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LPV systems

LPV systems

LPV systems are generically represented as

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t), x(0) = x0 (1)

where

x and u are the state of the system and the control input

ρ(t) ∈ P, P ⊂ RN compact, is the value of the parameter vector at time t

The matrix-valued functions A(·) and B(·) are “nice enough”, i.e. continuous on P

Rationale

Can be used to approximate nonlinear systems [Sha88, BPB04]

Can be used to model a wide variety of real-world processes [MS12, HW15, Bri15a]

Convenient framework for the design gain-scheduled controllers [RS00]
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Quadratic stability [SGC97]

Definition
The LPV system

ẋ(t) = A(ρ(t))x(t)
x(0) = x0

(2)

is said to be quadratically stable if V (x) = xTPx is a Lyapunov function for the system.

Theorem
The LPV system (2) is quadratically stable if and only if there exists a matrix P ∈ Sn�0
such that the LMI

A(θ)TP + PA(θ) ≺ 0 (3)

holds for all θ ∈ P.

Remarks

All the possible trajectories ρ : R≥0 7→ P are (implicitly) considered (together with the
assumption of existence of solutions)

Semi-infinite dimensional LMI problem (can be checked using various methods)
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Robust stability [Wu95]

Definition
The LPV system

ẋ(t) = A(ρ(t))x(t)
x(0) = x0

(4)

with ρ(t) ∈ P and ρ̇(t) ∈ D, for some given compact sets P,D ⊂ RN , is said to be
robustly stable if V (x, ρ) = xTP (ρ)x is a Lyapunov function for the system.

Theorem
The LPV system (4) is robustly stable if and only if there exists a differentiable
matrix-valued function P : P → Sn�0 such that the LMI

N∑
i=1

θ′i∂θiP (θ) +A(θ)TP (θ) + P (θ)A(θ) ≺ 0 (5)

holds for all θ ∈ P and all θ′ ∈ D.

Remarks

Trajectories of the parameters are continuously differentiable (can be relaxed)

Infinite-dimensional LMI problem (can be approximately checked)

Corentin Briat, D-BSSE@ETH-Zürich MOSAR Seminar, Strasbourg, France 5 / 33



Summary

Some remarks

Two main classes of parameter trajectories associated with two main stability concepts

But these classes are very far apart!

Parameter trajectories are defined in a very loose/restrictive way

The accuracy of the tools developed for periodic, switched and Markov jump systems
stems from the fact that they are tailor-made

In the end, LPV systems suffer from a very vague description which may prevent the
development of accurate tools

Issues

What if we consider piecewise differentiable parameters?

Robust stability not applicable and quadratic stability too conservative

So, we need something else!
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LPV systems with piecewise differentiable parameters

Class of parameters

Piecewise differentiable with aperiodic discontinuities

Stability results

Stability condition using hybrid systems method → minimum dwell-time condition

Connections with quadratic and robust stability

Example

Stabilization results

Continuous-time controllers

Sampled-data controllers [TGW02, RMG12, GMFP15]

Examples
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Preliminaries

Let us consider the LPV system

ẋ(t) = A(ρ(t))x(t), x(0) = x0 (6)

with parameter trajectories ρ in P>T̄ where

P>T̄ :=

{
ρ : R≥0 7→ P

∣∣∣∣ ρ̇(t) ∈ Q(ρ(t)), t ∈ [tk, tk+1)

Tk ≥ T̄ , ρ(tk) 6= ρ(t+k ) ∈ P, k ∈ Z≥0

}
(7)

where ρ(t+k ) := lims↓tk ρ(s), t0 = 0 (no jump at t0), Tk := tk+1 − tk, T̄ > 0,

P =: P1 × . . .× PN , Pi := [ρ
i
, ρ̄i], ρi ≤ ρ̄i, i = 1, . . . , N

D =: D1 × . . .×DN , Di := [νi, ν̄i], νi ≤ ν̄i, i = 1, . . . , N

and Q(ρ) = Q1(ρ)× . . .×QN (ρ) with

Qi(ρ) :=


Di if ρi ∈ (ρ

i
, ρ̄i),

Di ∩ R≥0 if ρi = ρ
i
,

Di ∩ R≤0 if ρi = ρ̄i.

(8)
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Illustration

Minimum dwell-time T̄ = 3.3

Discontinuities separated by at least T̄ = 3.3 seconds
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System reformulation

The key idea is to reformulate the system in a way that will allow us to capture the both
the dynamics of the system and the dynamics of the parameters.

Hence, we propose the following hybrid system formulation [GST12]
ẋ(t) = A(ρ(t))x(t)
ρ̇(t) ∈ Q(ρ(t))
τ̇(t) = 1

Ṫ (t) = 0

∣∣∣∣∣∣∣∣
if (x(t), ρ(t), τ(t), T (t)) ∈ C

(eq. τ(t) < T (t))


x(t+) = x(t)
ρ(t+) ∈ P
τ(t+) = 0
T (t+) ∈ [T̄ ,∞)

∣∣∣∣∣∣∣∣
if (x(t), ρ(t), τ(t), T (t)) ∈ D

(eq. τ(t) = T (t))


(9)

where
C = Rn × P × E<,
D = Rn × P × E=

E� = {ϕ ∈ R≥0 × [T̄ ,∞) : ϕ1�ϕ2}, � ∈ {<,=}
(10)

and
(x(0), ρ(0), τ(0), T (0)) ∈ Rn × P × {0} × [T̄ ,∞). (11)
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Illustration

Let the tk’s be the time instants for which τ(tk) = T (tk)

We consider a parameter trajectory given by ρ(t) = (1 + sin(t+φ(t)))/2 where φ(t) = φk,
t ∈ [tk, tk+1) and the φk’s are uniform random variables taking values in [0, 2π]

At each tk, a new value for φk is drawn, which introduces a discontinuity in the
parameter trajectory
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Main result

Theorem (Minimum dwell-time)

Let T̄ ∈ R>0 be given and assume that there exist a bounded continuously differentiable
matrix-valued function S : [0, T̄ ]× P 7→ Sn�0 and a scalar ε > 0 such that the conditions

∂τS(τ, θ) +
N∑
i=1

∂ρiS(τ, θ)µi + Sym[S(τ, θ)A(θ)] + εI � 0 (12)

N∑
i=1

∂ρiS(T̄ , θ)µi + Sym[S(T̄ , θ)A(θ)] + εI � 0 (13)

and
S(0, θ)− S(T̄ , η) � 0 (14)

hold for all θ, η ∈ P, µ ∈ D and all τ ∈ [0, T̄ ]. Then, the LPV system (6) with parameter
trajectories in P>T̄ is asymptotically stable.

For a square matrix M , we define Sym[M ] = M +MT
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Proof

Let us consider the system

χ̇(t) ∈ F (χ(t)) if χ(t) ∈ C
χ(t+) ∈ G(χ(t)) if χ(t) ∈ D (15)

where χ(t) ∈ Rd, C ⊂ Rd is open, D ⊂ Rd is compact and G(D) ⊂ C. The flow map and
the jump map are the set-valued maps F : C ⇒ Rn and G : D ⇒ C, respectively. We also
assume for simplicity that the solutions are complete. We then have the following stability
result:

Theorem (Persistent flowing [GST12])

Let A ⊂ Rd be closed. Assume that there exist a function V : C̄ ∪D 7→ R that is
continuously differentiable on an open set containing C̄ (i.e. the closure of C), functions
α1, α2 ∈ K∞ and a continuous positive definite function α3 such that

(a) α1(|χ|A) ≤ V (x) ≤ α2(|χ|A) for all χ ∈ C̄ ∪D;

(b) 〈∇V (χ), f〉 ≤ −α3(|χ|A) for all χ ∈ C and f ∈ F (χ);

(c) V (g)− V (χ) ≤ 0 for all χ ∈ D and g ∈ G(χ).

Assume further that for each r > 0, there exists a γr ∈ K∞ and an Nr ≥ 0 such that for
every solution φ to the system (15), we have that |φ(0, 0)|A ∈ (0, r], (t, j) ∈ domφ,
t+ j ≥ T imply t ≥ γr(T )−Nr, then A is uniformly globally asymptotically stable for
the system (15).
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Proof

Assume that the full trajectory of T (t) is known.

This is possible since T (t) is independent of the other components of the state of the
system (9).

Then, there exists a Tmax <∞ such that T̄ ≤ T (t) ≤ Tmax for all t ≥ 0.

Define then the set A = {0} × P × ((E< ∪ E=) ∩ [0, Tmax]2)

Note that the LPV system (6) with parameter trajectories in P>T̄ is asymptotically stable
if and only if the set A is asymptotically stable for the system (9).

To prove the stability of this set, let us consider the Lyapunov function

V (x, τ, ρ) =

{
xTS(τ, ρ)x if τ ≤ T̄ ,
xTS(T̄ , ρ)x if τ > T̄ .

(16)

where S(τ, ρ) � 0 for all τ ∈ [0, T̄max] and all ρ ∈ P.

Applying then the conditions of Theorem 6 yields the result.
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Connection with quadratic and robust stability

Theorem (Quadratic stability)

When T̄ → 0 in the minimum dwell-time theorem, then we recover the quadratic stability
condition

A(θ)TP + PA(θ) ≺ 0, θ ∈ P. (17)

Theorem (Robust stability)

When T̄ →∞, then we recover the robust stability condition

N∑
i=1

∂ρiP (θ)µi +A(θ)TP (θ) + P (θ)A(θ) ≺ 0, θ ∈ P, µ ∈ D. (18)
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Computational aspects [Par00, PAV+13]

We say that a symmetric polynomial matrix M(θ), θ ∈ RN , is an SOS matrix if there
exists a matrix Q(θ) such that M(θ) = Q(θ)TQ(θ). An SOS matrix is positive
semidefinite for all θ ∈ RN . Checking whether M(θ) is an SOS matrix can be cast as an
SDP [Par00]

Now assume that we would like to prove that a matrix M(θ) is positive semidefinite for all
θ ∈ P where P is defined as

P :=
{
θ ∈ RN : gi(θ) ≥ 0, i = 1, . . . , b

}
, gi’s are polynomials. (19)

This is true if we can find SOS matrices Γi(θ), i = 1, . . . , b, such that the matrix

M(θ)−
b∑
i=1

Γi(θ)gi(θ) is an SOS matrix. (20)

If the above condition holds, then

M(θ) �
b∑
i=1

Γi(θ)gi(θ) (21)

where the right-hand side is positive semidefinite for all θ ∈ P.

The package SOSTOOLS [PAV+13] can be used to formalize and check SOS conditions
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Example 1

System

Let us consider the system [XSF97]

ẋ =

[
0 1

−2− ρ −1

]
x (22)

where ρ(t) ∈ P = [0, ρ̄], ρ̄ > 0.

It is known [XSF97] that this system is quadratically stable if and only if ρ̄ ≤ 3.828

This bound can be improved in the case of piecewise constant parameters provided
that discontinuities do not occur too often [Bri15b].

Results

We choose polynomials of order 4, which corresponds to an SDP with 2409 primal
variables and 315 dual variables.

Building this program takes 6.04 seconds while solving it takes 1.25 second.
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Example 1
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Figure: Evolution of the computed minimum upper-bound on the minimum stability-preserving minimum
dwell-time with |ρ̇| ≤ ν using an SOS approach with polynomials of degree 4.
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Example 2

Let us consider the system [Wu95]

ẋ =


3/4 2 ρ1 ρ2
0 1/2 −ρ2 ρ1

−3υρ1/4 υ (ρ2 − 2ρ1) −υ 0
−3υρ2/4 υ (ρ1 − 2ρ2) 0 −υ

x (23)

where υ = 15/4 and ρ ∈ P = {z ∈ R2 : ||z||2 = 1}. This system is not quadratically
stable.

We define ρ1(t) = cos(β(t)) and ρ2(t) = sin(β(t)) where β(t) is piecewise differentiable.

Differentiating these equalities yields ρ̇1(t) = −β̇(t)ρ2(t) and ρ̇2(t) = β̇(t)ρ1(t) where
β̇(t) ∈ [−ν, ν], ν ≥ 0,

Table: Evolution of the computed minimum upper-bound on the minimum dwell-time with |β̇| ≤ ν using
an SOS approach with polynomials of degree d. The number of primal/dual variables of the semidefinite
program and the preprocessing/solving time are also given.

ν = 0 ν = 0.1 ν = 0.3 ν = 0.5 ν = 0.8 ν = 0.9 p/d vars. time (sec)

d = 2 2.7282 2.9494 3.5578 4.6317 11.6859 26.1883 9820/1850 20/27
d = 4 1.7605 1.8881 2.2561 2.9466 6.4539 num. err. 43300/4620 212/935
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Setup

System

Let us consider the LPV system

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)
x(0) = x0.

Control laws

Continuous-time controllers

u(t) =

{
K(t− tk, ρ(tk))x(t), t ∈ [tk, tk + T̄ )
K(T̄ , ρ(tk))x(t), t ∈ [tk + T̄ , tk+1)

(24)

where {tk}k∈Z>0
is the sequence of time instants at which the parameter vector

changes value.

Sampled-data controllers

u(tk + τ) = K1(ρ(tk))x(tk) +K2(ρ(tk))u(tk), τ ∈ (0, Tk], Tk ∈ [Tmin, Tmax] (25)

where {tk}k∈Z>0
is the sequence of time instants at which the control is updated.
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(24)

where {tk}k∈Z>0
is the sequence of time instants at which the parameter vector

changes value.
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Continuous state-feedback control - Minimum dwell-time

Theorem
Let T̄ > 0 be given. Assume that there exist matrix-valued functions
U : [0, T̄ ]× P → Rm×n and S̃ : [0, T̄ ]× P → Sn�0 such that the conditions

−∂τ S̃(τ, θ)− ∂ρS̃(τ, θ)ν + Sym[A(θ)S̃(τ, θ) +B(θ)U(τ, θ)] � 0 (26)

Sym[A(θ)S̃(T̄ , θ) +B(θ)U(T̄ , θ)] ≺ 0, (27)

and
S̃(T̄ , η)− S̃(0, θ) ≺ 0 (28)

hold for all θ, η ∈ P and all τ ∈ [0, T̄ ].

Then the closed-loop LPV system is asymptotically stable for all ρ ∈P
>T̄

, and a suitable

controller gain is moreover given by

K(τ, θ) = U(τ, θ)S̃(τ, θ)−1. (29)
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Example

System

ẋ =

[
3− θ 1
1− θ 2 + θ

]
x+

[
1

1 + θ

]
u, θ ∈ P = [0, 1], D = [−ν, ν]. (30)

Proposition

No control law of the form u = K(θ)x can quadratically stabilize the system (30).

Proof

Quadratically stabilizable if and only if the LMI (elimination lemma)

L(θ) := B⊥(θ)[A(θ)P + PA(θ)T ]B⊥(θ)T ≺ 0

is feasible for all θ ∈ [0, 1] where B⊥(θ) =
[
1 + θ −1

]
.

Assume it is stabilizable, then L(0) ≺ 0 and L(1) ≺ 0.

This implies that there exists a p ∈ R such that

f1(p) = p2 − 3p+ 2 < 0 and f2(p) = p2 − 6p+ 8 < 0.

But f1(p) < 0⇔ p ∈ (1, 2) and f2(p) < 0⇔ p ∈ (2, 4), a contradiction.
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Example

We pick T̄ = 0.1

Conditions are feasible for ν ∈ {0, 0.1, 0.3} for d = 2 and ν ∈ {0.5, 0.7, 0.9, 1, 2} for d = 3.

When d = 2 the number of primal/dual variables is 834/180 whereas, when d = 3, this
number is 2414/315.

When d = 2, it takes roughly 2.62sec; when d = 3, it takes around 6.31sec.

We consider the parameter trajectory

ρ(tk + τ) =
1 + sin(2ν(tk + τ) + ϕk)

2
, ϕk ∈ U(0, 2π), τ ∈ (0, Tk], k ∈ Z≥0. (31)

We get the following result
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Corentin Briat, D-BSSE@ETH-Zürich MOSAR Seminar, Strasbourg, France 23 / 33



Outline

1 Introduction

2 Stability analysis of LPV systems with piecewise differentiable parameters

3 Stabilization using continuous-time gain-scheduled state-feedback controllers

4 Stabilization using sampled-data gain-scheduled state-feedback controllers

5 Concluding statements

Corentin Briat, D-BSSE@ETH-Zürich MOSAR Seminar, Strasbourg, France 23 / 33



A preliminary stability result

We are interested here in deriving a stability result under a range dwell-time constraint for
the sequence of jumping instants, that is, for all sequences of jumping instants in

T :=

{
{tk}k∈Z>0

∣∣∣∣ tk+1 − tk ∈ [Tmin, Tmax],
t0 = 0, k ∈ Z≥0

}
(32)

for some 0 ≤ Tmin ≤ Tmax <∞.

The corresponding hybrid system is given by
ẋ(t) = A(ρ(t))x(t)
ρ̇(t) ∈ Q(ρ(t))
τ̇(t) = 1

Ṫ (t) = 0

∣∣∣∣∣∣∣∣ if (x(t), ρ(t), τ(t), T (t)) ∈ C


x(t+) = J(ρ(t))x(t)
ρ(t+) = ρ(t)
τ(t+) = 0
T (t+) ∈ [Tmin, Tmax]

∣∣∣∣∣∣∣∣ if (x(t), ρ(t), τ(t), T (t)) ∈ D


(33)

where
C = Rn × P × E<,
D = Rn × P × E=,
E� = {φ ∈ R≥0 × [Tmin, Tmax] : φ1�φ2}, � ∈ {<,=}.

(34)
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General result

Theorem (Range dwell-time)

Let the scalars 0 < Tmin ≤ Tmax <∞ be given and assume that there exist a bounded
continuously differentiable matrix-valued function S : [0, Tmax]× P 7→ Sn�0 and a scalar
ε > 0 such that the conditions

− ∂τS(τ̃ , θ) + ∂ρS(τ̃ , θ)µ+ Sym[S(τ̃ , θ)A(θ)] � 0 (35)

and
J(θ)S(σ, θ)J(θ)− S(0, θ) + εIn � 0 (36)

hold for all θ ∈ P, all µ ∈ D, all τ̃ ∈ [0, Tmax] and all σ ∈ [Tmin, Tmax].

Then, the LPV
system with parameter trajectories in

P∞ :=
{
ρ : R≥0 7→ P

∣∣ ρ̇(t) ∈ Q(ρ(t)), t ≥ 0
}
. (37)

is asymptotically stable under the range dwell-time condition [Tmin, Tmax]; i.e. for all
sequences of jumping instants in T .
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Problem formulation

The sampled-data control input is assumed to be

u(tk + τ) = K1(ρ(tk))x(tk) +K2(ρ(tk))u(tk), τ ∈ (0, Tk], Tk ∈ [Tmin, Tmax] (38)

where K1(·) ∈ Rm×n and K2(·) ∈ Rm×m are the gains to be determined.

The hybrid system associated with the closed-loop system
ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)
u̇(t) = 0
ρ̇(t) ∈ Q(ρ(t))
τ̇(t) = 1

Ṫ (t) = 0

∣∣∣∣∣∣∣∣∣∣
if (z(t), ρ(t), τ(t), T (t)) ∈ C


x(t+) = J(ρ(t))x(t)
u(t+) = K1(ρ(t))x(t) +K2(ρ(t))u(t)
ρ(t+) = ρ(t)
τ(t+) = 0
T (t+) ∈ [Tmin, Tmax]

∣∣∣∣∣∣∣∣∣ if (z(t), ρ(t), τ(t), T (t)) ∈ D


(39)

where z = (x, u) and

C = Rn+m × P × E<,
D = Rn+m × P × E=,
E = {φ ∈ R≥0 × [Tmin, Tmax] : φ1�φ2}, � ∈ {<,=}.

(40)
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Corentin Briat, D-BSSE@ETH-Zürich MOSAR Seminar, Strasbourg, France 26 / 33



Main result

Define

Ã(ρ) :=

[
A(ρ) B(ρ)

0 0

]
, J̃(ρ) :=

[
J(ρ) 0

0 0

]
, B̃ :=

[
0
Im

]
and K̃(ρ) :=

[
K1(ρ) K2(ρ)

]
.

Theorem
Let T̄ ∈ R>0 be given and assume that there exist a bounded continuously differentiable
matrix-valued function R : [0, Tmax]× P 7→ Sn+m�0 , a matrix-valued function

U : P 7→ Rm×(n+m) and a scalar ε > 0 such that the conditions

∂τR(τ̃ , θ)− ∂ρR(τ̃ , θ)µ+ Sym[Ã(θ)R(τ̃ , θ)] + εIn � 0 (41)

and [
R(σ, θ) J̃(θ)R(0, θ) + B̃U(θ)
? −R(0, θ)

]
� 0 (42)

hold for all θ ∈ P, all µ ∈ Dv , all τ̃ ∈ [0, Tmax] and all σ ∈ [Tmin, Tmax]. Then, the
sampled-data LPV system with parameter trajectories in P∞ is asymptotically stable
under the range dwell-time condition [Tmin, Tmax] (i.e. for all sequences of sampling
instants in T ) with the controller gain K̃(θ) = U(θ)R(T̄ , θ)−1.
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Example

Let us consider now the system [GMFP15]

ẋ =

[
0 1

0.1 0.4 + 0.6ρ

]
x+

[
0
1

]
u, P = [−1, 1], D = [−ν, ν]. (43)

Choosing d = 4, we can show that, for both ν = 0.2 and ν = 1, we can find a controller
that stabilizes the system for all Tk ∈ [0.001, 1.3] in approximately 25sec

In this case, the number of primal/dual variables is 9618/966.

For simulation purposes, we set Tmin = 0.001, Tmax = 0.4 for both ν = 0.2 and ν = 1,
and we design controllers with d = 2 (in this case, the number of primal/dual variables is
given by 3078/525 and the problem is solved in 7sec).

0 2 4 6 8 10 12
-2

-1

0

1
8 = 0:2

x1 x2 u

0 2 4 6 8 10 12
-2

-1

0

1
8 = 1

x1 x2 u
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Example

Let us consider now the system [GMFP15]

ẋ =

[
0 1

0.1 0.4 + 0.6ρ

]
x+

[
0
1

]
u, P = [−1, 1], D = [−ν, ν]. (43)
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Conclusions

Concluding statements

We can capture discontinuities in the parameters trajectories in a tractable way

Extend quadratic and robust stability

The framework of hybrid systems is unifying as it can capture complex behaviors

Applies to deterministic/stochastic impulsive/switched/sampled-data systems (and
their variations)

What else can be done ?

Dissipativity analysis → IQC, multipliers, separators, scalings

Performance analysis, e.g. L2-performance

Nonlinear systems, Homogeneous Lyapunov functions (on the basis of a potential
variation of the converse results in [Wir05])

Toolbox (underway)

An open question

Is it possible to obtain tractable conditions for the design a dynamic output feedback?
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Thanks everyone for your attention!

Any questions?
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