

Stability analysis and stabilization of jump LPV systems with piecewise differentiable parameters using continuous and sampled-data controllers

Corentin Briat

ㅋHzürich

Outline

1 Introduction

2 Stability analysis of LPV systems with piecewise differentiable parameters

3 Stabilization using continuous-time gain-scheduled state-feedback controllers

4 Stabilization using sampled-data gain-scheduled state-feedback controllers

5 Concluding statements

EHzürich

Outline

1 Introduction

2 Stability analysis of LPV systems with piecewise differentiable parameters

3 Stabilization using continuous-time gain-scheduled state-feedback controllers

4 Stabilization using sampled-data gain-scheduled state-feedback controllers

5 Concluding statements

ㅋHzürich

LPV systems

LPV systems

LPV systems are generically represented as

$$
\begin{equation*}
\dot{x}(t)=A(\rho(t)) x(t)+B(\rho(t)) u(t), x(0)=x_{0} \tag{1}
\end{equation*}
$$

where

- x and u are the state of the system and the control input
- $\rho(t) \in \mathcal{P}, \mathcal{P} \subset \mathbb{R}^{N}$ compact, is the value of the parameter vector at time t
- The matrix-valued functions $A(\cdot)$ and $B(\cdot)$ are "nice enough", i.e. continuous on \mathcal{P}

Rationale

- Can be used to approximate nonlinear systems [Sha88, BPB04]
- Can be used to model a wide variety of real-world processes [MS12, HW15, Bri15a]
- Convenient framework for the design gain-scheduled controllers [RS00]

ㅋHzürich

Quadratic stability [SGC97]

Definition

The LPV system

$$
\begin{align*}
\dot{x}(t) & =A(\rho(t)) x(t) \tag{2}\\
x(0) & =x_{0}
\end{align*}
$$

is said to be quadratically stable if $V(x)=x^{T} P x$ is a Lyapunov function for the system.

Theorem

The LPV system (2) is quadratically stable if and only if there exists a matrix $P \in \mathbb{S}_{\succ 0}^{n}$ such that the LMI

$$
\begin{equation*}
A(\theta)^{T} P+P A(\theta) \prec 0 \tag{3}
\end{equation*}
$$

holds for all $\theta \in \mathcal{P}$.

Remarks

- All the possible trajectories $\rho: \mathbb{R}_{\geq 0} \mapsto \mathcal{P}$ are (implicitly) considered (together with the assumption of existence of solutions)
- Semi-infinite dimensional LMI problem (can be checked using various methods)

EHzürich

Robust stability [Wu95]

Definition

The LPV system

$$
\begin{align*}
\dot{x}(t) & =A(\rho(t)) x(t) \tag{4}\\
x(0) & =x_{0}
\end{align*}
$$

with $\rho(t) \in \mathcal{P}$ and $\dot{\rho}(t) \in \mathcal{D}$, for some given compact sets $\mathcal{P}, \mathcal{D} \subset \mathbb{R}^{N}$, is said to be robustly stable if $V(x, \rho)=x^{T} P(\rho) x$ is a Lyapunov function for the system.

Theorem

The LPV system (4) is robustly stable if and only if there exists a differentiable matrix-valued function $P: \mathcal{P} \rightarrow \mathbb{S}_{\succ 0}^{n}$ such that the LMI

$$
\begin{equation*}
\sum_{i=1}^{N} \theta_{i}^{\prime} \partial_{\theta_{i}} P(\theta)+A(\theta)^{T} P(\theta)+P(\theta) A(\theta) \prec 0 \tag{5}
\end{equation*}
$$

holds for all $\theta \in \mathcal{P}$ and all $\theta^{\prime} \in \mathcal{D}$.

Remarks

- Trajectories of the parameters are continuously differentiable (can be relaxed)
- Infinite-dimensional LMI problem (can be approximately checked)

ㅋHzürich

Summary

Some remarks

- Two main classes of parameter trajectories associated with two main stability concepts
- But these classes are very far apart!
- Parameter trajectories are defined in a very loose/restrictive way
- The accuracy of the tools developed for periodic, switched and Markov jump systems stems from the fact that they are tailor-made
- In the end, LPV systems suffer from a very vague description which may prevent the development of accurate tools

태zürich

Summary

Some remarks

- Two main classes of parameter trajectories associated with two main stability concepts
- But these classes are very far apart!
- Parameter trajectories are defined in a very loose/restrictive way
- The accuracy of the tools developed for periodic, switched and Markov jump systems stems from the fact that they are tailor-made
- In the end, LPV systems suffer from a very vague description which may prevent the development of accurate tools

Issues

- What if we consider piecewise differentiable parameters?
- Robust stability not applicable and quadratic stability too conservative
- So, we need something else!

ㅋHzürich

LPV systems with piecewise differentiable parameters

Class of parameters

- Piecewise differentiable with aperiodic discontinuities

태zürich

LPV systems with piecewise differentiable parameters

Class of parameters

- Piecewise differentiable with aperiodic discontinuities

Stability results

- Stability condition using hybrid systems method \rightarrow minimum dwell-time condition
- Connections with quadratic and robust stability
- Example

GHzürich

LPV systems with piecewise differentiable parameters

Class of parameters

- Piecewise differentiable with aperiodic discontinuities

Stability results

- Stability condition using hybrid systems method \rightarrow minimum dwell-time condition
- Connections with quadratic and robust stability
- Example

Stabilization results

- Continuous-time controllers
- Sampled-data controllers [TGW02, RMG12, GMFP15]
- Examples

EHzürich

Outline

1 Introduction

2 Stability analysis of LPV systems with piecewise differentiable parameters

3 Stabilization using continuous-time gain-scheduled state-feedback controllers

4 Stabilization using sampled-data gain-scheduled state-feedback controllers

5 Concluding statements

EIHzürich

Preliminaries

Let us consider the LPV system

$$
\begin{equation*}
\dot{x}(t)=A(\rho(t)) x(t), x(0)=x_{0} \tag{6}
\end{equation*}
$$

with parameter trajectories ρ in $\mathscr{P}_{\geqslant \bar{T}}$ where

$$
\mathscr{P}_{\geqslant \bar{T}}:=\left\{\begin{array}{l|c}
\rho: \mathbb{R}_{\geq 0} \mapsto \mathcal{P} & \begin{array}{c}
\dot{\rho}(t) \in \mathcal{Q}(\rho(t)), t \in\left[t_{k}, t_{k+1}\right) \\
T_{k} \geq \bar{T}, \rho\left(t_{k}\right) \neq \rho\left(t_{k}^{+}\right) \in \mathcal{P}, k \in \mathbb{Z}_{\geq 0}
\end{array} \tag{7}
\end{array}\right\}
$$

where $\rho\left(t_{k}^{+}\right):=\lim _{s \downarrow t_{k}} \rho(s), t_{0}=0$ (no jump at t_{0}), $T_{k}:=t_{k+1}-t_{k}, \bar{T}>0$,

$$
\begin{array}{ll}
\mathcal{P}=: & \mathcal{P}_{1} \times \ldots \times \mathcal{P}_{N}, \mathcal{P}_{i}:=\left[\rho_{i}, \bar{\rho}_{i}\right], \underline{\rho}_{i} \leq \bar{\rho}_{i}, i=1, \ldots, N \\
\mathcal{D}=: & \mathcal{D}_{1} \times \ldots \times \mathcal{D}_{N}, \mathcal{D}_{i}:=\left[\underline{b}_{i}, \bar{\nu}_{i}\right], \underline{L}_{i} \leq \bar{\nu}_{i}, i=1, \ldots, N
\end{array}
$$

and $\mathcal{Q}(\rho)=\mathcal{Q}_{1}(\rho) \times \ldots \times \mathcal{Q}_{N}(\rho)$ with

$$
\mathcal{Q}_{i}(\rho):=\left\{\begin{array}{cl}
\mathcal{D}_{i} & \text { if } \rho_{i} \in\left(\underline{\rho}_{i}, \bar{\rho}_{i}\right), \tag{8}\\
\mathcal{D}_{i} \cap \mathbb{R}_{\geq 0} & \text { if } \rho_{i}=\bar{\rho}_{i}, \\
\mathcal{D}_{i} \cap \mathbb{R}_{\leq 0} & \text { if } \rho_{i}=\bar{\rho}_{i}
\end{array}\right.
$$

EHzürich

Illustration

- Minimum dwell-time $\bar{T}=3.3$
- Discontinuities separated by at least $\bar{T}=3.3$ seconds

ElHzürich

System reformulation

- The key idea is to reformulate the system in a way that will allow us to capture the both the dynamics of the system and the dynamics of the parameters.

EIHzürich

System reformulation

- The key idea is to reformulate the system in a way that will allow us to capture the both the dynamics of the system and the dynamics of the parameters.
- Hence, we propose the following hybrid system formulation [GST12]

$$
\left\{\begin{array}{l}
\dot{x}(t)=A(\rho(t)) x(t) \tag{9}\\
\dot{\rho}(t) \in \mathcal{Q}(\rho(t)) \\
\dot{\tau}(t)=1 \\
\dot{T}(t)=0
\end{array}\right]
$$

where

$$
\begin{align*}
C & =\mathbb{R}^{n} \times \mathcal{P} \times E_{<} \\
D & =\mathbb{R}^{n} \times \mathcal{P} \times E_{=} \tag{10}\\
E_{\square} & =\left\{\varphi \in \mathbb{R}_{\geq 0} \times[\bar{T}, \infty): \varphi_{1} \square \varphi_{2}\right\}, \square \in\{<,=\}
\end{align*}
$$

and

$$
\begin{equation*}
(x(0), \rho(0), \tau(0), T(0)) \in \mathbb{R}^{n} \times \mathcal{P} \times\{0\} \times[\bar{T}, \infty) \tag{11}
\end{equation*}
$$

배zürich

Illustration

- Let the t_{k} 's be the time instants for which $\tau\left(t_{k}\right)=T\left(t_{k}\right)$
- We consider a parameter trajectory given by $\rho(t)=(1+\sin (t+\phi(t))) / 2$ where $\phi(t)=\phi_{k}$, $t \in\left[t_{k}, t_{k+1}\right)$ and the ϕ_{k} 's are uniform random variables taking values in $[0,2 \pi]$
- At each t_{k}, a new value for ϕ_{k} is drawn, which introduces a discontinuity in the parameter trajectory

ㅋHzürich

Main result

Theorem (Minimum dwell-time)
Let $\bar{T} \in \mathbb{R}_{>0}$ be given and assume that there exist a bounded continuously differentiable matrix-valued function $S:[0, \bar{T}] \times \mathcal{P} \mapsto \mathbb{S}_{\succ 0}^{n}$ and a scalar $\varepsilon>0$ such that the conditions

$$
\begin{gather*}
\partial_{\tau} S(\tau, \theta)+\sum_{i=1}^{N} \partial_{\rho_{i}} S(\tau, \theta) \mu_{i}+\operatorname{Sym}[S(\tau, \theta) A(\theta)]+\varepsilon I \preceq 0 \tag{12}\\
\sum_{i=1}^{N} \partial_{\rho_{i}} S(\bar{T}, \theta) \mu_{i}+\operatorname{Sym}[S(\bar{T}, \theta) A(\theta)]+\varepsilon I \preceq 0 \tag{13}
\end{gather*}
$$

and

$$
\begin{equation*}
S(0, \theta)-S(\bar{T}, \eta) \preceq 0 \tag{14}
\end{equation*}
$$

hold for all $\theta, \eta \in \mathcal{P}, \mu \in \mathcal{D}$ and all $\tau \in[0, \bar{T}]$. Then, the LPV system (6) with parameter trajectories in $\mathscr{B}_{\bar{T}}$ is asymptotically stable.

- For a square matrix M, we define $\operatorname{Sym}[M]=M+M^{T}$

배zürich

Proof

Let us consider the system

$$
\begin{array}{rll}
\dot{\chi}(t) & \in & F(\chi(t)) \text { if } \chi(t) \in C \\
\chi\left(t^{+}\right) & \in & G(\chi(t)) \text { if } \chi(t) \in D \tag{15}
\end{array}
$$

where $\chi(t) \in \mathbb{R}^{d}, C \subset \mathbb{R}^{d}$ is open, $D \subset \mathbb{R}^{d}$ is compact and $G(D) \subset C$. The flow map and the jump map are the set-valued maps $F: C \rightrightarrows \mathbb{R}^{n}$ and $G: D \rightrightarrows C$, respectively. We also assume for simplicity that the solutions are complete. We then have the following stability result:

Theorem (Persistent flowing [GST12])

Let $\mathcal{A} \subset \mathbb{R}^{d}$ be closed. Assume that there exist a function $V: \bar{C} \cup D \mapsto \mathbb{R}$ that is continuously differentiable on an open set containing \bar{C} (i.e. the closure of C), functions $\alpha_{1}, \alpha_{2} \in \mathcal{K}_{\infty}$ and a continuous positive definite function α_{3} such that
(a) $\alpha_{1}\left(|\chi|_{\mathcal{A}}\right) \leq V(x) \leq \alpha_{2}\left(|\chi|_{\mathcal{A}}\right)$ for all $\chi \in \bar{C} \cup D$;
(b) $\langle\nabla V(\chi), f\rangle \leq-\alpha_{3}\left(|\chi|_{\mathcal{A}}\right)$ for all $\chi \in C$ and $f \in F(\chi)$;
(c) $V(g)-V(\chi) \leq 0$ for all $\chi \in D$ and $g \in G(\chi)$.

Assume further that for each $r>0$, there exists a $\gamma_{r} \in \mathcal{K}_{\infty}$ and an $N_{r} \geq 0$ such that for every solution ϕ to the system (15), we have that $|\phi(0,0)|_{\mathcal{A}} \in(0, r],(t, j) \in \operatorname{dom} \phi$, $t+j \geq T$ imply $t \geq \gamma_{r}(T)-N_{r}$, then \mathcal{A} is uniformly globally asymptotically stable for the system (15).

EIHzürich

Proof

- Assume that the full trajectory of $T(t)$ is known.
- This is possible since $T(t)$ is independent of the other components of the state of the system (9).
- Then, there exists a $T_{\max }<\infty$ such that $\bar{T} \leq T(t) \leq T_{\max }$ for all $t \geq 0$.

ㅋHzürich

Proof

- Assume that the full trajectory of $T(t)$ is known.
- This is possible since $T(t)$ is independent of the other components of the state of the system (9).
- Then, there exists a $T_{\max }<\infty$ such that $\bar{T} \leq T(t) \leq T_{\max }$ for all $t \geq 0$.
- Define then the set $\mathcal{A}=\{0\} \times \mathcal{P} \times\left(\left(E_{<} \cup E_{=}\right) \cap\left[0, T_{\text {max }}\right]^{2}\right)$
- Note that the LPV system (6) with parameter trajectories in $\mathscr{B}_{\bar{T}}$ is asymptotically stable if and only if the set \mathcal{A} is asymptotically stable for the system (9).

ㅋHzürich

Proof

- Assume that the full trajectory of $T(t)$ is known.
- This is possible since $T(t)$ is independent of the other components of the state of the system (9).
- Then, there exists a $T_{\max }<\infty$ such that $\bar{T} \leq T(t) \leq T_{\max }$ for all $t \geq 0$.
- Define then the set $\mathcal{A}=\{0\} \times \mathcal{P} \times\left(\left(E_{<} \cup E_{=}\right) \cap\left[0, T_{\text {max }}\right]^{2}\right)$
- Note that the LPV system (6) with parameter trajectories in $\mathscr{B}_{\bar{T}}$ is asymptotically stable if and only if the set \mathcal{A} is asymptotically stable for the system (9).
- To prove the stability of this set, let us consider the Lyapunov function

$$
V(x, \tau, \rho)= \begin{cases}x^{T} S(\tau, \rho) x & \text { if } \tau \leq \bar{T} \tag{16}\\ x^{T} S(\bar{T}, \rho) x & \text { if } \tau>\bar{T}\end{cases}
$$

where $S(\tau, \rho) \succ 0$ for all $\tau \in\left[0, \bar{T}_{\text {max }}\right]$ and all $\rho \in \mathcal{P}$.

- Applying then the conditions of Theorem 6 yields the result.

EIHzürich

Connection with quadratic and robust stability

Theorem (Quadratic stability)
When $\bar{T} \rightarrow 0$ in the minimum dwell-time theorem, then we recover the quadratic stability condition

$$
\begin{equation*}
A(\theta)^{T} P+P A(\theta) \prec 0, \theta \in \mathcal{P} . \tag{17}
\end{equation*}
$$

ㅋHzürich

Connection with quadratic and robust stability

Theorem (Quadratic stability)
When $\bar{T} \rightarrow 0$ in the minimum dwell-time theorem, then we recover the quadratic stability condition

$$
\begin{equation*}
A(\theta)^{T} P+P A(\theta) \prec 0, \theta \in \mathcal{P} . \tag{17}
\end{equation*}
$$

Theorem (Robust stability)
When $\bar{T} \rightarrow \infty$, then we recover the robust stability condition

$$
\begin{equation*}
\sum_{i=1}^{N} \partial_{\rho_{i}} P(\theta) \mu_{i}+A(\theta)^{T} P(\theta)+P(\theta) A(\theta) \prec 0, \theta \in \mathcal{P}, \mu \in \mathcal{D} . \tag{18}
\end{equation*}
$$

배zürich

Connection with quadratic and robust stability

Theorem (Quadratic stability)
When $\bar{T} \rightarrow 0$ in the minimum dwell-time theorem, then we recover the quadratic stability condition

$$
\begin{equation*}
A(\theta)^{T} P+P A(\theta) \prec 0, \theta \in \mathcal{P} . \tag{17}
\end{equation*}
$$

Theorem (Robust stability)
When $\bar{T} \rightarrow \infty$, then we recover the robust stability condition

$$
\begin{equation*}
\sum_{i=1}^{N} \partial_{\rho_{i}} P(\theta) \mu_{i}+A(\theta)^{T} P(\theta)+P(\theta) A(\theta) \prec 0, \theta \in \mathcal{P}, \mu \in \mathcal{D} . \tag{18}
\end{equation*}
$$

배zürich

Computational aspects [Par00, $\mathrm{PAV}^{+} 13$]

- We say that a symmetric polynomial matrix $M(\theta), \theta \in \mathbb{R}^{N}$, is an SOS matrix if there exists a matrix $Q(\theta)$ such that $M(\theta)=Q(\theta)^{T} Q(\theta)$. An SOS matrix is positive semidefinite for all $\theta \in \mathbb{R}^{N}$. Checking whether $M(\theta)$ is an SOS matrix can be cast as an SDP [Par00]
- Now assume that we would like to prove that a matrix $M(\theta)$ is positive semidefinite for all $\theta \in \mathcal{P}$ where \mathcal{P} is defined as

$$
\begin{equation*}
\mathcal{P}:=\left\{\theta \in \mathbb{R}^{N}: g_{i}(\theta) \geq 0, i=1, \ldots, b\right\}, g_{i} \text { 's are polynomials. } \tag{19}
\end{equation*}
$$

- This is true if we can find SOS matrices $\Gamma_{i}(\theta), i=1, \ldots, b$, such that the matrix

$$
\begin{equation*}
M(\theta)-\sum_{i=1}^{b} \Gamma_{i}(\theta) g_{i}(\theta) \text { is an SOS matrix. } \tag{20}
\end{equation*}
$$

- If the above condition holds, then

$$
\begin{equation*}
M(\theta) \succeq \sum_{i=1}^{b} \Gamma_{i}(\theta) g_{i}(\theta) \tag{21}
\end{equation*}
$$

where the right-hand side is positive semidefinite for all $\theta \in \mathcal{P}$.

- The package SOSTOOLS $\left[\mathrm{PAV}^{+} 13\right]$ can be used to formalize and check SOS conditions

배zürich

Example 1

System

- Let us consider the system [XSF97]

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \tag{22}\\
-2-\rho & -1
\end{array}\right] x
$$

where $\rho(t) \in \mathcal{P}=[0, \bar{\rho}], \bar{\rho}>0$.

- It is known [XSF97] that this system is quadratically stable if and only if $\bar{\rho} \leq 3.828$
- This bound can be improved in the case of piecewise constant parameters provided that discontinuities do not occur too often [Bri15b].

EIHzürich

Example 1

System

- Let us consider the system [XSF97]

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \tag{22}\\
-2-\rho & -1
\end{array}\right] x
$$

where $\rho(t) \in \mathcal{P}=[0, \bar{\rho}], \bar{\rho}>0$.

- It is known [XSF97] that this system is quadratically stable if and only if $\bar{\rho} \leq 3.828$
- This bound can be improved in the case of piecewise constant parameters provided that discontinuities do not occur too often [Bri15b].

Results

- We choose polynomials of order 4 , which corresponds to an SDP with 2409 primal variables and 315 dual variables.
- Building this program takes 6.04 seconds while solving it takes 1.25 second.

배zürich

Example 1

Figure: Evolution of the computed minimum upper-bound on the minimum stability-preserving minimum dwell-time with $|\dot{\rho}| \leq \nu$ using an SOS approach with polynomials of degree 4.

ㅋHzürich

Example 2

- Let us consider the system [Wu95]

$$
\dot{x}=\left[\begin{array}{cccc}
3 / 4 & 2 & \rho_{1} & \rho_{2} \tag{23}\\
0 & 1 / 2 & -\rho_{2} & \rho_{1} \\
-3 v \rho_{1} / 4 & v\left(\rho_{2}-2 \rho_{1}\right) & -v & 0 \\
-3 v \rho_{2} / 4 & v\left(\rho_{1}-2 \rho_{2}\right) & 0 & -v
\end{array}\right] x
$$

where $v=15 / 4$ and $\rho \in \mathcal{P}=\left\{z \in \mathbb{R}^{2}:\|z\|_{2}=1\right\}$. This system is not quadratically stable.
■ We define $\rho_{1}(t)=\cos (\beta(t))$ and $\rho_{2}(t)=\sin (\beta(t))$ where $\beta(t)$ is piecewise differentiable.

- Differentiating these equalities yields $\dot{\rho}_{1}(t)=-\dot{\beta}(t) \rho_{2}(t)$ and $\dot{\rho}_{2}(t)=\dot{\beta}(t) \rho_{1}(t)$ where $\dot{\beta}(t) \in[-\nu, \nu], \nu \geq 0$,

EHzürich

Example 2

- Let us consider the system [Wu95]

$$
\dot{x}=\left[\begin{array}{cccc}
3 / 4 & 2 & \rho_{1} & \rho_{2} \tag{23}\\
0 & 1 / 2 & -\rho_{2} & \rho_{1} \\
-3 v \rho_{1} / 4 & v\left(\rho_{2}-2 \rho_{1}\right) & -v & 0 \\
-3 v \rho_{2} / 4 & v\left(\rho_{1}-2 \rho_{2}\right) & 0 & -v
\end{array}\right] x
$$

where $v=15 / 4$ and $\rho \in \mathcal{P}=\left\{z \in \mathbb{R}^{2}:\|z\|_{2}=1\right\}$. This system is not quadratically stable.

- We define $\rho_{1}(t)=\cos (\beta(t))$ and $\rho_{2}(t)=\sin (\beta(t))$ where $\beta(t)$ is piecewise differentiable.
- Differentiating these equalities yields $\dot{\rho}_{1}(t)=-\dot{\beta}(t) \rho_{2}(t)$ and $\dot{\rho}_{2}(t)=\dot{\beta}(t) \rho_{1}(t)$ where $\dot{\beta}(t) \in[-\nu, \nu], \nu \geq 0$,

Table: Evolution of the computed minimum upper-bound on the minimum dwell-time with $|\dot{\beta}| \leq \nu$ using an SOS approach with polynomials of degree d. The number of primal/dual variables of the semidefinite program and the preprocessing/solving time are also given.

	$\nu=0$	$\nu=0.1$	$\nu=0.3$	$\nu=0.5$	$\nu=0.8$	$\nu=0.9$	p/d vars.	time (sec)
$d=2$	2.7282	2.9494	3.5578	4.6317	11.6859	26.1883	$9820 / 1850$	$20 / 27$
$d=4$	1.7605	1.8881	2.2561	2.9466	6.4539	num. err.	$43300 / 4620$	$212 / 935$

EHzürich

Outline

1 Introduction

2 Stability analysis of LPV systems with piecewise differentiable parameters

3 Stabilization using continuous-time gain-scheduled state-feedback controllers

4 Stabilization using sampled-data gain-scheduled state-feedback controllers

5 Concluding statements

배zürich

Setup

System

- Let us consider the LPV system

$$
\begin{aligned}
\dot{x}(t) & =A(\rho(t)) x(t)+B(\rho(t)) u(t) \\
x(0) & =x_{0}
\end{aligned}
$$

배zürich

Setup

System

- Let us consider the LPV system

$$
\begin{aligned}
& \dot{x}(t)=A(\rho(t)) x(t)+B(\rho(t)) u(t) \\
& x(0)=x_{0}
\end{aligned}
$$

Control laws

- Continuous-time controllers

$$
u(t)= \begin{cases}K\left(t-t_{k}, \rho\left(t_{k}\right)\right) x(t), & t \in\left[t_{k}, t_{k}+\bar{T}\right) \tag{24}\\ K\left(\bar{T}, \rho\left(t_{k}\right)\right) x(t), & t \in\left[t_{k}+\bar{T}, t_{k+1}\right)\end{cases}
$$

where $\left\{t_{k}\right\}_{k \in \mathbb{Z}_{>0}}$ is the sequence of time instants at which the parameter vector changes value.

배zürich

Setup

System

- Let us consider the LPV system

$$
\begin{aligned}
\dot{x}(t) & =A(\rho(t)) x(t)+B(\rho(t)) u(t) \\
x(0) & =x_{0} .
\end{aligned}
$$

Control laws

- Continuous-time controllers

$$
u(t)= \begin{cases}K\left(t-t_{k}, \rho\left(t_{k}\right)\right) x(t), & t \in\left[t_{k}, t_{k}+\bar{T}\right) \tag{24}\\ K\left(\bar{T}, \rho\left(t_{k}\right)\right) x(t), & t \in\left[t_{k}+\bar{T}, t_{k+1}\right)\end{cases}
$$

where $\left\{t_{k}\right\}_{k \in \mathbb{Z}_{>0}}$ is the sequence of time instants at which the parameter vector changes value.

- Sampled-data controllers

$$
\begin{equation*}
u\left(t_{k}+\tau\right)=K_{1}\left(\rho\left(t_{k}\right)\right) x\left(t_{k}\right)+K_{2}\left(\rho\left(t_{k}\right)\right) u\left(t_{k}\right), \tau \in\left(0, T_{k}\right], T_{k} \in\left[T_{\min }, T_{\max }\right] \tag{25}
\end{equation*}
$$

where $\left\{t_{k}\right\}_{k \in \mathbb{Z}_{>0}}$ is the sequence of time instants at which the control is updated.

EIHzürich

Continuous state-feedback control - Minimum dwell-time

Theorem

Let $\bar{T}>0$ be given. Assume that there exist matrix-valued functions
$U:[0, \bar{T}] \times \mathcal{P} \rightarrow \mathbb{R}^{m \times n}$ and $\tilde{S}:[0, \bar{T}] \times \mathcal{P} \rightarrow \mathbb{S}_{\succ 0}^{n}$ such that the conditions

$$
\begin{gather*}
-\partial_{\tau} \tilde{S}(\tau, \theta)-\partial_{\rho} \tilde{S}(\tau, \theta) \nu+\operatorname{Sym}[A(\theta) \tilde{S}(\tau, \theta)+B(\theta) U(\tau, \theta)] \preceq 0 \tag{26}\\
\operatorname{Sym}[A(\theta) \tilde{S}(\bar{T}, \theta)+B(\theta) U(\bar{T}, \theta)] \prec 0, \tag{27}
\end{gather*}
$$

and

$$
\begin{equation*}
\tilde{S}(\bar{T}, \eta)-\tilde{S}(0, \theta) \prec 0 \tag{28}
\end{equation*}
$$

hold for all $\theta, \eta \in \mathcal{P}$ and all $\tau \in[0, \bar{T}]$.
Then the closed-loop LPV system is asymptotically stable for all $\rho \in \mathscr{P}_{\geqslant \bar{T}}$, and a suitable controller gain is moreover given by

$$
\begin{equation*}
K(\tau, \theta)=U(\tau, \theta) \tilde{S}(\tau, \theta)^{-1} \tag{29}
\end{equation*}
$$

배zürich

Example

System

$$
\dot{x}=\left[\begin{array}{cc}
3-\theta & 1 \tag{30}\\
1-\theta & 2+\theta
\end{array}\right] x+\left[\begin{array}{c}
1 \\
1+\theta
\end{array}\right] u, \theta \in \mathcal{P}=[0,1], \mathcal{D}=[-\nu, \nu] .
$$

EHzürich

Example

System

$$
\dot{x}=\left[\begin{array}{cc}
3-\theta & 1 \tag{30}\\
1-\theta & 2+\theta
\end{array}\right] x+\left[\begin{array}{c}
1 \\
1+\theta
\end{array}\right] u, \theta \in \mathcal{P}=[0,1], \mathcal{D}=[-\nu, \nu] .
$$

Proposition

No control law of the form $u=K(\theta) x$ can quadratically stabilize the system (30).

EHzürich

Example

System

$$
\dot{x}=\left[\begin{array}{cc}
3-\theta & 1 \tag{30}\\
1-\theta & 2+\theta
\end{array}\right] x+\left[\begin{array}{c}
1 \\
1+\theta
\end{array}\right] u, \theta \in \mathcal{P}=[0,1], \mathcal{D}=[-\nu, \nu] .
$$

Proposition

No control law of the form $u=K(\theta) x$ can quadratically stabilize the system (30).

Proof

- Quadratically stabilizable if and only if the LMI (elimination lemma)

$$
L(\theta):=B_{\perp}(\theta)\left[A(\theta) P+P A(\theta)^{T}\right] B_{\perp}(\theta)^{T} \prec 0
$$

is feasible for all $\theta \in[0,1]$ where $B_{\perp}(\theta)=\left[\begin{array}{ll}1+\theta & -1\end{array}\right]$.

EHzürich

Example

System

$$
\dot{x}=\left[\begin{array}{cc}
3-\theta & 1 \tag{30}\\
1-\theta & 2+\theta
\end{array}\right] x+\left[\begin{array}{c}
1 \\
1+\theta
\end{array}\right] u, \theta \in \mathcal{P}=[0,1], \mathcal{D}=[-\nu, \nu] .
$$

Proposition

No control law of the form $u=K(\theta) x$ can quadratically stabilize the system (30).

Proof

- Quadratically stabilizable if and only if the LMI (elimination lemma)

$$
L(\theta):=B_{\perp}(\theta)\left[A(\theta) P+P A(\theta)^{T}\right] B_{\perp}(\theta)^{T} \prec 0
$$

is feasible for all $\theta \in[0,1]$ where $B_{\perp}(\theta)=\left[\begin{array}{ll}1+\theta & -1\end{array}\right]$.

- Assume it is stabilizable, then $L(0) \prec 0$ and $L(1) \prec 0$.

EHzürich

Example

System

$$
\dot{x}=\left[\begin{array}{cc}
3-\theta & 1 \tag{30}\\
1-\theta & 2+\theta
\end{array}\right] x+\left[\begin{array}{c}
1 \\
1+\theta
\end{array}\right] u, \theta \in \mathcal{P}=[0,1], \mathcal{D}=[-\nu, \nu] .
$$

Proposition

No control law of the form $u=K(\theta) x$ can quadratically stabilize the system (30).

Proof

- Quadratically stabilizable if and only if the LMI (elimination lemma)

$$
L(\theta):=B_{\perp}(\theta)\left[A(\theta) P+P A(\theta)^{T}\right] B_{\perp}(\theta)^{T} \prec 0
$$

is feasible for all $\theta \in[0,1]$ where $B_{\perp}(\theta)=\left[\begin{array}{ll}1+\theta & -1\end{array}\right]$.

- Assume it is stabilizable, then $L(0) \prec 0$ and $L(1) \prec 0$.
- This implies that there exists a $p \in \mathbb{R}$ such that

$$
f_{1}(p)=p^{2}-3 p+2<0 \quad \text { and } \quad f_{2}(p)=p^{2}-6 p+8<0
$$

EHzürich

Example

System

$$
\dot{x}=\left[\begin{array}{cc}
3-\theta & 1 \tag{30}\\
1-\theta & 2+\theta
\end{array}\right] x+\left[\begin{array}{c}
1 \\
1+\theta
\end{array}\right] u, \theta \in \mathcal{P}=[0,1], \mathcal{D}=[-\nu, \nu] .
$$

Proposition

No control law of the form $u=K(\theta) x$ can quadratically stabilize the system (30).

Proof

- Quadratically stabilizable if and only if the LMI (elimination lemma)

$$
L(\theta):=B_{\perp}(\theta)\left[A(\theta) P+P A(\theta)^{T}\right] B_{\perp}(\theta)^{T} \prec 0
$$

is feasible for all $\theta \in[0,1]$ where $B_{\perp}(\theta)=\left[\begin{array}{ll}1+\theta & -1\end{array}\right]$.

- Assume it is stabilizable, then $L(0) \prec 0$ and $L(1) \prec 0$.
- This implies that there exists a $p \in \mathbb{R}$ such that

$$
f_{1}(p)=p^{2}-3 p+2<0 \quad \text { and } \quad f_{2}(p)=p^{2}-6 p+8<0
$$

- But $f_{1}(p)<0 \Leftrightarrow p \in(1,2)$ and $f_{2}(p)<0 \Leftrightarrow p \in(2,4)$, a contradiction.

ㅋHzürich

Example

- We pick $\bar{T}=0.1$

AIHzürich

Example

- We pick $\bar{T}=0.1$
- Conditions are feasible for $\nu \in\{0,0.1,0.3\}$ for $d=2$ and $\nu \in\{0.5,0.7,0.9,1,2\}$ for $d=3$.
- When $d=2$ the number of primal/dual variables is $834 / 180$ whereas, when $d=3$, this number is $2414 / 315$.
- When $d=2$, it takes roughly 2.62 sec ; when $d=3$, it takes around 6.31 sec .

AIHzürich

Example

- We pick $\bar{T}=0.1$
- Conditions are feasible for $\nu \in\{0,0.1,0.3\}$ for $d=2$ and $\nu \in\{0.5,0.7,0.9,1,2\}$ for $d=3$.
- When $d=2$ the number of primal/dual variables is $834 / 180$ whereas, when $d=3$, this number is $2414 / 315$.
- When $d=2$, it takes roughly 2.62 sec ; when $d=3$, it takes around 6.31 sec .
- We consider the parameter trajectory

$$
\begin{equation*}
\rho\left(t_{k}+\tau\right)=\frac{1+\sin \left(2 \nu\left(t_{k}+\tau\right)+\varphi_{k}\right)}{2}, \varphi_{k} \in \mathcal{U}(0,2 \pi), \tau \in\left(0, T_{k}\right], k \in \mathbb{Z}_{\geq 0} \tag{31}
\end{equation*}
$$

- We get the following result

日Hzürich

Example

- We pick $\bar{T}=0.1$
- Conditions are feasible for $\nu \in\{0,0.1,0.3\}$ for $d=2$ and $\nu \in\{0.5,0.7,0.9,1,2\}$ for $d=3$.
- When $d=2$ the number of primal/dual variables is $834 / 180$ whereas, when $d=3$, this number is $2414 / 315$.
- When $d=2$, it takes roughly 2.62 sec ; when $d=3$, it takes around 6.31 sec .
- We consider the parameter trajectory

$$
\begin{equation*}
\rho\left(t_{k}+\tau\right)=\frac{1+\sin \left(2 \nu\left(t_{k}+\tau\right)+\varphi_{k}\right)}{2}, \varphi_{k} \in \mathcal{U}(0,2 \pi), \tau \in\left(0, T_{k}\right], k \in \mathbb{Z}_{\geq 0} \tag{31}
\end{equation*}
$$

- We get the following result

EHzürich

Outline

1 Introduction

2 Stability analysis of LPV systems with piecewise differentiable parameters

3 Stabilization using continuous-time gain-scheduled state-feedback controllers

4 Stabilization using sampled-data gain-scheduled state-feedback controllers

5 Concluding statements

ㅋHzürich

A preliminary stability result

We are interested here in deriving a stability result under a range dwell-time constraint for the sequence of jumping instants, that is, for all sequences of jumping instants in

$$
\mathscr{T}:=\left\{\begin{array}{c|c}
\left\{t_{k}\right\}_{k \in \mathbb{Z}} & t_{k+1}-t_{k} \in\left[T_{\min }, T_{\max }\right] \tag{32}\\
t_{0}=0, k \in \mathbb{Z}_{\geq 0}
\end{array}\right\}
$$

for some $0 \leq T_{\min } \leq T_{\max }<\infty$.

EHzürich

A preliminary stability result

We are interested here in deriving a stability result under a range dwell-time constraint for the sequence of jumping instants, that is, for all sequences of jumping instants in

$$
\mathscr{T}:=\left\{\begin{array}{l|c}
\left\{t_{k}\right\}_{k \in \mathbb{Z}} \mid & t_{k+1}-t_{k} \in\left[T_{\min }, T_{\max }\right], \tag{32}\\
t_{0}=0, k \in \mathbb{Z}_{\geq 0}
\end{array}\right\}
$$

for some $0 \leq T_{\min } \leq T_{\max }<\infty$. The corresponding hybrid system is given by
where

$$
\begin{align*}
C & =\mathbb{R}^{n} \times \mathcal{P} \times E_{<}, \\
D & =\mathbb{R}^{n} \times \mathcal{P} \times E_{=}, \tag{34}\\
E_{\square} & =\left\{\phi \in \mathbb{R}_{\geq 0} \times\left[T_{\min }, T_{\max }\right]: \phi_{1} \square \phi_{2}\right\}, \square \in\{<,=\} .
\end{align*}
$$

EHzürich

General result

Theorem (Range dwell-time)
Let the scalars $0<T_{\min } \leq T_{\max }<\infty$ be given and assume that there exist a bounded continuously differentiable matrix-valued function $S:\left[0, T_{\max }\right] \times \mathcal{P} \mapsto \mathbb{S}_{\succ 0}^{n}$ and a scalar $\varepsilon>0$ such that the conditions

$$
\begin{equation*}
-\partial_{\tau} S(\tilde{\tau}, \theta)+\partial_{\rho} S(\tilde{\tau}, \theta) \mu+\operatorname{Sym}[S(\tilde{\tau}, \theta) A(\theta)] \preceq 0 \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
J(\theta) S(\sigma, \theta) J(\theta)-S(0, \theta)+\varepsilon I_{n} \preceq 0 \tag{36}
\end{equation*}
$$

hold for all $\theta \in \mathcal{P}$, all $\mu \in \mathcal{D}$, all $\tilde{\tau} \in\left[0, T_{\text {max }}\right]$ and all $\sigma \in\left[T_{\text {min }}, T_{\text {max }}\right]$.

배zürich

General result

Theorem (Range dwell-time)

Let the scalars $0<T_{\min } \leq T_{\max }<\infty$ be given and assume that there exist a bounded continuously differentiable matrix-valued function $S:\left[0, T_{\max }\right] \times \mathcal{P} \mapsto \mathbb{S}_{\succ 0}^{n}$ and a scalar $\varepsilon>0$ such that the conditions

$$
\begin{equation*}
-\partial_{\tau} S(\tilde{\tau}, \theta)+\partial_{\rho} S(\tilde{\tau}, \theta) \mu+\operatorname{Sym}[S(\tilde{\tau}, \theta) A(\theta)] \preceq 0 \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
J(\theta) S(\sigma, \theta) J(\theta)-S(0, \theta)+\varepsilon I_{n} \preceq 0 \tag{36}
\end{equation*}
$$

hold for all $\theta \in \mathcal{P}$, all $\mu \in \mathcal{D}$, all $\tilde{\tau} \in\left[0, T_{\text {max }}\right]$ and all $\sigma \in\left[T_{\text {min }}, T_{\text {max }}\right]$. Then, the LPV system with parameter trajectories in

$$
\begin{equation*}
\mathscr{P}_{\infty}:=\left\{\rho: \mathbb{R}_{\geq 0} \mapsto \mathcal{P} \mid \dot{\rho}(t) \in \mathcal{Q}(\rho(t)), t \geq 0 \quad\right\} . \tag{37}
\end{equation*}
$$

is asymptotically stable under the range dwell-time condition $\left[T_{\min }, T_{\max }\right]$; i.e. for all sequences of jumping instants in \mathscr{T}.

ㅋHzürich

Problem formulation

- The sampled-data control input is assumed to be

$$
\begin{equation*}
u\left(t_{k}+\tau\right)=K_{1}\left(\rho\left(t_{k}\right)\right) x\left(t_{k}\right)+K_{2}\left(\rho\left(t_{k}\right)\right) u\left(t_{k}\right), \tau \in\left(0, T_{k}\right], T_{k} \in\left[T_{\min }, T_{\max }\right] \tag{38}
\end{equation*}
$$

where $K_{1}(\cdot) \in \mathbb{R}^{m \times n}$ and $K_{2}(\cdot) \in \mathbb{R}^{m \times m}$ are the gains to be determined.

EHzürich

Problem formulation

- The sampled-data control input is assumed to be

$$
\begin{equation*}
u\left(t_{k}+\tau\right)=K_{1}\left(\rho\left(t_{k}\right)\right) x\left(t_{k}\right)+K_{2}\left(\rho\left(t_{k}\right)\right) u\left(t_{k}\right), \tau \in\left(0, T_{k}\right], T_{k} \in\left[T_{\min }, T_{\max }\right] \tag{38}
\end{equation*}
$$

where $K_{1}(\cdot) \in \mathbb{R}^{m \times n}$ and $K_{2}(\cdot) \in \mathbb{R}^{m \times m}$ are the gains to be determined.

- The hybrid system associated with the closed-loop system

$$
\begin{align*}
& \left\{\left.\begin{array}{l}
\dot{x}(t)=A(\rho(t)) x(t)+B(\rho(t)) u(t) \\
\dot{u}(t)=0 \\
\dot{\rho}(t) \in \mathcal{Q}(\rho(t)) \\
\dot{\tau}(t)=1 \\
\dot{T}(t)=0
\end{array} \right\rvert\, \text { if }(z(t), \rho(t), \tau(t), T(t)) \in C\right\} \tag{39}\\
& \left\{\left.\begin{array}{ll}
x\left(t^{+}\right)=J(\rho(t)) x(t) \\
u\left(t^{+}\right)=K_{1}(\rho(t)) x(t)+K_{2}(\rho(t)) u(t) \\
\rho\left(t^{+}\right)=\rho(t) \\
\tau\left(t^{+}\right)=0 \\
T\left(t^{+}\right) \in\left[T_{\text {min }}, T_{\text {max }}\right]
\end{array} \right\rvert\, \text { if }(z(t), \rho(t), \tau(t), T(t)) \in D\right\}
\end{align*}
$$

where $z=(x, u)$ and

$$
\begin{align*}
& C=\mathbb{R}^{n+m} \times \mathcal{P} \times E_{<}, \\
& D=\mathbb{R}^{n+m} \times \mathcal{P} \times E_{=}, \tag{40}\\
& E=\left\{\phi \in \mathbb{R}_{\geq 0} \times\left[T_{\text {min }}, T_{\text {max }}\right]: \phi_{1} \square \phi_{2}\right\}, \square \in\{<,=\} .
\end{align*}
$$

EIHzürich

Main result

Define

$$
\tilde{A}(\rho):=\left[\begin{array}{cc}
A(\rho) & B(\rho) \\
0 & 0
\end{array}\right], \tilde{J}(\rho):=\left[\begin{array}{cc}
J(\rho) & 0 \\
0 & 0
\end{array}\right], \tilde{B}:=\left[\begin{array}{c}
0 \\
I_{m}
\end{array}\right] \text { and } \tilde{K}(\rho):=\left[\begin{array}{ll}
K_{1}(\rho) & K_{2}(\rho)
\end{array}\right]
$$

배zürich

Main result

Define

$$
\tilde{A}(\rho):=\left[\begin{array}{cc}
A(\rho) & B(\rho) \\
0 & 0
\end{array}\right], \tilde{J}(\rho):=\left[\begin{array}{cc}
J(\rho) & 0 \\
0 & 0
\end{array}\right], \tilde{B}:=\left[\begin{array}{c}
0 \\
I_{m}
\end{array}\right] \text { and } \tilde{K}(\rho):=\left[\begin{array}{ll}
K_{1}(\rho) & K_{2}(\rho)
\end{array}\right] .
$$

Theorem

Let $\bar{T} \in \mathbb{R}_{>0}$ be given and assume that there exist a bounded continuously differentiable matrix-valued function $R:\left[0, T_{\max }\right] \times \mathcal{P} \mapsto \mathbb{S}_{\succ 0}^{n+m}$, a matrix-valued function $U: \mathcal{P} \mapsto \mathbb{R}^{m \times(n+m)}$ and a scalar $\varepsilon>0$ such that the conditions

$$
\begin{equation*}
\partial_{\tau} R(\tilde{\tau}, \theta)-\partial_{\rho} R(\tilde{\tau}, \theta) \mu+\operatorname{Sym}[\tilde{A}(\theta) R(\tilde{\tau}, \theta)]+\varepsilon I_{n} \preceq 0 \tag{41}
\end{equation*}
$$

and

$$
\left[\begin{array}{cc}
R(\sigma, \theta) & \tilde{J}(\theta) R(0, \theta)+\tilde{B} U(\theta) \tag{42}\\
\star & -R(0, \theta)
\end{array}\right] \preceq 0
$$

hold for all $\theta \in \mathcal{P}$, all $\mu \in \mathcal{D}^{v}$, all $\tilde{\tau} \in\left[0, T_{\max }\right]$ and all $\sigma \in\left[T_{\min }, T_{\max }\right]$.

ㅋHzürich

Main result

Define

$$
\tilde{A}(\rho):=\left[\begin{array}{cc}
A(\rho) & B(\rho) \\
0 & 0
\end{array}\right], \tilde{J}(\rho):=\left[\begin{array}{cc}
J(\rho) & 0 \\
0 & 0
\end{array}\right], \tilde{B}:=\left[\begin{array}{c}
0 \\
I_{m}
\end{array}\right] \text { and } \tilde{K}(\rho):=\left[\begin{array}{ll}
K_{1}(\rho) & K_{2}(\rho)
\end{array}\right] .
$$

Theorem

Let $\bar{T} \in \mathbb{R}_{>0}$ be given and assume that there exist a bounded continuously differentiable matrix-valued function $R:\left[0, T_{\max }\right] \times \mathcal{P} \mapsto \mathbb{S}_{\succ 0}^{n+m}$, a matrix-valued function $U: \mathcal{P} \mapsto \mathbb{R}^{m \times(n+m)}$ and a scalar $\varepsilon>0$ such that the conditions

$$
\begin{equation*}
\partial_{\tau} R(\tilde{\tau}, \theta)-\partial_{\rho} R(\tilde{\tau}, \theta) \mu+\operatorname{Sym}[\tilde{A}(\theta) R(\tilde{\tau}, \theta)]+\varepsilon I_{n} \preceq 0 \tag{41}
\end{equation*}
$$

and

$$
\left[\begin{array}{cc}
R(\sigma, \theta) & \tilde{J}(\theta) R(0, \theta)+\tilde{B} U(\theta) \tag{42}\\
\star & -R(0, \theta)
\end{array}\right] \preceq 0
$$

hold for all $\theta \in \mathcal{P}$, all $\mu \in \mathcal{D}^{v}$, all $\tilde{\tau} \in\left[0, T_{\max }\right]$ and all $\sigma \in\left[T_{\min }, T_{\max }\right]$. Then, the sampled-data LPV system with parameter trajectories in \mathscr{B}_{∞} is asymptotically stable under the range dwell-time condition $\left[T_{\min }, T_{\max }\right]$ (i.e. for all sequences of sampling instants in \mathscr{T}) with the controller gain $\tilde{K}(\theta)=U(\theta) R(\bar{T}, \theta)^{-1}$.

AIHzürich

Example

- Let us consider now the system [GMFP15]

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \tag{43}\\
0.1 & 0.4+0.6 \rho
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u, \mathcal{P}=[-1,1], \mathcal{D}=[-\nu, \nu] .
$$

- Choosing $d=4$, we can show that, for both $\nu=0.2$ and $\nu=1$, we can find a controller that stabilizes the system for all $T_{k} \in[0.001,1.3]$ in approximately 25 sec
- In this case, the number of primal/dual variables is 9618/966.

배zürich

Example

- Let us consider now the system [GMFP15]

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \tag{43}\\
0.1 & 0.4+0.6 \rho
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u, \mathcal{P}=[-1,1], \mathcal{D}=[-\nu, \nu] .
$$

- Choosing $d=4$, we can show that, for both $\nu=0.2$ and $\nu=1$, we can find a controller that stabilizes the system for all $T_{k} \in[0.001,1.3]$ in approximately 25 sec
- In this case, the number of primal/dual variables is 9618/966.
- For simulation purposes, we set $T_{\min }=0.001, T_{\max }=0.4$ for both $\nu=0.2$ and $\nu=1$, and we design controllers with $d=2$ (in this case, the number of primal/dual variables is given by 3078/525 and the problem is solved in 7sec).

배zürich

Example

- Let us consider now the system [GMFP15]

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \tag{43}\\
0.1 & 0.4+0.6 \rho
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u, \mathcal{P}=[-1,1], \mathcal{D}=[-\nu, \nu] .
$$

- Choosing $d=4$, we can show that, for both $\nu=0.2$ and $\nu=1$, we can find a controller that stabilizes the system for all $T_{k} \in[0.001,1.3]$ in approximately 25 sec
- In this case, the number of primal/dual variables is 9618/966.
- For simulation purposes, we set $T_{\min }=0.001, T_{\max }=0.4$ for both $\nu=0.2$ and $\nu=1$, and we design controllers with $d=2$ (in this case, the number of primal/dual variables is given by $3078 / 525$ and the problem is solved in 7 sec).

배zürich

Conclusions

Concluding statements

- We can capture discontinuities in the parameters trajectories in a tractable way
- Extend quadratic and robust stability
- The framework of hybrid systems is unifying as it can capture complex behaviors
- Applies to deterministic/stochastic impulsive/switched/sampled-data systems (and their variations)

ㅋHzürich

Conclusions

Concluding statements

- We can capture discontinuities in the parameters trajectories in a tractable way
- Extend quadratic and robust stability
- The framework of hybrid systems is unifying as it can capture complex behaviors
- Applies to deterministic/stochastic impulsive/switched/sampled-data systems (and their variations)

What else can be done?

■ Dissipativity analysis \rightarrow IQC, multipliers, separators, scalings

- Performance analysis, e.g. L_{2}-performance
- Nonlinear systems, Homogeneous Lyapunov functions (on the basis of a potential variation of the converse results in [Wir05])
- Toolbox (underway)

배zürich

Conclusions

Concluding statements

- We can capture discontinuities in the parameters trajectories in a tractable way
- Extend quadratic and robust stability
- The framework of hybrid systems is unifying as it can capture complex behaviors
- Applies to deterministic/stochastic impulsive/switched/sampled-data systems (and their variations)

What else can be done?

- Dissipativity analysis \rightarrow IQC, multipliers, separators, scalings
- Performance analysis, e.g. L_{2}-performance
- Nonlinear systems, Homogeneous Lyapunov functions (on the basis of a potential variation of the converse results in [Wir05])
- Toolbox (underway)

An open question

Is it possible to obtain tractable conditions for the design a dynamic output feedback?

ElHzürich

References I

F. Bruzelius, S. Petterssona, and C. Breitholz.

Linear parameter varying descriptions of nonlinear systems.
In American Control Conference, Boston, Massachussetts, 2004.
C. Briat.

Linear Parameter-Varying and Time-Delay Systems - Analysis, Observation, Filtering \& Control, volume 3 of Advances on Delays and Dynamics.
Springer-Verlag, Heidelberg, Germany, 2015.
C. Briat.

Stability analysis and control of LPV systems with piecewise constant parameters. Systems \& Control Letters, 82:10-17, 2015.
J. M. Gomes da Silva Jr., V. M. Moraes, J. V. Flores, and A. H. K. Palmeira.

Sampled-data LPV control: a looped functional approach.
In 1st IFAC Workshop on Linear Parameter Varying Systems, pages 19-24, 2015.

R. Goebel, R. G. Sanfelice, and A. R. Teel.

Hybrid Dynamical Systems. Modeling, Stability, and Robustness.
Princeton University Press, 2012.

EHzürich

References II

C. Hoffmann and H. Werner.

A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations.
IEEE Transactions on Control Systems, 23(2):416-433, 2015.
J. Mohammadpour and C. W. Scherer, editors.

Control of Linear Parameter Varying Systems with Applications.
Springer, New York, USA, 2012.
居
P. Parrilo.

Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization.
PhD thesis, California Institute of Technology, Pasadena, California, 2000.
A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo.
SOSTOOLS: Sum of squares optimization toolbox for MATLAB v3.00, 2013.
圊
A. Ramezanifar, J. Mohammadpour, and K. M. Grigoriadis.

Sampled-data control of LPV systems using input delay approach.
In 51st IEEE Conference on Decision and Control, pages 6303-6308, Maui, Hawaii, USA, 2012.

ElHzürich

References III

W．J．Rugh and J．S．Shamma．
Research on gain scheduling．
Automatica，36（10）：1401－1425， 2000.
C．W．Scherer，P．Gahinet，and M．Chilali．
Multiobjective output－feedback control via LMI optimization．
IEEE Transaction on Automatic Control，42（7）：896－911， 1997.
J．S．Shamma．
Analysis and design of gain－scheduled control systems．
PhD thesis，Laboratory for Information and decision systems－Massachusetts Institute of Technology， 1988.

K．Tan，K．M．Grigoriadis，and F．Wu．
Output－feedback control of LPV sampled－data systems．
International Journal of Control，75（4）：252－264， 2002.

F．Wirth．
A converse Lyapunov theorem for linear parameter－varying and linear switching systems．
SIAM Journal on Control and Optimization，44（1）：210－239， 2005.

ㅋHzürich

References IV

首 F. Wu.
Control of linear parameter varying systems.
PhD thesis, University of California Berkeley, 1995.
家
L. Xie, S. Shishkin, and M. Fu.

Piecewise Lyapunov functions for robust stability of linear time-varying systems. Systems \& Control Letters, 31(3):165-171, 1997.

Thanks everyone for your attention! Any questions?

