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Opinion dynamic

What is an opinion ?
Consider a finite number of agents. The opinion of the i th agent is

xi(t) ∈ R.

Dynamics intuitive principle :

Motivations
• Social networks, MOOC, multiagent system, ...
• Well known and interesting asymptotic behaviors : consensus,

clusters,...

Opinion dynamic control with leadership F. Dietrich 3 / 30



Main issue

Is it possible to influence opinions ? And how to act ?
We introduce a leader as an extra agent in the system x0(t) ∈ R :
• The leader is controlled ;
• The leader can influence the other agents on a local range.
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System dynamics
ẋi(t) =

n∑
j=1

f (|xj(t)− xi(t)|)(xj(t)− xi(t))

+ f0(|x0(t)− xi(t)|)(x0(t)− xi(t)),

ẋ0(t) = u(t), |u(t)| ≤ σ, σ > 0 ,
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Main assumption It exists η > 0 such that ∀ y ∈ [0; η] we
have f0(y) ≥ f0(η).
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Problem and idea of solution

Problem Given an arbitrary consensus value α ∈ R and arbitrary
fixed initial conditions xi(0) ∈ R, for i ∈ {1, . . . ,n} and x0(0) ∈ R.
Find a control u(t), for t ∈ R+ and with |u(t)| < σ, σ > 0 such that
all xi converge toward α, i.e. lim

t→+∞
xi(t) = α.

Decomposition into subproblems :
• Gathering all the agents at a distance less than η from the

leader ;
• Maintaining the agent in the neighborhood of the leader and

guide the leader to the consensus value α ;
• Ensuring the convergence of all the agents to the consensus

value α.
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Intuition ?

How to gather all the agents at a distance less than η from the
leader ?
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Theorem : Rallying control
Let c ∈ (0, σ], κ ∈ (0,min{ηf0(η), σ}] and ε ∈ (0, η).
For any initial conditions the following control

u(t) =

{
−c for t ∈ [0,T1),
κ for t ∈ [T1,T2],

where
T1 = inf{t ≥ 0 | x0(t) ≤ x1(t) + ε},

and
T2 = inf{t ≥ T1 | x0(t) ≥ xn(t)− ε},

gather all the agents in the η neighbourhood of the leader.

T1 and T2 are finite with this control law.
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Example of rallying control
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Theorem : trajectory tracking
If at a time t0 we have ∀ i ∈ {1, . . . ,n}, |xi(t0)− x0(t0)| < η, and if

∀ t ≥ t0, |u(t)| ≤ min{η f0(η), σ},

then ∀ t ≥ t0, ∀ i ∈ {1, . . . ,n}, |xi(t)− x0(t)| < η. If the control is

sufficiently small in norm and all agents are initially in the η
influence zone of the leader, then all the agents remain at all time
in the η influence zone of the leader.
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Example of trajectory tracking
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System definition{
ẋ0(t) = u(t)
ẋi(t) = h0(x0(t)− xi(t)), ∀i ∈ {1, . . . ,n}

where u(t) ∈ [−σ, σ], σ > 0 and

h0 :

{
R→ R+

y 7→ y f0(y)

No interactions among agents simplification with f = 0
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Time optimal problem

Find an optimal control u∗ to apply on the system in order to have
all agents within an η radius of the leader in a minimal time t∗f .

min
u∈Ωσ

tf = min
u∈Ωσ

∫ tf

0
dt

where Ωσ = {u : t 7→ u(t) | ∀ t ≥ 0, |u(t)| ≤ σ} and

where tf = inf{t ≥ 0|∀ i ∈ {1, . . . ,n}, xi(t) ∈ [x0(t)− η, x0(t) + η]}.
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Useful substitution

Substitution given by y0(t) = x0(t) and yi(t) = xi(t)− x0(t)

The system is rewritten as{
ẏ0(t) = u(t)
ẏi(t) = −h0(yi(t))− u(t)

Property

If for all (i , j) ∈ {1, . . . ,n}2 such that i < j we have yi(0) < yj(0).

Then for all time we have y1(t) < y2(t) < . . . < yn(t).
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Pontryagin Maximum Principle

Definition of the Hamiltonian

H(Y (t),u(t), λ(t), t) = −1 + λ(t)T Ẏ (t),

Necessary conditions for optimality :

λ̇i(t) = −∂H
∂yi

(Y (t),u(t), λ(t), t) = λi(t) h′0(yi(t)),

ẏi(t) =
∂H
∂λi

(Y (t),u(t), λ(t), t).

u∗(t) ∈ argmaxv∈[−σ,σ]H(Y ∗(t), v , λ∗(t), t).

In addition, transversality conditions related to the final interval
condition defining tf .

Opinion dynamic control with leadership F. Dietrich 17 / 30



Transversality constraints

∀ i ∈ {1, . . . ,n}, yi(tf ) ∈ [−η, η],

Equivalent to the following 2n inequalities{
ai1(yi(tf )) , η + yi(tf ) ≥ 0,
ai2(yi(tf )) , η − yi(tf ) ≥ 0,

Lagrangian multipliers

αi1(η + yi(tf )) = 0, αi1 ≥ 0,
αi2(η − yi(tf )) = 0, αi2 ≥ 0.

Coupling to the co-states by the transversality condition

λi(tf ) = αi1
∂ai1(yi(tf ))

∂yi(tf )
+ αi2

∂ai2(yi(tf ))

∂yi(tf )
= αi1 − αi2,
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Simplification property

∀ i ∈ {2, . . . ,n − 1}, ∀ t ∈ [0, tf ], λi(t) = 0,

which allows to rewrite the Hamiltonian as

H(Y (t),u(t), λ(t), t) = −1− (λ1(t) + λn(t)) u(t)
− λ1(t) h0(y1(t))− λn(t) h0(yn(t)),

and the terminal constraints become

(y1(tf ), yn(tf )) ∈ [−η, η]2.

Only consider the extreme agents
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Property of the co-states

∀i ∈ {1,n} and ∀t ∈ [0, tf ] the quantity λi(t) keeps the same sign

Property of the control

Switching function φ : t 7→ λ1(t) + λn(t)

Let t ∈ [0, tf ], we have

φ(t) 6= 0 =⇒ u∗(t) = −σ sign(φ(t)).

When φ(t) = 0, u∗(t) is a priori undefined. Other relations are
required.
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Uniformly saturated controls

If the final configuration is

y1(tf ) = −η and yn(tf ) ∈ (−η, η), or
y1(tf ) ∈ (−η, η) and yn(tf ) = η

then
∀t ∈ [0, tf ], u(t) = σ sign(yi(tf )),

is the unique control law satisfying the necessary conditions for
optimality, where i ∈ {1,n} is such that |yi(tf )| = η.
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Case y1(tf ) = −η and yn(tf ) = +η
u∗(t) depends on the value of φ(t) :
• φ(t) 6= 0, u∗(t) = −σ sign(φ(t)).
• φ(t) = 0 at only a point t (not on an interval) : u∗(t) switches

and the value at time t does not influence the trajectories.
• φ(t) = 0 on an interval : Obtained by deriving twice φ.

Let T ⊂ [0, tf ] an interval such that for all t ∈ T

φ(t) = 0, φ̇(t) = 0, and φ̈(t) = 0,

then ∀t ∈ T , the singular control is u∗(t) = sat(u0(t)) where

u0(t) ,
h′′0(y1(t)) h0(y1(t))− h′′0(yn(t)) h0(yn(t))

h′′0(yn(t))− h′′0(y1(t))
.

Difficulties : λ1(tf ), λn(tf ) are not imposed. We face a generic
nonlinear Two Boundary Problems with unknown values of the
costate at tf , needing numerical schema.
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Strategies

Sum-up

Uniformly saturated controls :
• S+ : ∀ t ≥ 0, u(t) = +σ.
• S− : ∀ t ≥ 0, u(t) = −σ.
Known expression =⇒ integration possible

S0 : possibly singular control.

Unknown expression =⇒ numerical optimisation scheme.
Final state forced at (y1(tf ), yn(tf )) = (−η, η).
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Methodology

For any initial condition (y1(0), yn(0)) :
• Test S+ and S− =⇒ t+

f and t−f
• Numerical optimisation for S0 =⇒ t0

f
• Optimal strategy has the smallest tf
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Example of optimal uniformly saturated control

t+
f = 0.27 ; t−f = +∞ ; t0

f = 0.7
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η = 0.5 ; f0 = x 7→ exp(−x2) ; σ = 5
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Example of singular control
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Example of singular control

t+
f = +∞ ; t−f = +∞ =⇒ S0 optimal
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Terminal constraints

d?/dt=0 manifold

η = 0.5 ; f0 = x 7→ exp(−x2) ; σ = 5
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Choice of the optimal control strategy
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Conclusion

Conclusion
• Opinion dynamics with a leader has been investigated.
• Possibility of gathering all the opinions in the neighborhood of

the leader has been emphasized.
• The time optimal control has been provided.

Perspectives
• Extend the result of time optimal control in the case with

interactions between the agents.
• Consider other models of opinion dynamics.
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