Ĥd〉H2 is given by:

〈G, Ĥd〉H2 =
N∑
j=1

Ĥ(−µj)ψjeτµj . (16)

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Finally we are able to characterize the inner product.
Input delay H2 inner product computation

Let G, Ĥ be two SISO systems in H2 whose respective transfer functions

G(s) =
N∑
j=1

ψj

s− µj
and Ĥ(s) =

n∑
k=1

φ̂k

s− λ̂k
,

and let τ > 0. Hence, if Ĥd = Ĥe−sτ , the inner product 〈G, Ĥd〉H2 is given by:

〈G, Ĥe−sτ 〉H2 =
∑N

j=1 Ĥ(−µj)ψjeτµj

= 〈G̃, Ĥ〉H2

(16)

where

G̃(s) =
N∑
j=1

ψje
τµj

s− µj

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Let G(s) = 1
s+1 = ψ

s−µ and H(s) = 1
s+2 = φ

s−λ .
I Delay-free case:

〈G,H〉H2 = ψH(−µ) = ψ
φ

−µ− λ
=

1
3

= φ
ψ

−λ− µ
= φG(−λ) = 〈H,G〉H2

H2 inner product can be computed using pole-residues decomposition of G or H .

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Let G(s) = 1
s+1 = ψ

s−µ and H(s) = 1
s+2 = φ

s−λ .
I Delay-free case:

〈G,H〉H2 = ψH(−µ) = ψ
φ

−µ− λ
=

1
3

= φ
ψ

−λ− µ
= φG(−λ) = 〈H,G〉H2

H2 inner product can be computed using pole-residues decomposition of G or H .
I Input-delay case: Let τ = 1. By noticing that, 〈G, Ĥe−s〉H2 = 〈Ges, Ĥ〉H2 , one

apply the symmetric version as follows :

1
3
e−1 = 〈G, Ĥe−s〉H2 = 〈Ges, Ĥ〉H2 6= φ̂G(−λ)e−τλ̂︸ ︷︷ ︸

incorrect symmetric version

= φ̂
ψ

−λ̂− µ
e−λτ =

1
3
e2.

Symmetric version of the H2 inner product does not provide the same result any
more.
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H2 optimal model reduction with I/O delay structure
Input delay H2 inner product

Let G(s) = 1
s+1 = ψ

s−µ and H(s) = 1
s+2 = φ

s−λ .
I Delay-free case:

〈G,H〉H2 = ψH(−µ) = ψ
φ

−µ− λ
=

1
3

= φ
ψ

−λ− µ
= φG(−λ) = 〈H,G〉H2

H2 inner product can be computed using pole-residues decomposition of G or H .
I Input-delay case: Let us compute H2 inner product between He−s and G using

the extended formula:

〈G,He−sτ 〉H2 = ψH(−µ)eτµ = ψ
φ

−µ− λ
eτµ =

1
3
e−1.

Which modifies the optimality conditions.

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Input delay H2 Optimality conditions

Recall: G(s) =
∑N

k=1
ψk
s−µk

and Ĥ(s) =
∑n

k=1
φ̂k
s−λ̂k

delay-free H2-optimality conditions
If Ĥ is a local optimum of H2 problem, then (interpolation condition on G̃).

Ĥ(−λ̂k) = G(−λ̂k)
Ĥ′(−λ̂k) = G′(−λ̂k)

(17)

for k = 1, . . . , n.

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
Input delay H2 Optimality conditions

G(s) =
∑N

k=1
ψk
s−µk

and Ĥ(s) =
∑n

k=1
φ̂k
s−λ̂k

5

Input-delay H2-optimality conditions
If Ĥd = Ĥe−sτ̂ is a local optimum of input delay H2 problem, then (interpolation
condition on G̃)

Ĥ(−λ̂k) = G̃(−λ̂k)
Ĥ′(−λ̂k) = G̃′(−λ̂k)

(18)

for k = 1, . . . , n where G̃(s) is given by

G̃(s) =
N∑
k=1

ψke
µkτ

s− µk

and (delay condition)
N∑
k=1

µkψk

( n∑
j=1

φj

µk + λ̂j

)
eµkτ = 0. (19)

5 I. Pontes Duff Pereira, C. Poussot-Vassal and C. Seren, "Optimal H2 model approximation based on
multiple input/output delays systems", arXiv preprint arXiv:1511.05252.
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H2 optimal model reduction with I/O delay structure
IO-dIRKA Algorithm

IO-dIRKA Given G, compute pole residue decomposition. Then,

initial shift points {σ1, . . . , σr} and τ > 0

IRKA for fixed τ
(Êit, Âit, B̂it, Ĉit)

satisfying condition on G̃it

it=it+1

reduced order system
Ĥ := (Êit, Âit, B̂it, Ĉit, τit)

convergence ?
For fixed Ĥit
Optimize τ

no

For τit fixed
construct G̃it

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimal model reduction with I/O delay structure
IO-dIRKA Algorithm

I Take Gdelay(s) =
ψ

s2 + 2ξω0s+ ω2
0
e−τs, where τ = 2, ω0 = 1 and ξ = 1/4.

I Loewner framework for uniformly spaced interpolation points iωk, k = 1, . . . , 100
⇒ G = Ĉ(sÊ − Â)−1B̂ of order N = 34, a delay-free model interpolating
Gdelay .

I IRKA for n = 2, . . . , 8; I/O IRKA for n = 2.
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G, N = 34

Ĥd, n = 2, = = 2 (IO-dIRKA)

Ĥ, n = 2 (IRKA)

Ĥ, n = 3 (IRKA)

Ĥ, n = 4 (IRKA)

Ĥ, n = 5 (IRKA)

Ĥ, n = 6 (IRKA)

Ĥ, n = 7 (IRKA)
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Ĥd, n = 2, = = 2 with mean error " =2.11663e-06 (IO-dIRKA)

Ĥ, n = 2 with mean error " =1.23796e-02 (IRKA)

Ĥ, n = 3 with mean error " =1.96311e-03 (IRKA)

Ĥ, n = 4 with mean error " =3.72658e-04 (IRKA)

Ĥ, n = 5 with mean error " =1.09717e-04 (IRKA)

Ĥ, n = 6 with mean error " =4.27195e-05 (IRKA)

Ĥ, n = 7 with mean error " =2.05148e-05 (IRKA)

Ĥ, n = 8 with mean error " =1.02904e-05 (IRKA)
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H2 optimal model reduction with I/O delay structure
Ladder network benchmark
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Ladder Network

I Original model of order =100.
I H2 optimal delay-free approximations n = 6, 12 and 20.
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H2 optimal model reduction with I/O delay structure
Ladder network benchmark

0 5 10 15 20 25 30 35 40 45 50 55
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (ms)

A
m

pl
itu

de
 (

V
ol

ts
)

Impulse response−Order = 6

I Original model of order =100.
I H2 optimal delay-free approximations n = 6, 12 and 20.
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Ladder network benchmark
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I Original model of order =100.
I H2 optimal delay-free approximations n = 6, 12 and 20.
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H2 optimal model reduction with I/O delay structure
Ladder network benchmark
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I Original model of order =100.
I H2 optimal delay-free approximations n = 6, 12 and 20.
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H2 optimal model reduction with I/O delay structure
Ladder network benchmark
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Ladder system G, N = 100

Ĥ20 (IRKA , n = 20)

Ĥd (IO-dIRKA , n = 6)

I Original model of order =100.
I H2 optimal delay-free approximations n = 20.
I H2 optimal input-delay approximations n = 6, τopt = 19.27s.
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H2 optimal model reduction with I/O delay structure
EDF Rhin flow benchmark

I Irrational model filtered.
I Loewner exact interpolation n = 103 (filtered and stable).
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H2 optimal model reduction with I/O delay structure
EDF Rhin flow benchmark

I Impulse response of the models.
I This example illustrates the benefit of delay structured reuced order models for

specific transport phenomena.
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Outlines

Introduction

Preliminaries on H2 model approximation

H2 optimal model reduction with I/O delay structure

H2 optimality conditions for reduced state-delay systems

Conclusions and perspectives
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H2 optimality conditions for reduced state-delay systems
Problem formulation and goals

Let Ĥ = (Ê, Â, B̂, Ĉ, 0) be defined as:{
Êẋ(t) = Âx(t) + B̂u(t)
y(t) = Ĉx(t)

(20)

whose transfer function is

Ĥ(s) = Ĉ(sÊ − Â)−1B̂ (21)

H2 model approximation
Given a system G ∈ H2, the goal is to find
a system Ĥ

Ĥ? := arg min
Ĥ∈H2,dim(Ĥ)≤r

‖G− Ĥ‖H2 .

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimality conditions for reduced state-delay systems
Problem formulation and goals

Let Ĥ = (Ê, Â, B̂, Ĉ, 0) be defined as:{
Êẋ(t) = Âx(t) + B̂u(t)
y(t) = Ĉx(t)

(20)

whose transfer function is

Ĥ(s) = Ĉ(sÊ − Â)−1B̂ (21)

H2 model approximation
Given a system G ∈ H2, the goal is to find
a system Ĥ

Ĥ? := arg min
Ĥ∈H2,dim(Ĥ)≤r

‖G− Ĥ‖H2 .

Let Ĥd = (Ê, Â, B̂, Ĉ, τ) be defined as:{
Êẋ(t) = Âx(t−τ) + B̂u(t)
y(t) = Ĉx(t)

(22)

whose transfer function is

Ĥd(s) = Ĉ(sÊ − Âe−τs)−1B̂ (23)

Single-state delay H2 model approxi-
mation
Given a system G ∈ H2, the goal is to find
a system Ĥd = (Ê, Â, B̂, Ĉ, τ)

Ĥ?
d := arg min

Ĥd∈H2,dim(Ĥd)≤r
‖G− Ĥd‖H2 .
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H2 optimality conditions for reduced state-delay systems
Problem formulation and goals

One dimension single-state delay problem
Given G ∈ H2 and a fixed τ > 0, find a reduced order single state delay model order 1,

Ĥd :=
{

ẋ(t) = α̂x(t− τ) + φ̂u(t)
y(t) = x(t)

whose transfer function is given by

Ĥd(s) =
φ̂

s− α̂e−sτ
∈ H2. (24)

such that:

‖G− Ĥd‖H2 = min
(φ̂,α̂)∈R2

‖G−
φ̂

s− α̂e−sτ
‖H2 (25)

I Reduced order system is defined only by two real parameters.
I It has infinitely many poles.
I What are the optimality conditions ? Are they interpolation conditions ?
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H2 optimality conditions for reduced state-delay systems
Problem formulation and goals

Recall: if G & Ĥ have semi-simple poles, they read s.t.:

Ĥ(s) =
n∑
i=1

φ̂i

s− λ̂i
(26)

H2-optimality conditions
If both G and Ĥ are ∈ H2 and Ĥ is a local minimum of the H2 approximation problem,
then the following interpolation equalities hold:{

G(−λ̂i) = Ĥ(−λ̂i)
G′(−λ̂i) = Ĥ′(−λ̂i)

, ∀i = 1 . . . r (27)

In Equation (27), λ̂i corresponds to the ith pole of Ĥ.

I What are the poles of Ĥd ?
I From now on, the model Ĥd will be decomposed as

Ĥd(s) = φ̂Pτ (s) =
φ̂

s− α̂e−sτ
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H2 optimality conditions for reduced state-delay systems
Spectral decomposition of Ĥd(s)6

The Lambert function Wk

The Lambert function Wk(s) is a multivalued (except at 0) complex function associ-
ating for the kth complex branch, a complex number Wk(s) such that :

s = Wk(s)eWk(s), k ∈ Z (28)

i.e., given a s ∈ C, for each complex branch. Equation (28) has one solution in the k-th
complex branch, namely Wk(s).

6 Corless, Robert M., et al., "On the LambertW function", Advances in Computational mathematics 5.1
(1996): 329-359..
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H2 optimality conditions for reduced state-delay systems
Spectral decomposition of Ĥd(s)6

The Lambert function Wk

The Lambert function Wk(s) is a multivalued (except at 0) complex function associ-
ating for the kth complex branch, a complex number Wk(s) such that :

s = Wk(s)eWk(s), k ∈ Z (28)

i.e., given a s ∈ C, for each complex branch. Equation (28) has one solution in the k-th
complex branch, namely Wk(s).

Example Poles of P(s) = 1
s+e−s :

λk + e−λk = 0
⇔ λke

λk = −1
⇔ λk = Wk(−1) for k ∈ Z

6 Corless, Robert M., et al., "On the LambertW function", Advances in Computational mathematics 5.1
(1996): 329-359..
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H2 optimality conditions for reduced state-delay systems
Spectral decomposition of Ĥd(s)

Spectral decomposition of Hd

The model Ĥd has infinite poles which can be computed using the Lambert function
as follows :

λk =
1
τ

Wk(τα̂), for k ∈ Z. (29)

Moreover, if Ĥd = φ̂Pτ , the infinite partial fraction decomposition of Pτ = 1
s−α̂e−sτ

is given by

Pτ (s) =
∞∑

k=−∞

φk
1

s− λk
where φk =

1
1 + τλk

. (30)

I H∞ convergence7, and H2-weak convergence.

7 Partington, JR and Glover, K and Zwart, HJ and Curtain, Ruth F, "L∞ approximation and nuclearity of
delay systems", Systems & control letters 10,1 (1988): 59-65..
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H2 optimality conditions for reduced state-delay systems
Spectral decomposition of Ĥd(s)

Spectral decomposition of P2
τ .

Let Pτ = 1
s−α̂e−sτ ∈ H2. Then

P2
τ (s) =

∞∑
k=−∞

ψk
1

(s− λk)2 + ρk
1

s− λk
(31)

where
ψk =

1
(1 + τλk)2 and ρk =

2τ2λk
(1 + τλk)3 .
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H2 optimality conditions for reduced state-delay systems
Spectral H2-inner product :

Spectral H2-inner product :
Let F ∈ H2 and Pτ = 1

s−α̂e−sτ ∈ H2 . Then :

〈F,Pτ 〉H2 =
∞∑

k=−∞

φkF(−λk), (32)

where φk = 1
1+τλk

.

In addition,

〈F,Pτ 2〉H2 =
∞∑

k=−∞

ρkF(−λk)− ψkF′(−λk) (33)

where ψk = 1
(1+τλk)2 and ρk = 2τ2λk

(1+τλk)3 .
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H2 optimality conditions for reduced state-delay systems
Single-state delay H2-optimality conditions:

Let E(φ̂, α̂) be the H2 error, i.e.,

E(φ̂, α̂) = ‖G− Ĥd‖2
H2

= 〈G− Ĥd,G− Ĥd〉H2

Partial derivatives:
The partial derivative of the H2 error E with respect to the parameters are given
analytically by : {

∂E
∂φ̂

= −2〈G− Ĥd,Pτ 〉H2

∂E
∂α̂

= 2φ̂
α̂τ
〈G− Ĥd,Pτ ′ + Pτ 2〉H2

Proof Sketch:

∂E
∂Θ

= −2〈G− Ĥd,
∂Ĥd
∂Θ
〉H2 . (34)
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H2 optimality conditions for reduced state-delay systems
Single-state delay H2-optimality conditions:

Single-state delay H2-optimality conditions version 1

Let Ĥd = φ̂
s−α̂e−sτ ∈ H2 and G ∈ H2. Let us suppose also that G′ ∈ H2. If Ĥd is

the best H2 approximation of G, then :

〈G,Pτ 〉H2 = 〈Ĥd,Pτ 〉H2 (35)

〈G,Pτ ′ + Pτ 2〉H2 = 〈Ĥd,Pτ ′ + Pτ 2〉H2 (36)

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models
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H2 optimality conditions for reduced state-delay systems
Single-state delay H2-optimality conditions:8

Single-state delay H2-optimality conditions version 2

Let Ĥd = φ̂
s−α̂e−sτ ∈ H2 and G ∈ H2. Let us suppose also that G′ ∈ H2. If Ĥd is

the best H2 approximation of G, then :

∞∑
k=−∞

G(−λk)φk =
∞∑

k=−∞

Ĥd(−λk)φk, (37)

∑∞
k=−∞G′(−λk)(φk − ψk) +

∑∞
k=−∞G(−λk)ρk =∑∞

k=−∞ Ĥ′d(−λk)(φk − ψk) +
∑∞

k=−∞ Ĥd(−λk)ρk
(38)

where λk, for k ∈ Z, are the poles of Ĥd, φk = 1
1+τλk

, ψk = 1
(1+τλk)2 and ρk =

2τ2λk
(1+τλk)3 .

I Generalized interpolation conditions.
I if τ = 0, G(−α̂) = Ĥ(−α̂) and G′(−α̂) = Ĥ′(−α̂).

8 Pontes Duff, I., Gugercin, S., Beattie, C., Poussot-Vassal, C. and Seren, C. , "H2-optimality conditions
for reduced time-delay systems of dimension one", in Proceedings of the 13th IFAC Workshop on Time Delay
Systems, 2016 .
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H2 optimality conditions for reduced state-delay systems
Application

Let
G(s) =

10
s2 + 11s+ 10

.

Find φ̂ ∈ R and α̂ ∈ (−π/2, 0) which minimizes :

E(φ̂, α̂) = ‖G−Hd‖2
H2

= ‖E(φ̂, α̂)‖2
H2

where Hd(s) =
φ̂

s− α̂e−s
.
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H2 optimality conditions for reduced state-delay systems
Application

Hence,
E(φ̂, α̂) :=

{
ẋ(t) = Ax(t) + Aτx(t− τ) + Bu(t)
y(t) = Cx(t)

where

A =

[
−1 0 0
0 −10 0
0 0 0

]
, Aτ =

[
0 0 0
0 0 0
0 0 α̂

]

B =

[
10/9
−10/9
−φ̂

]
and C =

[
1 1 1

]
.

I Use delay Lyapunov equations9 to compute the Norm
I MATLAB function fminunc ⇒ α̂∗ ≈ −0.5371 φ̂∗ ≈ 0.4986.
I Verify generalized interpolation condition by truncation.

9 Jarlebring, E., Vanbiervliet, J., and Michiels, W. , "Characterizing and computing the H2 norm of time-
delay systems by solving the delay lyapunov equation.", Automatic Control, IEEE Transactions on, 56(4), 814– 825.
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H2 optimality conditions for reduced state-delay systems
Application

N S1,G,N S1,Ĥd,N
S2,G,N S2,Ĥd,N

2 0.80890 0.80326 0.15280 0.15361
6 0.81620 0.81234 0.15302 0.15310
10 0.81656 0.81410 0.15306 0.15308
200 0.81667 0.81655 0.15307 0.15307

S1,G,N =

N−1∑
k=−N

G(−λk)φk ≈

N−1∑
k=−N

Ĥd(−λk)φk = S1,Ĥd,N

S2,G,N =
∑N−1

k=−N
G′(−λk)(φk − ψk) +

∑N−1
k=−N

G(−λk)ρk ≈

S2,Ĥd,N
=
∑N−1

k=−N
Ĥ′d(−λk)(φk − ψk) +

∑N−1
k=−N

Ĥd(−λk)ρk.
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Conclusions and perspectives

Scientific contributions
I H2 optimal model reduction with I/O structure : I/O H2 inner product

expression, interpolation conditions on G̃, I/O IRKA algorithm, application to
industrial benchmark.

I Single-state delay H2-optimality conditions :H2 spectral inner product
expression, generalized interpolation conditions.

Future work
I I/O delay 1)Isometry structure (In progress - conjoint work with Christoph

Zimmer -TU Berlin)
I state-delay 1) Generalize interpolation conditions to general framework. (In

progress (conjoint work with S. Gugercin and C. Beattie - VT)) 2) Find a way to
deal with them.

I. Pontes Duff et al. [Onera] H2 optimal model approximation by structured time-delay reduced order models



49/49

Introduction Preliminaries H2 I/O delay H2-state delay Conclusions and perspectives

H2 optimal model approximation by structured time-delay reduced
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