

Opinion dynamic control with leadership

JAMACS Lille 16th November 2016

Florian DIETRICH Samuel MARTIN Marc JUNGERS

Outline of the talk

Motivation

Controllability

System dynamics Problem Rallying control Trajectory tracking

Time optimal control

System dynamics Optimal control problem Pontryagin Maximum Principle Optimal controllers Examples

Conclusion

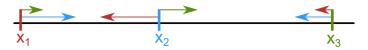
Opinion dynamic

What is an opinion?

Consider a finite number of agents. The opinion of the *i*th agent is

 $x_i(t) \in \mathbb{R}.$

Dynamics intuitive principle :



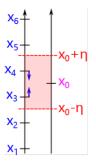
Motivations

- Social networks, MOOC, multiagent system, ...
- Well known and interesting asymptotic behaviors : consensus, clusters,...

Main issue

Is it possible to influence opinions? And how to act? We introduce a leader as an extra agent in the system $x_0(t) \in \mathbb{R}$:

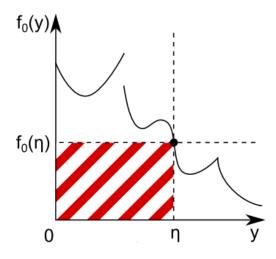
- The leader is controlled;
- The leader can influence the other agents on a local range.



System dynamics

$$\begin{cases} \dot{x}_i(t) &= \sum_{j=1}^n f(|x_j(t) - x_i(t)|)(x_j(t) - x_i(t)) \\ &+ f_0(|x_0(t) - x_i(t)|)(x_0(t) - x_i(t)), \\ \dot{x}_0(t) &= u(t), \ |u(t)| \le \sigma, \ \sigma > 0 \ , \end{cases}$$

Main assumption It exists $\eta > 0$ such that $\forall y \in [0; \eta]$ we have $f_0(y) \ge f_0(\eta)$.



Problem and idea of solution

Problem Given an arbitrary consensus value $\alpha \in \mathbb{R}$ and arbitrary fixed initial conditions $x_i(0) \in \mathbb{R}$, for $i \in \{1, ..., n\}$ and $x_0(0) \in \mathbb{R}$. Find a control u(t), for $t \in \mathbb{R}^+$ and with $|u(t)| < \sigma$, $\sigma > 0$ such that all x_i converge toward α , i.e. $\lim_{t \to +\infty} x_i(t) = \alpha$.

Decomposition into subproblems :

- Gathering all the agents at a distance less than η from the leader ;
- Maintaining the agent in the neighborhood of the leader and guide the leader to the consensus value α ;
- Ensuring the convergence of all the agents to the consensus value α .

Intuition?

How to gather all the agents at a distance less than η from the leader ?

Theorem : Rallying control Let $c \in (0, \sigma]$, $\kappa \in (0, \min\{\eta f_0(\eta), \sigma\}]$ and $\varepsilon \in (0, \eta)$. For any initial conditions the following control

$$u(t) = \begin{cases} -c & \text{for } t \in [0, T_1), \\ \kappa & \text{for } t \in [T_1, T_2], \end{cases}$$

where

$$T_1 = \inf\{t \ge 0 \mid x_0(t) \le x_1(t) + \varepsilon\},\$$

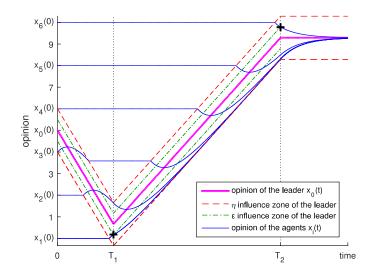
and

$$T_2 = \inf\{t \ge T_1 \mid x_0(t) \ge x_n(t) - \varepsilon\},\$$

gather all the agents in the η neighbourhood of the leader.

 T_1 and T_2 are finite with this control law.

Example of rallying control



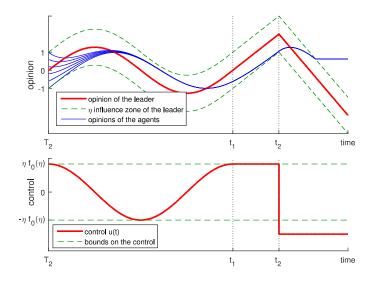
Theorem : trajectory tracking If at a time t_0 we have $\forall i \in \{1, ..., n\}, |x_i(t_0) - x_0(t_0)| < \eta$, and if

 $\forall t \geq t_0, |u(t)| \leq \min\{\eta f_0(\eta), \sigma\},\$

then $\forall t \ge t_0, \ \forall i \in \{1, \dots, n\}, \ |x_i(t) - x_0(t)| < \eta$. If the control is

sufficiently small in norm and all agents are initially in the η influence zone of the leader, then all the agents remain at all time in the η influence zone of the leader.

Example of trajectory tracking



Outline of the talk

Motivation

Controllability

System dynamics Problem Rallying control Trajectory tracking

Time optimal control

System dynamics Optimal control problem Pontryagin Maximum Principle Optimal controllers Examples

Conclusion

System definition

$$\begin{cases} \dot{x}_0(t) = u(t) \\ \dot{x}_i(t) = h_0(x_0(t) - x_i(t)), \quad \forall i \in \{1, \dots, n\} \end{cases}$$

where $u(t) \in [-\sigma, \sigma], \sigma > 0$ and

$$h_0 : \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R}^+ \\ y \mapsto y \ f_0(y) \end{array} \right.$$

No interactions among agents simplification with f = 0

Time optimal problem

Find an optimal control u^* to apply on the system in order to have all agents within an η radius of the leader in a minimal time t_f^* .

$$\min_{u \in \Omega_{\sigma}} t_{f} = \min_{u \in \Omega_{\sigma}} \int_{0}^{t_{f}} dt$$

where $\Omega_{\sigma} = \{ u : t \mapsto u(t) \mid \forall t \ge 0, \ |u(t)| \le \sigma \}$ and
where $t_{f} = \inf\{t \ge 0 | \forall i \in \{1, \dots, n\}, \ x_{i}(t) \in [x_{0}(t) - \eta, x_{0}(t) + \eta] \}.$

Useful substitution

Substitution given by $y_0(t) = x_0(t)$ and $y_i(t) = x_i(t) - x_0(t)$

The system is rewritten as

$$\begin{cases} \dot{y}_{0}(t) = u(t) \\ \dot{y}_{i}(t) = -h_{0}(y_{i}(t)) - u(t) \end{cases}$$

Property

If for all $(i, j) \in \{1, ..., n\}^2$ such that i < j we have $y_i(0) < y_j(0)$.

Then for all time we have $y_1(t) < y_2(t) < \ldots < y_n(t)$.

Pontryagin Maximum Principle

Definition of the Hamiltonian

$$H(Y(t), u(t), \lambda(t), t) = -1 + \lambda(t)^{T} \dot{Y}(t),$$

Necessary conditions for optimality :

$$\dot{\lambda}_i(t) = -\frac{\partial H}{\partial y_i}(Y(t), u(t), \lambda(t), t) = \lambda_i(t) h'_0(y_i(t)),$$

$$\dot{y}_i(t) = \frac{\partial H}{\partial \lambda_i}(Y(t), u(t), \lambda(t), t).$$

$$u^*(t) \in \operatorname{argmax}_{v \in [-\sigma,\sigma]} H(Y^*(t), v, \lambda^*(t), t).$$

In addition, transversality conditions related to the final interval condition defining t_f .

Transversality constraints

$$\forall i \in \{1,\ldots,n\}, y_i(t_f) \in [-\eta,\eta],$$

Equivalent to the following 2n inequalities

$$\begin{cases} a_{i1}(y_i(t_f)) \triangleq \eta + y_i(t_f) \geq 0, \\ a_{i2}(y_i(t_f)) \triangleq \eta - y_i(t_f) \geq 0, \end{cases}$$

Lagrangian multipliers

$$\begin{array}{ll} \alpha_{i1}(\eta+y_i(t_f))=\mathbf{0}, & \alpha_{i1}\geq\mathbf{0}, \\ \alpha_{i2}(\eta-y_i(t_f))=\mathbf{0}, & \alpha_{i2}\geq\mathbf{0}. \end{array}$$

Coupling to the co-states by the transversality condition

$$\lambda_i(t_f) = \alpha_{i1} \frac{\partial a_{i1}(y_i(t_f))}{\partial y_i(t_f)} + \alpha_{i2} \frac{\partial a_{i2}(y_i(t_f))}{\partial y_i(t_f)} = \alpha_{i1} - \alpha_{i2},$$

Simplification property

$$\forall i \in \{2, ..., n-1\}, \forall t \in [0, t_f], \lambda_i(t) = 0,$$

which allows to rewrite the Hamiltonian as

$$H(Y(t), u(t), \lambda(t), t) = -1 - (\lambda_1(t) + \lambda_n(t)) u(t) - \lambda_1(t) h_0(y_1(t)) - \lambda_n(t) h_0(y_n(t)),$$

and the terminal constraints become

$$(\mathbf{y}_1(t_f), \mathbf{y}_n(t_f)) \in [-\eta, \eta]^2.$$

Only consider the extreme agents

Property of the co-states

 $\forall i \in \{1, n\}$ and $\forall t \in [0, t_f]$ the quantity $\lambda_i(t)$ keeps the same sign

Property of the control

```
Switching function \phi : t \mapsto \lambda_1(t) + \lambda_n(t)
```

Let $t \in [0, t_f]$, we have

$$\phi(t) \neq 0 \implies u^*(t) = -\sigma \operatorname{sign}(\phi(t)).$$

When $\phi(t) = 0$, $u^*(t)$ is a priori undefined. Other relations are required.

Uniformly saturated controls

If the final configuration is

$$egin{array}{ll} y_1(t_f)=-\eta & ext{and} & y_n(t_f)\in(-\eta,\eta), ext{ or } y_1(t_f)\in(-\eta,\eta) & ext{and} & y_n(t_f)=\eta \end{array}$$

then

$$\forall t \in [0, t_f], \ u(t) = \sigma \operatorname{sign}(y_i(t_f)),$$

is the unique control law satisfying the necessary conditions for optimality, where $i \in \{1, n\}$ is such that $|y_i(t_f)| = \eta$.

Case $y_1(t_f) = -\eta$ and $y_n(t_f) = +\eta$

 $u^*(t)$ depends on the value of $\phi(t)$:

- $\phi(t) \neq 0$, $u^*(t) = -\sigma \operatorname{sign}(\phi(t))$.
- φ(t) = 0 at only a point t (not on an interval) : u*(t) switches and the value at time t does not influence the trajectories.
- φ(t) = 0 on an interval : Obtained by deriving twice φ.
 Let T ⊂ [0, t_f] an interval such that for all t ∈ T

$$\phi(t) = 0, \ \dot{\phi}(t) = 0, \text{ and } \ddot{\phi}(t) = 0,$$

then $\forall t \in T$, the singular control is $u^*(t) = sat(u_0(t))$ where

$$u_0(t) \triangleq \frac{h_0''(y_1(t)) h_0(y_1(t)) - h_0''(y_n(t)) h_0(y_n(t))}{h_0''(y_n(t)) - h_0''(y_1(t))}.$$

Difficulties : $\lambda_1(t_f)$, $\lambda_n(t_f)$ are not imposed. We face a generic nonlinear Two Boundary Problems with unknown values of the costate at t_f , needing numerical schema.

Strategies

Sum-up

Uniformly saturated controls :

- S^+ : $\forall t \ge 0, u(t) = +\sigma$.
- $S^-: \forall t \ge 0, u(t) = -\sigma.$

Known expression \implies integration possible

 S^0 : possibly singular control.

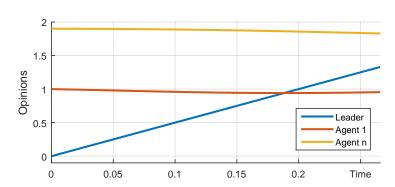
Unknown expression \implies numerical optimisation scheme. Final state forced at $(y_1(t_f), y_n(t_f)) = (-\eta, \eta)$.

Methodology

For any initial condition $(y_1(0), y_n(0))$:

- Test \mathcal{S}^+ and $\mathcal{S}^- \implies t_f^+$ and t_f^-
- Numerical optimisation for $S^0 \implies t_f^0$
- Optimal strategy has the smallest t_f

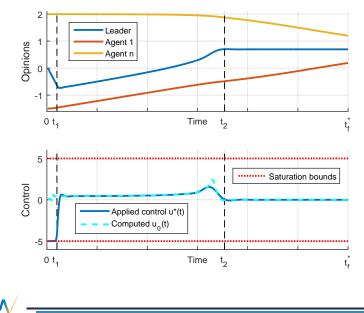
Example of optimal uniformly saturated control



$$t_{f}^{+}=0.27$$
 ; $t_{f}^{-}=+\infty$; $t_{f}^{0}=0.7$

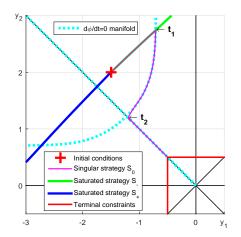
$$\eta=0.5$$
 ; $\mathit{f}_{0}=\mathit{x}\mapsto \exp(-\mathit{x}^{2})$; $\sigma=5$

Example of singular control



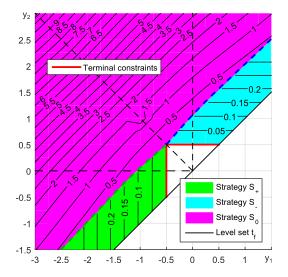
Example of singular control

 $t_{f}^{+} = +\infty$; $t_{f}^{-} = +\infty \implies S^{0}$ optimal



$$\eta = 0.5$$
; $f_0 = x \mapsto \exp(-x^2)$; $\sigma = 5$

Choice of the optimal control strategy



Opinion dynamic control with leadership

Conclusion

Conclusion

- Opinion dynamics with a leader has been investigated.
- Possibility of gathering all the opinions in the neighborhood of the leader has been emphasized.
- The time optimal control has been provided.

Perspectives

- Extend the result of time optimal control in the case with interactions between the agents.
- Consider other models of opinion dynamics.

References

- F. Dietrich, S. Martin, M. Jungers. *Transient cluster formation in generalized Hegselmann-Krause opinion dynamics*. ECC 2016;
- F. Dietrich, S. Martin, M. Jungers. *Opinion dynamics control by leadership with bounded influence*. CDC 2016;
- F. Dietrich, S. Martin, M. Jungers. *Optimal control of opinion dynamics system with leadership.* IFAC WC 2017, submitted.
- S. Wongkaew, M. Caponigro, and A. Borzi, *On the control through leadership of the Hegselmann-Krause opinion formation model.* 2015.
- R .Hegselmann, U. Krause, *Opinion dynamics and bounded confidence models, analysis, and simulation.* 2002.
- M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. *Sparse stabilization and optimal control of Cucker-Smale model.* 2013.
- V. D. Blondel, J.M. Hendrickx, and J. N. Tsitsiklis. *On Krause's multi-agent consensus model with state-dependent connectivity*. 2009.

