Introduction 00	UAV dynamical model	Control design	Results 0000	Conclusions

Sliding mode control application on UAVs under external disturbances

Gabriele Perozzi

PhD student at Onera: the French aerospace lab, DAAP, Lille

Work co-funded by Hauts de France region and Onera

Journées Automatique du GDR MACS, Lille, 16 nov 2016

Introduction 00	UAV dynamical model	Control design 0000000000	Results 0000	Conclusions

- Main problem
- Contributions
- 2 UAV dynamical model
 - UAV configuration
 - Dynamics
- 3 Control design
 - Sliding Mode Control
 - State-space form
 - Disturbances
 - Altitude control
 - Attitude control
 - Summary scheme
 - Results
 - Simulations
 - Conclusions

RT-MaG Project Real Time-Marseille Grenoble Project www.gipsa-lab.fr/projet/RT-MaG

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction $\bullet \circ$	UAV dynamical model 000000	Control design	Results 0000	Conclusions
Main problem				
Based o	on article: <i>Altitude an</i>	d attitude sliding i	mode control	of

UAV under wind disturbances. G.Perozzi, D.Efimov, JM.Biannic, L.Planckaert, P.Coton. Submitted to IFAC 2017 Toulouse.

- Action in urban areas (eg: earthquakes like in Italy).
- Fluid obstacle.
- Unpredictable turbulent airflow pattern.

Introduction	UAV dynamical model	Control design	Results	Conclusions
00				
Contributions				

- Aerodynamic model, which takes into account wind disturbances directly inside of UAV dynamics equations;
- Nonlinear control law which considers realistic assumptions on external disturbances of quadrotors.

Why sliding mode control?

 SMC is an efficient tool to design robust controllers for nonlinear systems operating under uncertainty conditions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction 00	UAV dynamical model ●○○○○○	Control design 00000000000	Results 0000	Conclusions
UAV configuration				
		×		

Rotational matrix

$$R = \begin{bmatrix} c_{\psi}c_{\theta} & -s_{\psi}c_{\phi} + c_{\psi}s_{\theta}s_{\phi} & s_{\phi}s_{\psi} + c_{\psi}s_{\theta}c_{\phi} \\ s_{\psi}c_{\theta} & c_{\psi}c_{\phi} + s_{\psi}s_{\theta}s_{\phi} & -c_{\psi}s_{\phi} + s_{\psi}s_{\theta}c_{\phi} \\ -s_{\theta} & c_{\theta}s_{\phi} & c_{\theta}c_{\phi} \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Passage from earth frame (\mathcal{R}_0) to body frame (\mathcal{R}) $[X^T]_{\mathcal{R}} = [X^T]_{\mathcal{R}_0} \cdot R$

Introduction 00	UAV dynamical model ○●○○○○	Control design	Results 0000	Conclusions
Dynamics				

• Traslational dynamics in the body frame

$$m\begin{bmatrix} \dot{u}\\ \dot{v}\\ \dot{w}\end{bmatrix} + m\begin{bmatrix} p\\ q\\ r\end{bmatrix} \times \begin{bmatrix} u\\ v\\ w\end{bmatrix} = \begin{bmatrix} F_{Xaero}\\ F_{Yaero}\\ F_{Zaero}\end{bmatrix} + m\begin{bmatrix} -g\sin\theta\\ g\cos\theta\sin\phi\\ g\cos\theta\cos\phi\end{bmatrix}$$

• Rotational dynamics with respect to inertial earth frame

$$I\begin{bmatrix}\dot{p}\\\dot{q}\\\dot{r}\end{bmatrix} = -\begin{bmatrix}p\\q\\r\end{bmatrix} \times I\begin{bmatrix}p\\q\\r\end{bmatrix} + \begin{bmatrix}L_{aero}\\M_{aero}\\N_{aero}\end{bmatrix}$$

• Relationship between angular velocities and eulear angles

$$\dot{\phi} = p + \tan \theta (q \sin \phi + r \cos \phi)$$
$$\dot{\theta} = q \cos \phi - r \sin \phi$$
$$\dot{\psi} = \frac{q \sin \phi + r \cos \phi}{\cos \theta}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Introduction 00	UAV dynamical model ○○●○○○	Control design	Results 0000	Conclusions
Dynamics				

• UAV desired movements are obtained changing rotors speed in a proper way (altitude and attitude)

Introduction 00	UAV dynamical model ○○○●○○	Control design	Results 0000	Conclusions
Dynamics				

• Aerodynamic forces and momenta for each rotor

$$F_{Xj} = -\rho AR^{2} \frac{u_{j} - u_{w}}{\sqrt{(u_{j} - u_{w})^{2} + (v_{j} - v_{w})^{2}}} C_{Hj} \omega_{j}^{2}$$

$$F_{Yj} = -\rho AR^{2} \frac{v_{j} - v_{w}}{\sqrt{(u_{j} - u_{w})^{2} + (v_{j} - v_{w})^{2}}} C_{Hj} \omega_{j}^{2}$$

$$F_{Zj} = -\rho AR^{2} C_{Tj} \omega_{j}^{2}$$

$$L_{j} = -\operatorname{sign} \omega_{j} \rho AR^{3} \frac{u_{j} - u_{w}}{\sqrt{(u_{j} - u_{w})^{2} + (v_{j} - v_{w})^{2}}} C_{Rmj} \omega_{j}^{2}$$

$$M_{j} = -\operatorname{sign} \omega_{j} \rho AR^{3} \frac{v_{j} - v_{w}}{\sqrt{(u_{j} - u_{w})^{2} + (v_{j} - v_{w})^{2}}} C_{Rmj} \omega_{j}^{2}$$

$$N_{j} = -\operatorname{sign} \omega_{j} \rho AR^{3} C_{Qj} \omega_{j}^{2}$$

・ロト・日本・ヨト・ヨー うへの

Introduction	UAV dynamical model	Control design	Results	Conclusions
00	○000●0	0000000000	0000	
Dynamics				

• Total aerodynamic forces

$$F_{Xaero} = \sum_{j=1}^{4} F_{Xj}, \ F_{Yaero} = \sum_{j=1}^{4} F_{Yj}, \ F_{Zaero} = \sum_{j=1}^{4} F_{Zj}$$

• Total aerodynamic momenta

$$L_{aero} = \sum_{j=1}^{4} (L_j + F_{Zj} I s_j - hF_{Yj})$$

$$M_{aero} = \sum_{j=1}^{4} (M_j - F_{Zj} I c_j + hF_{Xj})$$

$$N_{aero} = \sum_{j=1}^{4} (N_j + F_{Yj} I c_j - F_{Xj} I s_j)$$

$$c_j = \cos\left(\frac{\pi}{2}(j-1) + \epsilon\right)$$

$$s_j = \sin\left(\frac{\pi}{2}(j-1) + \epsilon\right)$$

æ

Introduction 00	UAV dynamical model ○○○○○●	Control design	Results 0000	Conclusions
Dynamics				

• Aerodynamic coefficients from blade element momentum theory

$$\mu_{j} = \frac{\sqrt{(u_{j} - u_{w})^{2} + (v_{j} - v_{w})^{2}}}{R|\omega_{j}|}$$

• Simplified coefficients

$$\lambda_{j} = \lambda_{stat} - \frac{4}{\sigma_{a}} K_{z} \frac{w_{j} - w_{w}}{R|\omega_{j}|}$$

$$C_{Tj} = C_{Tstat} + K_{z} \frac{w_{j} - w_{w}}{R|\omega_{j}|}$$

$$C_{Hj} = K_{D} \mu_{j}$$

Introduction 00	UAV dynamical model	Control design	Results 0000	Conclusions
Sliding Mode Control				

SMC design is composed of two steps:

- Design of a surface. While on the sliding surface, the dynamics is restricted to the equations of the surface and is robust against external disturbances.
- Design a feedback control law to provide convergence of the system trajectory to the sliding surface, and to obtain a finite time convergence.

Introduction 00	UAV dynamical model	Control design ○●○○○○○○○○	Results 0000	Conclusions
Sliding Mode Control				

- Reaching phase: the trajectory, starting from a nonzero initial conditions, reaches the sliding surface.
- Sliding surface: the trajectory remains and evolves according to the dynamics specified by the sliding surface.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 00	UAV dynamical model	Control design 00●0000000	Results 0000	Conclusions
Sliding Mode Control				

Chattering issue:

- In theory the trajectory slides along the surface.
- In practice there is high frequency switching called chattering.

• Solutions have been developed to reduce the chattering so that the trajectory remains in a small neighborhood of the surface (High order SMC, saturation function).

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

э

Introduction 00	UAV dynamical model	Control design	Results 0000	Conclusions
Sliding Mode Control				

Errors

$$\begin{array}{l} e_{z}=\!z-z_{des}\\ e_{\phi}=\!\phi-\phi_{des}\\ e_{\theta}=\!\theta-\theta_{des}\\ e_{\psi}=\!\psi-\psi_{des} \end{array}$$

- Sliding surface
- $S_i = \dot{e}_i + \alpha_i e_i, \quad \alpha_i > 0$
 - Lyapunov function

$$V_i = \frac{1}{2}S_i^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction 00	UAV dynamical model	Control design ○○○○●○○○○○○	Results 0000	Conclusions
State-space form				

System

$$\dot{X} = f(X, U, d)$$

State

$$X = \begin{bmatrix} x & y & z & \dot{x} & \dot{y} & \dot{z} & \phi & \theta & \psi & p & q & r \end{bmatrix}^{T}$$

Control

$$U = \begin{bmatrix} U_z \\ U_\theta \\ U_\phi \\ U_\psi \end{bmatrix} = \begin{bmatrix} K_f & K_f & K_f & K_f \\ K_f | c_j & K_f | c_j & K_f | c_j & K_f | c_j \\ -K_f | s_j & -K_f | s_j & -K_f | s_j & -K_f | s_j \\ K_m & -K_m & K_m & -K_m \end{bmatrix} \begin{bmatrix} \omega_1^2 \\ \omega_2^2 \\ \omega_3^2 \\ \omega_4^2 \end{bmatrix}$$

where $K_f = \rho A R^2 C_{Tstat}$, $K_m = \rho A R^3 \left(\frac{\sigma C_{D0}}{8} + \lambda_{stat} \sigma a \left(\frac{\theta_0}{6} - \frac{\lambda_{stat}}{4}\right)\right)$. Control inputs are proportional to the terms with ω_j^2 . The other terms dependent linearly on ω_j and wind velocities are considered as disturbances. Since we do not know in advance the wind perturbations, then we cannot use these terms in controls.

Introduction 00	UAV dynamical model	Control design	Results 0000	Conclusions
Disturbances				

• Upper-bound of the control equation from Jensen's inequality

$$\sum_{j=1}^{4} |\omega_j| \le K \sqrt{|U_z|}, \qquad K = \frac{2}{\sqrt{K_f}}$$

• Disturbance upper-bounds after substitutions

$$\begin{aligned} |d_{x}| \leq &\bar{K}_{D} \left(|X| + D_{x}\right) \sqrt{|U_{z}|} \\ |d_{y}| \leq &\bar{K}_{D} \left(|X| + D_{y}\right) \sqrt{|U_{z}|} \\ |d_{z}| \leq &\bar{K}_{z} \left(|X| + D_{z}\right) \sqrt{|U_{z}|} \\ |d_{\phi}| \leq &\bar{K}_{\phi} \left(f_{\phi 1} \left(X\right) + D_{\phi 1}\right) \sqrt{|U_{z}|} + \bar{K}_{\phi} \left(f_{\phi 2} \left(X\right) + D_{\phi 2}\right) \\ |d_{\theta}| \leq &\bar{K}_{\theta} \left(f_{\theta 1} \left(X\right) + D_{\theta 1}\right) \sqrt{|U_{z}|} + \bar{K}_{\theta} \left(f_{\theta 2} \left(X\right) + D_{\theta 2}\right) \\ |d_{\psi}| \leq &\bar{K}_{\psi} \left(f_{\psi 1} \left(X\right) + D_{\psi 1}\right) \sqrt{|U_{z}|} + \bar{K}_{\psi} \left(f_{\psi 2} \left(X\right) + D_{\psi 2}\right) \end{aligned}$$

Introduction 00	UAV dynamical model	Control design ○○○○○●○○○○	Results 0000	Conclusions
Altitude control				

Steps to design the altitude control:

• System in compact form

$$\ddot{z} = g - (\cos\phi\cos\theta) \frac{1}{m} (U_z + d_z)$$

• Error between reference signal and state value

$$e_z = z - z_{des}$$

• Derivative of the sliding surface

$$\dot{S}_z = \ddot{z} + \alpha_z \dot{z} = g - rac{\cos\theta\cos\phi}{m}(U_z + d_z) + \alpha_z \dot{z}$$

• Control equation

$$U_z = \frac{m}{\cos\theta\cos\phi} \left(g - \tilde{u}_z + \alpha_z \dot{z}\right) \le \frac{m}{\gamma} \left(|g + \alpha_z \dot{z}| + |\tilde{u}_z|\right)$$

• Derivative of Lyapunov function

$$\dot{V} = S_z \dot{S}_z \le S_z \tilde{u}_z + |S_z| |d_z \frac{1}{m}| = S_z \tilde{u}_z + |S_z| \frac{1}{m} \bar{K}_z \left(|X| + D_z \right) \sqrt{|U_z|}$$

Introduction 00	UAV dynamical model	Control design ○○○○○○○●○○○	Results 0000	Conclusions
Altitude control				

$$\dot{V} \leq S_z \tilde{u}_z + |S_z| \left(\varrho(X) + \nu(X) \sqrt{|\tilde{u}_z|} \right)$$
$$\varrho(X) = \frac{1}{m} \sqrt{\frac{m}{\gamma}} \tilde{K}_z \left(|X| + D_z \right) \sqrt{|g + \alpha_z \dot{z}|}$$
$$\nu(X) = \frac{1}{m} \sqrt{\frac{m}{\gamma}} \tilde{K}_z \left(|X| + D_z \right)$$

• Auxiliary control

$$\tilde{u}_z = -\beta(X)\operatorname{sign}(S_z)$$

$$\beta(X) = \frac{1}{2} \left(\nu(X)^2 + 2\varrho(X) + \nu(X)\sqrt{\nu^2(X) + 4\varrho(X)} \right) + \delta$$

• Finite time stability proved

$$\dot{V} < -\sqrt{2}\delta\sqrt{V}$$

Introduction 00	UAV dynamical model	Control design	Results 0000	Conclusions
Attitude control				

• Attitude is equivalent to a control of linear acceleration so it leads to stabilizing the linear speed.

Steps to design the roll control:

• System in compact form

$$\ddot{\phi} = \dot{\theta} \dot{\psi} \frac{I_{yy} - I_{zz}}{I_{xx}} + \frac{1}{I_{xx}} (U_{\phi} + d_{\phi})$$

• Error between reference signal and state value

$$e_{\phi} = \phi - \phi_{des}$$

• Derivative of the sliding surface

$$\dot{S}_{\phi} = \ddot{\phi} + \alpha_{\phi}\dot{\phi} = \dot{\theta}\dot{\psi}\frac{I_{yy} - I_{zz}}{I_{xx}} + \frac{1}{I_{xx}}(U_{\phi} + d_{\phi}) + \alpha_{\phi}\dot{\phi}$$

Control equation

$$U_{\phi} = I_{xx} \left(-\dot{\theta} \dot{\psi} \frac{I_{yy} - I_{zz}}{I_{xx}} + \tilde{u}_{\phi} - \alpha_{\phi} \dot{\phi} \right)$$

Introduction 00	UAV dynamical model	Control design ○○○○○○○○●○	Results 0000	Conclusions
Attitude control				

• Derivative of Lyapunov function

$$egin{aligned} \dot{V} = & S_{\phi} \dot{S}_{\phi} \leq S_{\phi} \tilde{u}_{\phi} + |S_{\phi}| |d_{\phi} rac{1}{I_{ ext{xx}}}| \ & \leq S_{\phi} \tilde{u}_{\phi} + rac{|S_{\phi}|}{I_{ ext{xx}}} \Big(ilde{K}_{\phi} ig(f_{\phi 1}(X) + D_{\phi 1} ig) \sqrt{|U_{z}|} + ar{K}_{\phi} ig(f_{\phi 2}(X) + D_{\phi 2} ig) \Big) \end{aligned}$$

• Auxiliary control

$$\begin{split} \tilde{u}_{\phi} &= -\frac{1}{I_{xx}} \mathrm{sign} S_{\phi} \Big(\tilde{K}_{\phi} \big(f_{\phi 1} \left(X \right) + D_{\phi 1} \big) \sqrt{|U_z|} \\ &+ \bar{K}_{\phi} \big(f_{\phi 2} \left(X \right) + D_{\phi 2} \big) \Big) \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction 00	UAV dynamical model	Control design ○○○○○○○○●	Results 0000	Conclusions
Summary scheme				

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Introduction 00	UAV dynamical model	Control design 0000000000	Results ●000	Conclusions
Simulations				

Simulation data and constraints:

• wind signal

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- mass UAV 0.47Kg
- max rotor speed 400*rad/s*
- max thrust rotors 5.6N
- rotors dynamics $\frac{1}{1+0.03s}$

Introduction 00	UAV dynamical model	Control design 0000000000	Results 0●00	Conclusions
Simulations				

• For a suciently small ϕ , if for a sign function all trajectories converge to an equilibrium, then with a saturation all trajectories converge in a compact set around that equilibrium.

> 1

Saturation function:

$$\operatorname{sat}_{\phi}(x) = egin{cases} \operatorname{sign}(x) & ext{if} \quad |x| > \ \operatorname{arctan}\left(rac{1}{\phi}x
ight) & ext{otherwise} \end{cases}$$

Introduction 00	UAV dynamical model	Control design	Results 00●0	Conclusions
Simulations				

• System response to desired input with no wind disturbances

Introduction 00	UAV dynamical model	Control design 0000000000	Results 000●	Conclusions
Simulations				

• Robustness of the proposed control under wind disturbances and convergence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 00	UAV dynamical model	Control design 0000000000	Results 0000	Conclusions

Summarizing:

- Choice of UAV physical model influenced by wind disturbance;
- SMC applied to UAV problems (attitude and altitude) with simplified coefficients equations;
- Robustness of the proposed SMC method with respect to:
 - wind disturbances;
 - uncertainty of identified model parameters;
 - unmodeled rotor dynamics;
- Further work in trajectory considering also $x_{des}, y_{des}, \dot{x}_{des}, \dot{y}_{des}$.

Thank you for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00