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IL I

PV systems

LPV systems

LPV systems are generically represented as

&(t) = Ap(1)z(t) + B(p(t))u(t), z(0) =zo (1)
where
m z and u are the state of the system and the control input
m p(t) € P, P C RN compact, is the value of the parameter vector at time ¢

m The matrix-valued functions A(-) and B(-) are “nice enough”, i.e. continuous on P

Rationale

m Can be used to approximate nonlinear systems [Sha88, BPB04]
m Can be used to model a wide variety of real-world processes [MS12, HW15, Bril5a]

m Convenient framework for the design gain-scheduled controllers [RS00]
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I Quadratic stability [SGC97] I

Definition
The LPV system

(t)

A(p(t))z(t)
z(0) ()

Zo

is said to be quadratically stable if V(x) = T Pz is a Lyapunov function for the system.

Theorem

The LPV system (2) is quadratically stable if and only if there exists a matrix P € STy

such that the LMI
AB)TP + PAO) <0 (3)

holds for all 8 € P.
Remarks

m All the possible trajectories p : R>( +— P are (implicitly) considered (together with the
assumption of existence of solutions)

m Semi-infinite dimensional LMI problem (can be checked using various methods)
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I Robust stability [Wu95] I

Definition
The LPV system
i(t) = Alp(t)z(t)
z(0) o )

with p(t) € P and p(t) € D, for some given compact sets P,D C RY, is said to be
robustly stable if V(x, p) = T P(p)x is a Lyapunov function for the system.

Theorem

The LPV system (4) is robustly stable if and only if there exists a differentiable
matrix-valued function P : P — ST such that the LMI

N
> 0,09, P(0) + A(0)TP(0) + P(0)A(6) < 0 (5)
=1

holds for all 6 € P and all 0’ € D.
Remarks

m Trajectories of the parameters are continuously differentiable (can be relaxed)

m Infinite-dimensional LMI problem (can be approximately checked)
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IS I

ummary

Some remarks

m Two main classes of parameter trajectories associated with two main stability concepts

m But these classes are very far apart!

m Parameter trajectories are defined in a very loose/restrictive way

m The accuracy of the tools developed for periodic, switched and Markov jump systems
stems from the fact that they are tailor-made

m In the end, LPV systems suffer from a very vague description which may prevent the

development of accurate tools
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IS I

ummary

Some remarks

m Two main classes of parameter trajectories associated with two main stability concepts

m But these classes are very far apart!

m Parameter trajectories are defined in a very loose/restrictive way

m The accuracy of the tools developed for periodic, switched and Markov jump systems
stems from the fact that they are tailor-made

m In the end, LPV systems suffer from a very vague description which may prevent the
development of accurate tools

Issues

m What if we consider piecewise differentiable parameters?
m Robust stability not applicable and quadratic stability too conservative

m So, we need something else!
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IL I

PV systems with piecewise differentiable parameters

Class of parameters

m Piecewise differentiable with aperiodic discontinuities
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IL I

PV systems with piecewise differentiable parameters

Class of parameters
m Piecewise differentiable with aperiodic discontinuities

Stability results

m Stability condition using hybrid systems method — minimum dwell-time condition
m Connections with quadratic and robust stability

m Example
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IL I

PV systems with piecewise differentiable parameters

Class of parameters

m Piecewise differentiable with aperiodic discontinuities
Stability results

m Stability condition using hybrid systems method — minimum dwell-time condition
m Connections with quadratic and robust stability

m Example

Stabilization results

m Continuous-time controllers

m Sampled-data controllers [TGW02, RMG12, GMFP15]
m Examples
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Stability analysis of LPV systems with piecewise differentiable parameters
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I Preliminaries

Let us consider the LPV system

&(t) = A(p(t)z(t), z(0) = zo (6)
with parameter trajectories p in 9 7 where

p(t) € Qp(1)), t € [tr,trs1) } Ko

where p(t;:) :=limgyy, p(s), to =0 (no jump at to), T = tpq1 — tx,, T >0,

P = Pi1x...xPn, Pi::[ﬁi’ ﬁi],gigﬁi,iZI,...,N
D = DiXx...xDn, Di:=y;, v, v; <, i=1,...,N
and Q(p) = Q1(p) X ... x An(p) with
D; if pi € (p,:Pi)s
Qi(p) :==4 DiNRyg if pi =p,, (8)
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Hlustration

= Minimum dwell-time T = 3.3

m Discontinuities separated by at least T' = 3.3 seconds
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IS I

ystem reformulation

m The key idea is to reformulate the system in a way that will allow us to capture the both
the dynamics of the system and the dynamics of the parameters.
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IS I

ystem reformulation

m The key idea is to reformulate the system in a way that will allow us to capture the both
the dynamics of the system and the dynamics of the parameters.

m Hence, we propose the following hybrid system formulation [GST12]

2(t) = Ap(t)z(t)
pt) € Qp(t) if (z(t),p(t), 7(t), T(t)) € C
Tgtg = 1 (eq. 7(t) < T(1))
Tt = 0
2(tF) = a(t) ©)
p(tt) e P if (z(t),p(t), (), T(¢)) € D
Ttt) = 0 (eq. 7(t) =T(¥))
Ttt) € [T,00)
where
C = R"XPxEc,
D = R"XPxE=_ (10)
En = {p€Ryox[T,00):p10p2}, D€ {<,=}
and
(2(0), p(0),7(0),T(0)) € R™ x P x {0} x [T, 0). (11)
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llustration

m Let the t;’s be the time instants for which 7(tx) = T'(¢1)

m We consider a parameter trajectory given by p(t) = (1+sin(t + ¢(t)))/2 where ¢(t) = ¢y,
t € [tg,tr+1) and the ¢’s are uniform random variables taking values in [0, 27]

m At each tg, a new value for ¢, is drawn, which introduces a discontinuity in the
parameter trajectory

3 T T T T T T
—7()—T(t)

ok =
1k i
0 . ) . . A )
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1 T T T

0.5 4
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IM I

ain result

Theorem (Minimum dwell-time)

Let T € R~ be given and assume that there exist a bounded continuously differentiable
matrix-valued function S : [0,T] x P+ ST and a scalar € > 0 such that the conditions

N
8- S(1,0) + > 8y, S(7,0) i + Sym[S(,0)A(6)] + I <0 (12)
i=1
N
> " 0, S(T, 0)pi + Sym([S(T,0)A(6)] + eI 20 (13)
=1

and
5(0,0) — S(T,n) <0 (14)

hold for all 8,1 € P, u € D and all T € [0,T). Then, the LPV system (6) with parameter
trajectories in 2+ is asymptotically stable.

m For a square matrix M, we define Sym[M] = M + MT
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roof
Let us consider the system

x(t) € F(x@)ifx(t)eC

X(th) € G(x(t) if x(t) € D (15)

where x(t) € R?, C C R? is open, D C R? is compact and G(D) C C. The flow map and
the jump map are the set-valued maps F': C = R™ and G : D = C, respectively. We also
assume for simplicity that the solutions are complete. We then have the following stability
result:

Theorem (Persistent flowing [GST12])

Let A C R% be closed. Assume that there exist a function V' : CUD s R that is
continuously differentiable on an open set containing C' (i.e. the closure of C'), functions
ag,a2 € K and a continuous positive definite function s such that

(@) e1(lxl.a) < V(z) < az(|x|a) forall x e CUD;

(b) (VV(x), f) < —as(lxl|a) for all x € C and f € F(x);

(c) V(9) —V(x) <0 forall x € D and g € G(x).

Assume further that for each r > 0, there exists a v, € Koo and an N, > 0 such that for
every solution ¢ to the system (15), we have that |$(0,0)|4 € (0,7], (¢,7) € dom ¢,

t+j > T imply t > ~v-(T) — Ny, then A is uniformly globally asymptotically stable for
the system (15).
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roof

m Assume that the full trajectory of T'(¢) is known.

m This is possible since T'(t) is independent of the other components of the state of the
system (9).

m Then, there exists a Tiqq < 00 such that T < T'(t) < Tpaq for all t > 0.
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roof

m Assume that the full trajectory of T'(¢) is known.

m This is possible since T'(t) is independent of the other components of the state of the
system (9).

m Then, there exists a Tynaz < 00 such that T < T(t) < Timas for all £ > 0.
m Define then the set A = {0} x P x ((E< U E=) N[0, Tmaz]?)

= Note that the LPV system (6) with parameter trajectories in 2 7 is asymptotically stable
if and only if the set A is asymptotically stable for the system (9).
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roof

m Assume that the full trajectory of T'(¢) is known.

m This is possible since T'(t) is independent of the other components of the state of the
system (9).

m Then, there exists a Tinaz < 00 such that T < T(t) < Timas for all ¢ > 0.
m Define then the set A = {0} x P x ((E< U E=) N[0, Tmaz]?)

= Note that the LPV system (6) with parameter trajectories in 2 7 is asymptotically stable
if and only if the set A is asymptotically stable for the system (9).

m To prove the stability of this set, let us consider the Lyapunov function

xTS(t, p)x if r <T,

Vi@1p) = { =T S(T, p)x if 7> T. (16)

where S(7,p) = 0 for all 7 € [0, Tmaz] and all p € P.
m Applying then the conditions of Theorem 6 yields the result.

Corentin Briat, D-BSSE@ETH-Ziirich MOSAR Seminar, Strasbourg, France 14 / 33



IC I

onnection with quadratic and robust stability

Theorem (Quadratic stability)

When T — 0 in the minimum dwell-time theorem, then we recover the quadratic stability
condition
AB)TP+ PA0) <0, 0 eP. (17)
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IC I

onnection with quadratic and robust stability

Theorem (Quadratic stability)

When T — 0 in the minimum dwell-time theorem, then we recover the quadratic stability
condition

AB)TP+ PA0) <0, 0 eP. (17)
Theorem (Robust stability)

When T — oo, then we recover the robust stability condition

N

> " 0, P(O)pi + AB)T P(6) + P()A(6) <0, 6 € P, p € D. (18)
i=1
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IC I

onnection with quadratic and robust stability

Theorem (Quadratic stability)

When T — 0 in the minimum dwell-time theorem, then we recover the quadratic stability
condition

AB)TP+ PA0) <0, 0 eP. (17)

Theorem (Robust stability)
When T — oo, then we recover the robust stability condition

N

> " 0, P(O)pi + AB)T P(6) + P()A(6) <0, 6 € P, p € D. (18)
i=1
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I Computational aspects [Par00, PAV'13] I

m We say that a symmetric polynomial matrix M(6), 6 € RY, is an SOS matrix if there
exists a matrix Q(6) such that M(0) = Q(0)TQ(#). An SOS matrix is positive
semidefinite for all # € RY. Checking whether M(6) is an SOS matrix can be cast as an
SDP [Par00]

m Now assume that we would like to prove that a matrix M (0) is positive semidefinite for all
0 € P where P is defined as

P = {9 e RN : gi(0) >0,i=1,.. .,b} , gi's are polynomials. (19)
m This is true if we can find SOS matrices I';(0), i = 1,...,b, such that the matrix
b
M(0) — Zl"i(@)gi(e) is an SOS matrix. (20)
i=1

m If the above condition holds, then

b
M(0) = 3 Ti(0)g:(0) (21)

i=1

where the right-hand side is positive semidefinite for all 6 € P.
m The package SOSTOOLS [PAVT13] can be used to formalize and check SOS conditions
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IE I

xample 1

System

m Let us consider the system [XSF97]
- [ g _11} = (22)

where p(t) € P = [0,p], p > 0.
m It is known [XSF97] that this system is quadratically stable if and only if p < 3.828

m This bound can be improved in the case of piecewise constant parameters provided
that discontinuities do not occur too often [Bril5b].

Corentin Briat, D-BSSE@ETH-Ziirich MOSAR Seminar, Strasbourg, France 17 / 33



IE I

xample 1

System

m Let us consider the system [XSF97]
- [ g _11} = (22)

where p(t) € P =[0,p], p > 0.
m It is known [XSF97] that this system is quadratically stable if and only if p < 3.828

m This bound can be improved in the case of piecewise constant parameters provided
that discontinuities do not occur too often [Bril5b].

Results

m We choose polynomials of order 4, which corresponds to an SDP with 2409 primal
variables and 315 dual variables.

m Building this program takes 6.04 seconds while solving it takes 1.25 second.
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xample 1
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Figure: Evolution of the computed minimum upper-bound on the minimum stability-preserving minimum
dwell-time with |p| < v using an SOS approach with polynomials of degree 4.
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IE I

xample 2

m Let us consider the system [Wu95]

3/4 2 p1 P2

. 0 1/2 —p2 p1
r= —3up1/4 v (p2 — 2p1) —v ol* (23)

—3vp2 /4 v (p1 — 2p2) 0 —v

where v = 15/4 and p € P = {z € R? : ||2||2 = 1}. This system is not quadratically
stable.

m We define pi1(t) = cos(B(t)) and p2(t) = sin(B(t)) where B(t) is piecewise differentiable.

m Differentiating these equalities yields p1(t) = —B(t)p2(t) and pa(t) = B(t)p1(t) where
B(t) € [-v,v], v >0,
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IE I

xample 2

m Let us consider the system [Wu95]

3/4 2 p1 P2

. 0 1/2 —p2 p1
r= —3up1/4 v (p2 — 2p1) —v ol* (23)

—3vp2 /4 v (p1 — 2p2) 0 —v

where v = 15/4 and p € P = {z € R? : ||2||2 = 1}. This system is not quadratically
stable.
m We define pi1(t) = cos(B(t)) and p2(t) = sin(B(t)) where B(t) is piecewise differentiable.
m Differentiating these equalities yields p1(t) = —B(t)p2(t) and pa(t) = B(t)p1(t) where
B(t) € [-v,v], v >0,

Table: Evolution of the computed minimum upper-bound on the minimum dwell-time with |B\ < v using
an SOS approach with polynomials of degree d. The number of primal/dual variables of the semidefinite
program and the preprocessing/solving time are also given.

[ [ v=0]v=01]v=03]v=05]v=081 v=09 [ p/dvars. [ time (sec) |
d=2 2.7282 2.9494 3.5578 4.6317 11.6859 26.1883 9820,/1850 20/27
d=4 1.7605 1.8881 2.2561 2.9466 6.4539 num. err. 43300/4620 212/935
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Stabilization using continuous-time gain-scheduled state-feedback controllers
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IS I

etup

System

m Let us consider the LPV system

&(t) = Alp(t)z(t) + B(p(t))u(t)
z(0) = «xo.
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IS I

etup

System

m Let us consider the LPV system

Bt = Alp®)() + Blpt)u()
z(0) = «xo.

Control laws

m Continuous-time controllers

_ [ K(t—ty,p(tr)z(t), tE€ [tr,tr+T)
0= { K(T,p(lzk/)))wlzt), te [tz +kT, thr1) (24)

where {tk}keZ>g is the sequence of time instants at which the parameter vector
changes value.
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etup

System

m Let us consider the LPV system

Bt = Alp®)() + Blpt)u()
z(0) = «xo.

Control laws

m Continuous-time controllers

_ [ K(t—ty,p(tr)z(t), tE€ [tr,tr+T)
0= { K(T,p(lzk/)))wlzt), te [tz +kT, thr1) (24)

where {tk}keZ>g is the sequence of time instants at which the parameter vector
changes value.

m Sampled-data controllers
u(ty +7) = K1(p(t))z(tk) + K2(p(tk))u(te), T € (0,Tk], Tk € [Tinin, Tmaz] (25)

where {t;}rez., is the sequence of time instants at which the control is updated.
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IC I

ontinuous state-feedback control - Minimum dwell-time

Theorem

Let T > 0 be given. Assume that there exist matrix-valued functions
U:[0,T] x P —R™ ™ and S : [0,T] x P — Sl such that the conditions

—8-8(,0) — 8,5(7,0)v + Sym[A(0)S(r, 0) + B()U(,0)] <0 (26)
Sym[A(0)S(T,0) + B(O)U(T, )] < 0, (27)

and
5(T,n) — 5(0,6) < 0 (28)

hold for all 6,m € P and all T € [0,T].

Then the closed-loop LPV system is asymptotically stable for all p € &2 ., and a suitable
controller gain is moreover given by

K(7,60) = U(r,0)S(r,0) 1. (29)
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IE I

xample

System

. 3—6 1 1
z:[l_e 2+9}z+[1+0]u,0€P=[0,1],D:[—1/,V]. (30)
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IE I

xample

System

. 3—-0 1 1
z:[l_e 2+9}z+[1+9]u,0677=[0,1],D:[—1/,V]. (30)

Proposition

No control law of the form uw = K (0)x can quadratically stabilize the system (30).
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IE I

xample

System

. 3—-6 1 1
z:[l_e 2+9:|$+|:1+9]u,QEP:[O,l],D:[—V,V]. (30)

Proposition
No control law of the form uw = K (0)x can quadratically stabilize the system (30).
Proof
m Quadratically stabilizable if and only if the LMI (elimination lemma)
L(8) := B (8)[A(0)P + PAB®)TIBL(0)T <0

is feasible for all 6 € [0,1] where B, (6) = [1+6 —1].
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xample

System

. 3—-6 1 1
z:[l_e 2+9:|$+|:1+9]u,QEP:[O,l],D:[—V,V]. (30)

Proposition
No control law of the form uw = K (0)x can quadratically stabilize the system (30).
Proof
m Quadratically stabilizable if and only if the LMI (elimination lemma)
L(8) := B (8)[A(0)P + PAB®)TIBL(0)T <0

is feasible for all 6 € [0,1] where B, (6) = [1+6 —1].
m Assume it is stabilizable, then L(0) < 0 and L(1) < 0.
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xample

System

. 3—-6 1 1
z:[l_e 2+9:|$+|:1+9]u,QEP:[O,l],D:[—V,V]. (30)

Proposition
No control law of the form uw = K (0)x can quadratically stabilize the system (30).
Proof
m Quadratically stabilizable if and only if the LMI (elimination lemma)
L(8) := B (8)[A(0)P + PAB®)TIBL(0)T <0

is feasible for all 6 € [0,1] where B, (6) = [1+6 —1].
m Assume it is stabilizable, then L(0) < 0 and L(1) < 0.
m This implies that there exists a p € R such that

filp)=p>—3p+2<0 and fa(p)=p?—6p+8<0.
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IE I

xample

System

. 3—-6 1 1
z:[l_e 2+9:|$+|:1+9]u,QGP:[O,l],D:[—I/,V]. (30)

Proposition

No control law of the form uw = K (0)x can quadratically stabilize the system (30).

Proof
m Quadratically stabilizable if and only if the LMI (elimination lemma)

L(8) := B (8)[A(0)P + PAB®)TIBL(0)T <0
is feasible for all 6 € [0,1] where B, (6) = [1+6 —1].
m Assume it is stabilizable, then L(0) < 0 and L(1) < 0.
m This implies that there exists a p € R such that
filp) =p®> —3p+2<0 and fa(p)=p> —6p+8<0.
m But fi(p) <0< pe(1,2) and f2(p) <0< p € (2,4), a contradiction.
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Example

m We pick T = 0.1
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xample

We pick T = 0.1
m Conditions are feasible for v € {0,0.1,0.3} for d = 2 and v € {0.5,0.7,0.9,1, 2} for d = 3.

m When d = 2 the number of primal/dual variables is 834/180 whereas, when d = 3, this
number is 2414 /315.

m When d = 2, it takes roughly 2.62sec; when d = 3, it takes around 6.31sec.
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IE I

xample

m We pick T = 0.1
m Conditions are feasible for v € {0,0.1,0.3} for d = 2 and v € {0.5,0.7,0.9,1, 2} for d = 3.

m When d = 2 the number of primal/dual variables is 834/180 whereas, when d = 3, this
number is 2414 /315.

m When d = 2, it takes roughly 2.62sec; when d = 3, it takes around 6.31sec.
m We consider the parameter trajectory

1+4sin(2u(ty +7) + ¢k)
2

p(tk+T): s Pk GZ/{(O,QTK'),TE(O,T/CLICGZZO. (31)

m We get the following result
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Outline

Stabilization using sampled-data gain-scheduled state-feedback controllers
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I A preliminary stability result I

We are interested here in deriving a stability result under a range dwell-time constraint for
the sequence of jumping instants, that is, for all sequences of jumping instants in

tk+1 - tk S [Tmiru Tmax]7
to=0, k€ ZZO (32)

91:{ {tr}rezo

for some 0 < Thin < Thaz < 00.
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preliminary stability result
We are interested here in deriving a stability result under a range dwell-time constraint for
the sequence of jumping instants, that is, for all sequences of jumping instants in

tk+1 - tk S [Tmiru Tmax]7
to=0, k€ ZZO (32)

y;:{ {tktrezso

for some 0 < Thin < Tmaz < 00. The corresponding hybrid system is given by

() = Alp(t)x(t)
fgg i 2 if (z(t), p(t), 7(t), T(t)) € C
T(t) = 0
’”(ti) = J(p@®)z() (33)
ﬁg*; - S<t> if (z(t), p(t), 7(t), T(t)) € D
T(t+) € [Tmivu Tmaz]
where
C = R"xPxEq,
D = R"xPXE=, (34)
En = {¢ €Rx0 X [Trmin, Tmaa] : $10¢2}, O € {<, =}
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IG I

eneral result

Theorem (Range dwell-time)

Let the scalars 0 < Tin, < Timaz < 00 be given and assume that there exist a bounded
continuously differentiable matrix-valued function S : [0, Tmaxz] X P — S;‘O and a scalar
€ > 0 such that the conditions

— 8:8(7,0) + 8,S(7, 0)u + Sym[S(7, 0) A(8)] < 0 (35)

nd
’ J(0)S(0,0)J(0) — S(0,0) + eI, <0 (36)

hold for all € P, all p € D, all 7 € [0, Tmaz] and all o € [Trin, Tmaz]-
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Let the scalars 0 < Tin, < Timaz < 00 be given and assume that there exist a bounded
continuously differentiable matrix-valued function S : [0, Tmaxz] X P — S;‘O and a scalar
€ > 0 such that the conditions

— 8:8(7,0) + 8,S(7, 0)u + Sym[S(7, 0) A(8)] < 0 (35)

nd
’ J(0)S(0,0)J(0) — S(0,0) + eI, <0 (36)

hold for all € P, all p € D, all 7 € [0, Tmaz] and all o € [Trin, Tmaz]. Then, the LPV
system with parameter trajectories in

Proi={ piRyg s P| p(t) € Qp(1),t >0 }. (37)

is asymptotically stable under the range dwell-time condition [Ty irn, Tmaz); i.e. for all
sequences of jumping instants in 7.
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roblem formulation

m The sampled-data control input is assumed to be
u(ty + 1) = K1(p(te))z(te) + Ka2(p(tr))u(te), 7€ (0,Tx], Ti € [Tmin; Tmaz] (38)

where K1 () € R™*™ and K3(-) € R™*™ are the gains to be determined.
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roblem formulation
m The sampled-data control input is assumed to be
u(ty +7) = K1(p(te))z(te) + K2(p(te))u(te), 7 € (0,Tk], Tk € [Tmin, Tmaz] (38)

where K1 () € R™*™ and K3(-) € R™*™ are the gains to be determined.

m The hybrid system associated with the closed-loop system

28 = g(p(t))w(t) + B(p(t))u(t)

wt) =

{)Eg € 1Q(p(t)) if (2(t),p(t),7(t),T(t)) € C

T@) = 0

(tY) = J(p(t)e(®) (39)
utt) = Ki(pt)z(t) + K2(p(t))u(t)

ptT) = p(t) if (2(t),p(t),7(t),T(t)) € D

T@tt) = 0

T(t+) S [Tmi'ru Tmaz}

where z = (z,u) and

C = R"™xPxE.,
D = R"MxPxE_, (40)
E = {¢ S RZO X [Tmin7 Tmaa:] : ¢1D¢2}7 Oe {<7:}-
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IM I

ain result

Define

i) {Aéﬂ) B((]p)]’ T m [ng 8},3;: [I?J and K (p) = [K1(p) Ka(p)].
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IM I

ain result

Define
Alp) = {Aéﬂ) B((Jp)] J(p) = [Jgp) 8} B = [I?n} and K(p) := [K1(p) Ka2(p)].

Theorem

Let T € R~ be given and assume that there exist a bounded continuously differentiable

matrix-valued function R : [0, Trmaz] X P+ S;Ho'm, a matrix-valued function

U : P+ RmX(n+m) and 3 scalar e > 0 such that the conditions
87 R(7,0) — 8, R(7,0)u + Sym[A(O)R(F,0)] + eI, <0 (41)

R(o,0) J(0)R(0,6) + BU(0)
N ~R(0,0) =0 (42)

hold for all 6 € P, all p € DY, all 7 € [0, Tinaz| and all o € [Tryin, Tmax]-
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ain result

Define
Alp) = |:Aéﬂ) B((JP)] L J(p) = [JE)P) 8:| ,B = [I?nj| and K(p) := [Ki(p) Ka(p)].
Theorem

Let T € R~ be given and assume that there exist a bounded continuously differentiable
matrix-valued function R : [0, Trmaz] X P+ S;Ho'm, a matrix-valued function

U : P+ RmX(n+m) and 3 scalar e > 0 such that the conditions

9-R(7,0) — 0pR(7,0)pu + Sym[A(0)R(7,0)] + eI, <0 (41)
" (0.0) J(O)R(0,0) + BU(®)
R(o,0) J(8)R(0,0) + BU(0

. ~R(0,6) 20 (42)

hold for all € P, all p € DY, all 7 € [0, Trnaz] and all o € [Tynin, Tmax|. Then, the
sampled-data LPV system with parameter trajectories in % is asymptotically stable
under the range dwell-time condition [Tyyin, Tmaz] (i-e. for all sequences of sampling
instants in ) with the controller gain K (0) = U(0)R(T,0)~!.
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IE I

xample

m Let us consider now the system [GMFP15]

b= oaros) et w PEELL D=l @)

m Choosing d = 4, we can show that, for both v = 0.2 and v = 1, we can find a controller
that stabilizes the system for all T}, € [0.001, 1.3] in approximately 25sec

m In this case, the number of primal/dual variables is 9618/966.
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m Choosing d = 4, we can show that, for both v = 0.2 and v = 1, we can find a controller
that stabilizes the system for all T}, € [0.001, 1.3] in approximately 25sec

m In this case, the number of primal/dual variables is 9618/966.

m For simulation purposes, we set Tynin = 0.001, Trnae = 0.4 for both v = 0.2 and v =1,
and we design controllers with d = 2 (in this case, the number of primal/dual variables is
given by 3078/525 and the problem is solved in 7sec).
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and we design controllers with d = 2 (in this case, the number of primal/dual variables is
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IC I

onclusions

Concluding statements

m We can capture discontinuities in the parameters trajectories in a tractable way

Extend quadratic and robust stability

The framework of hybrid systems is unifying as it can capture complex behaviors

Applies to deterministic/stochastic impulsive/switched /sampled-data systems (and
their variations)

Corentin Briat, D-BSSE@ETH-Ziirich MOSAR Seminar, Strasbourg, France 29 / 33



IC I

onclusions

Concluding statements

m We can capture discontinuities in the parameters trajectories in a tractable way
Extend quadratic and robust stability
The framework of hybrid systems is unifying as it can capture complex behaviors

Applies to deterministic/stochastic impulsive/switched /sampled-data systems (and
their variations)

What else can be done ?

m Dissipativity analysis — IQC, multipliers, separators, scalings
m Performance analysis, e.g. Lo-performance

m Nonlinear systems, Homogeneous Lyapunov functions (on the basis of a potential
variation of the converse results in [Wir05])

m Toolbox (underway)
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onclusions

Concluding statements

m We can capture discontinuities in the parameters trajectories in a tractable way

Extend quadratic and robust stability

The framework of hybrid systems is unifying as it can capture complex behaviors

Applies to deterministic/stochastic impulsive/switched /sampled-data systems (and
their variations)

What else can be done ?

m Dissipativity analysis — IQC, multipliers, separators, scalings
m Performance analysis, e.g. Lo-performance

m Nonlinear systems, Homogeneous Lyapunov functions (on the basis of a potential
variation of the converse results in [Wir05])

m Toolbox (underway)

An open question

Is it possible to obtain tractable conditions for the design a dynamic output feedback?
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Thanks everyone for your attention!
Any questions?

Corentin Briat, D-BSSE@ETH-Ziirich MOSAR Seminar, Strasbourg, France 33 /33



	Introduction
	Stability analysis of LPV systems with piecewise differentiable parameters
	Stabilization using continuous-time gain-scheduled state-feedback controllers
	Stabilization using sampled-data gain-scheduled state-feedback controllers
	Concluding statements

