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Problem Statement
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What are cross-directional processes?

• Processes in which the variations of a variable in a profile orthogonal to
the direction of propagation of the variable are controlled

• Typical examples:

- rolling processes involved in paper machines

- plastic film extrusion

- metal forming

• Everything you want to know on such processes in a special issue of
IEE Proc - Control Theory Appl. in 2002, vol.149(5) (Guest editor: S.
Duncan)
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What are synchrotrons?

• Synchrotron light: electromagnetic
radiation emitted by charged particles
(electrons) that move at high speeds and
change direction

• Acceleration of the electrons in a
circumference storage ring in which they are
confined by magnetic fields

• Ring: succession of identical cells
involving straight sections and bending
magnets to curve the electron beam

• Synchrotrons are cross-directional plants
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Control problems associated to synchrotron systems

• Electron beam subjected to disturbance
B control by acting on magnet power

• Change in a single corrector magnet extends around the ring
B strong interactions

• Actuator saturations may strongly deteriorate the closed-loop behavior
B anti-windup strategies to mitigate those saturation effects

Static linear anti-windup scheme, acting on the controller state and
output equations
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Basic description of the system

• N spatially distributed dynamic actuators/sensors form plant P

y = p(z)Bu + d = B

[
p(z)

. . .
p(z)

]
sat(yc)︸ ︷︷ ︸

u

+d

• Using SVD of B matrix:

y = ΦΣΨTp(z)u + d = Φ(p(z)⊗ I )ΣΨTu + d
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dz
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• Allows to design a modular controller that works in the ”modal space”
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Controller C design reduces to linear SISO feedback

• Spatially distributed dynamic
actuators/sensors form plant P
• Using SVD:

y = B

[
p(z)

. . .
p(z)

]
sat(yc)︸ ︷︷ ︸

u

+d

= ΦΣΨTp(z)u + d

= Φ(p(z)⊗ I )ΣΨTu + d

• Controller C equally selected using
SVD:

yc = ΨΣ−1c(z)ΦT y

= ΨΣ−1

[
c(z)

. . .
c(z)

]
ΦT y

• Design of c(z) as SISO feedback ©
• Saturation mixes up everything §
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Controller C design reduces to linear SISO feedback

• Spatially distributed dynamic
actuators/sensors form plant P
• Using SVD:

y = B

[
p(z)

. . .
p(z)

]
sat(yc)︸ ︷︷ ︸

u

+d

= ΦΣΨTp(z)u + d

= Φ(p(z)⊗ I )ΣΨTu + d

• Controller C equally selected using
SVD:

yc = ΨΣ−1c(z)ΦT y

= ΨΣ−1

[
c(z)

. . .
c(z)

]
ΦT y

• Design of c(z) as SISO feedback ©
• Saturation mixes up everything §
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Static Anti-Windup
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Direct Linear static linear anti-windup design (LMI)
Mulder et al. [2001], Grimm et al. [2003], Gomes da Silva Jr and Tarbouriech [2005], Hu et al.
[2008]

P
d z

yc

sat(yc) y

+ Daw

CK

yc

v

dz(yc)

• Given P linear, C linear, design only

• linear anti-windup gain Daw =
[
Daw,1

Daw,2

]

• Performance objective:
given s, minimize γd→z(s) s.t.:
‖z‖2 ≤ γ‖d‖2 for all ‖d‖2 ≤ s

• Linear controller K equations

x+
c = Axc + By + Daw ,1(yc − sat(yc))

yc = Cxc + Dy + Daw ,2(yc − sat(yc))

• LMI-based design Mulder et al. [2001], Grimm

et al. [2003], Gomes da Silva Jr and Tarbouriech

[2005], Hu et al. [2008]

• Preserve of small signal response (Daw multiplies dz(yc) = yc − sat(yc))

Asymptotically recover large signal response (global not always possible)
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Compact representation of the closed-loop system

P
d z

yc

sat(yc) y

+ Daw

CK

yc

xcl

z
yc

d

v HDaw

dz(yc)
v

dz(yc)

sat(yc)
yc−

H :





x+
cl = Aclxcl + Bcl,s(yc − sat(yc)) + Bcl,vv + Bcl,dd

yc = Ccl,uxp + Dcl,us(yc − sat(yc)) + Dcl,uvv + Dcl,udd

z = Ccl,zxp + Dcl,zs (yc − sat(yc))︸ ︷︷ ︸
dz(yc )

+Dcl,zvv + Dcl,zdd ,
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Quadratic analysis conditions are convex
Mulder et al. [2001], Gomes da Silva Jr and Tarbouriech [2005], Hu et al. [2008]

Proposition 1A: Given the above description and s > 0, if the LMI problem

γ̂2(s) = min
{γ2,Q,Y ,U}

γ2 subject to Q = QT > 0, U > 0 diagonal,

He




AT
clQAcl−Q

2 Bcl,sU + Bcl,vDawU + Y T Bcl,d 0
Ccl,uQ (Dcl,us − I )U + Dcl,uvDawU Dcl,ud 0

0 0 −I/2 0

Ccl,zQ Dcl,zsU + Dcl,zvDawU Dcl,zd −γ
2

2 I


≺0,

[
Q Y[k]

T

Y[k] ū2/s2

]
� 0,

k = 1, . . . ,N

is feasible, then the following holds for the saturated closed-loop:

1 [Stab] the origin is locally exponentially stable (LES) with region
of attraction (RA) containing the set
E(Q, s) := {x : xTQ−1x ≤ s2};

2 [Reach] the reachable set from x(0) = 0 with ‖d‖2 ≤ s is
contained in E(Q, s);

3 [`2Perf] for each d such that ‖d‖2 ≤ s, the zero state solution
satisfies the `2 gain bound:

‖z‖2 ≤ γ̂(s)‖d‖2
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Quadratic analysis conditions easily lead to synthesis
Mulder et al. [2001], Gomes da Silva Jr and Tarbouriech [2005], Hu et al. [2008]

Proposition 1B: Given the above description and s > 0, if the LMI problem

γ̂2(s) = min
{γ2,Q,Y ,U}

γ2 subject to Q = QT > 0, U > 0 diagonal,

He




AT
clQAcl−Q

2 Bcl,sU + Bcl,vDawU + Y T Bcl,d 0
Ccl,uQ (Dcl,us − I )U + Dcl,uvDawU Dcl,ud 0

0 0 −I/2 0

Ccl,zQ Dcl,zsU + Dcl,zvDawU Dcl,zd −γ
2

2 I


≺0,

[
Q Y[k]

T

Y[k] ū2/s2

]
� 0,

k = 1, . . . ,N

is feasible, then the following holds for the saturated closed-loop:

1 [Stab] the origin is locally exponentially stable with region of
attraction containing the set E(Q, s) := {x : xTQ−1x ≤ s2};

2 [Reach] the reachable set from x(0) = 0 with ‖d‖2 ≤ s is
contained in E(Q, s);

3 [`2Perf] for each d such that ‖d‖2 ≤ s, the zero state solution
satisfies the `2 gain bound:

‖z‖2 ≤ γ̂(s)‖d‖2
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Quadratic synthesis conditions are convex
Mulder et al. [2001], Gomes da Silva Jr and Tarbouriech [2005], Hu et al. [2008]

Proposition 1C: Given the above description and s > 0, if the LMI problem

γ̂2(s) = min
{γ2,Q,Y ,U,X}

γ2 subject to Q = QT > 0, U > 0 diagonal,

He




AT
clQAcl−Q

2 Bcl,sU + Bcl,vX + Y T Bcl,d 0
Ccl,uQ (Dcl,us − I )U + Dcl,uvX Dcl,ud 0

0 0 −I/2 0

Ccl,zQ Dcl,zsU + Dcl,zvX Dcl,zd −γ
2

2 I


≺0,

[
Q Y[k]

T

Y[k] ū2/s2

]
� 0,

k = 1, . . . ,N

is feasible, then, selecting the static AW gain as
Daw = XU−1

1 [Stab] the origin is locally exponentially stable with region of
attraction containing the set E(Q, s) := {x : xTQ−1x ≤ s2};

2 [Reach] the reachable set from x(0) = 0 with ‖d‖2 ≤ s is
contained in E(Q, s);

3 [`2Perf] for each d such that ‖d‖2 ≤ s, the zero state solution
satisfies the `2 gain bound:

‖z‖2 ≤ γ̂(s)‖d‖2
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Cross-directional static anti-windup
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Recall two equivalent closed-loop schemes

. Model is based on a suitable Singular Value Decomposition (SVD)




p(z)
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p(z)


ΣΨT Φ

d
y
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c(z)
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. Equivalent dynamics highlights generalized nonlinearity
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Modal space representation of the closed-loop system

P
d z

ν

u y

+ Daw

CνK

ν

xcl

y

ν

d

v HDaw

dzψ(ν)
v

dzΨ(ν)

dzψ(ν)

satΨ(ν)

x+
cl = (Acl⊗IN)xcl + (Bcl,u⊗IN)dzΨ(ν) + (Bcl,v⊗IN)v + (Bcl,d⊗IN)ΦTd

ν = (Ccl,ν⊗IN)xcl + (Dcl,νu⊗IN)dzΨ(ν) + (Dcl,νv⊗IN)v + (Dcl,νd⊗IN)ΦTd

y = Φ
(
(Ccl,y⊗IN)xcl + (Dcl,yu⊗IN)dzΨ(ν) + (Dcl,yv⊗IN)v + (Dcl,yd⊗IN)ΦTd

)
+ d

with dzΨ(ν) := ΣΨTdz(ΨΣ−1ν).

. Select anti-windup action as:

v = DawdzΨ(ν) = DawΣΨTdz(ΨΣ−1ν)
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Modal space representation of the closed-loop system

P
d z

ν

u y

+ Daw

CνK

ν

xcl

y

ν

d

v HDaw

dzψ(ν)
v

dzΨ(ν)

dzψ(ν)

satΨ(ν)

x+
cl = Āclxcl + B̄cl,udzΨ(ν) + B̄cl,vv + B̄cl,dΦTd

ν = C̄cl,νxcl + D̄cl,νudzΨ(ν) + D̄cl,νvv + D̄cl,νdΦTd

y = Φ
(
C̄cl,yxcl + D̄cl,yudzΨ(ν) + D̄cl,yvv + D̄cl,ydΦTd

)

with dzΨ(ν) := ΣΨTdz(ΨΣ−1ν) and the anti-windup action

v = DawdzΨ(ν) = DawΣΨTdz(ΨΣ−1ν)
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Key lemma for static AW: generalized sector condition

. Original lemma stated regardless of SVD:

Lemma 1: Given diagonal W > 0, for any yc , h ∈ RN :

dz(h) = 0 ⇒ dz(yc)TW (yc − dz(yc) + h) ≥ 0

dz

dz(yc)

yc

. A transformed version based on the SVD is useful:

Lemma 2: Given orthogonal matrix Ψ, diagonal matrices

W > 0 and Σ > 0, denote W̄ := Σ−1ΨTWΨΣ−1 and

dzΨ(ν) := ΣΨTdz(ΨΣ−1ν)

Then for any ν, h ∈ RN :

dzΨ(h) = 0 ⇒ dzΨ(ν)T W̄ (ν − dzΨ(ν) + h) ≥ 0

. A “decentralized” selection is W = w0I ⇒ W̄ = w0Σ−2

dz

ν

dzΨ(ν)
ΣΨT

ΨΣ−1
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Quadratic synthesis conditions are still convex

Theorem 3. Given the above description and s > 0, If the LMI problem

γ̂2(s) = min
{γ2,Q,Y ,U,X}

γ2 subject to Q = QT > 0, U > 0 diagonal,

He




ĀT
clQĀcl−Q

2 B̄cl,uΣΨTUΨΣ + B̄cl,vX + Y T B̄cl,d 0
C̄cl,νQ (D̄cl,νu − I )ΣΨTUΨΣ + D̄cl,νvX D̄cl,νd 0

0 0 −I/2 0

C̄cl,yQ D̄cl,yuΣΨTUΨΣ + D̄cl,yvX D̄cl,yd −γ2

2 I


 ≺ 0,

[
Q Y[k]

T

Y[k] ū2/s2

]
� 0, for all k = 1, . . . ,N

is feasible, then, selecting the static AW gain as Daw = XΣ−1ΨTU−1ΨΣ−1

1 [Stab] the origin is LES with RA containing E(Q, s);
2 [Reach] the reachable set from x(0) = 0 with ‖d‖2 ≤ s is

contained in E(Q, s);
3 [`2Perf] for each d such that ‖d‖2 ≤ s, the zero state solution

satisfies the `2 gain bound ‖z‖2 ≤ γ̂(s)‖d‖2
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Conservatively reduce the number of constraints

Theorem 2. Given the above description and s > 0, If the LMI problem

γ̂2(s) = min
{γ2,Q,Y ,U,X}

γ2 subject to Q = QT > 0, U > 0 diagonal,

He




ĀT
clQĀcl−Q

2 B̄cl,uΣΨTUΨΣ + B̄cl,vX + Y T B̄cl,d 0
C̄cl,νQ (D̄cl,νu − I )ΣΨTUΨΣ + D̄cl,νvX D̄cl,νd 0

0 0 −I/2 0

C̄cl,yQ D̄cl,yuΣΨTUΨΣ + D̄cl,yvX D̄cl,yd −γ2

2 I


 ≺ 0,

[
Q Y T

Y ū2/s2I

]
� 0, (a single constraint now)

is feasible, then, selecting the static AW gain as Daw = XΣ−1ΨTU−1ΨΣ−1

1 [Stab] the origin is LES with RA containing E(Q, s);
2 [Reach] the reachable set from x(0) = 0 with ‖d‖2 ≤ s is

contained in E(Q, s);
3 [`2Perf] for each d such that ‖d‖2 ≤ s, the zero state solution

satisfies the `2 gain bound ‖z‖2 ≤ γ̂(s)‖d‖2
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Comments

• Proof of Theorem3:

Direct use of Proposition 1C and the generalized sector condition on
the SVD

AW conditions are considered with dΦ = Φd and yΦ = ΦT y

Since Φ is an orthogonal matrix, one obtains:

|dΦ|2 = dTΦΦTd = dTd = |d |2, and similarly |yΦ|2 = |y |2

• Proof of Theorem 2: The same + notice that

[
Q Y T

Y ū2/s2I

]
� 0, ⇒

[
Q Y[k]

T

Y[k] ū2/s2

]
� 0, for all k = 1, . . . ,N

23 / 33



Outline Problem Statement Static Anti-Windup Cross-directional AW Performance and complexity Summary References

Decentralized design for centralized compensation

Theorem 1. Given the above description and s > 0, If the LMI problem

γ̂2(s) = min
{γ2,Q0,Y0,u0,X}

γ2 subject to Q0 = Q0
T > 0, u0 > 0,

He




AT
clQ0Acl−Q0

2 Bcl,uu0 + Bcl,vX0 + Y0
T Bcl,d 0

Ccl,νQ0 (Dcl,νv − I )u0 + Dcl,νvX0 Dcl,νd 0
0 0 −I/2 0

Ccl,yQ0 Dcl,yuu0 + Dcl,yvX0 Dcl,yd −σ
2
mγ

2

2σ2
M
I


 ≺ 0,

[
Q0 Y0

T

Y0 ū2/(σ2
Ms2)

]
� 0, (it is a single input small system)

is feasible, then, selecting the static AW gain as Daw = u−1
0 X0 ⊗ In

1 [Stab] the origin is LEQ with RA containing the set E(Q, s);
2 [Reach] the reachable set from x(0) = 0 with ‖d‖2 ≤ s is

contained in E(Q, s);
3 [`2Perf] for each d such that ‖d‖2 ≤ s, the zero state solution

satisfies the `2 gain bound ‖z‖2 ≤ γ̂(s)‖d‖2
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Proof of Theorem 1

• AW conditions are considered with d̄ = Σ−1dΦ and ȳ = Σ−1yΦ

• The solution Q0,Y0,X0, u0 of Theorem 1 allows to build Q = Q0 ⊗ Σ2,
U = u0 ⊗ IN , Y = Y0 ⊗ Σ2; which allows to show that the Lyapunov
condition of Theorem 1 implies that one of Theorem 3.

• Similarly, for the sector condition, one uses the fact that

[
Q0 ⊗ Σ2 Y T

0 ⊗ Σ2

Y0 ⊗ Σ2 ū
s2 ⊗ IN

]
≥
[
Q0 ⊗ Σ2 Y T

0 ⊗ Σ2

Y0 ⊗ Σ2 ū
s2 ⊗ σ−2

M Σ2

]

=

[
Σ 0
0 Σ

] [
Q0 Y T

0

Y0
ū

(sσM )2

] [
Σ 0
0 Σ

]
≥ 0

• |y |2 = |yΦ|2 ≤ |Σ2||ȳ |2 ≤ |Σ|2γ̄2|d̄ |2
≤ |Σ2| σ

2
m

σ2
M
γ2|Σ−2||dΦ|2 = γ2|dΦ|2 = γ2|d |
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Performance and complexity discussed on an example
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Performance level and computational complexity

. Hierarchical relation among the three results:

Proposition. The optimal values of the three optimization problems in
Theorems 1, 2 and 3 satisfy:

γ2
1 ≥ γ2

2 ≥ γ2
3 .

. Comparative computational complexity among the three anti-windup
constructions

Result Number of variables Number of lines

Thm 1
(np+nc )(np+nc+3)

2 + nc + 3 2(np + nc) + 5

Thm 2
N(np+nc )(N(np+nc )+2N+1)

2 + N2(nc + 1) + N + 1 N(2(np + nc) + 5)

Thm 3
N(np+nc )(N(np+nc )+2N+1)

2 + N2(nc + 1) + N + 1 N((1 + N)(np + nc) + 5)

where N = number of sensors/actuators, np, nc = plant, controller order
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Sample numerical application to a synchrotron model
Gayadeen and Duncan [2013]

• Plant p(z) is order 8: first order response of the power supply units for
the corrector magnet and delay in the sensor data acquisition and
processing

p(z) =
0.3558

z8 − 0.6442z7

• (IMC-based) controller c(z) is order 9

c(z) =
q(z)

1− p(z)q(z)
, q(z) = 0.4

0.3741z − 0.241

z − 0.8669

• Bound on the magnitude saturation and maximum size of the
disturbance set as

u = 1 , s = 10

• Static map from the N actuators to the N sensors position issued from
a real machine from Diamond Light Source (small case with N = 4)

B =




0.5984 0.9022 −0.9192 1.0138
1.5123 0.7611 −0.7681 0.7771
−1.4066 −0.7489 0.6329 −0.6318

0.6533 0.2355 −0.1403 0.5424
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Comparisons of the theorems (complexity)

• Comparative synthesis computational time among the three anti-windup
constructions for various values of actuators/sensors configurations.

Theorem 1 Theorem 2 Theorem 3

nb var 182 706 706
N=2 nb lines 39 78 112

time (s) < 1 12 13

nb var 182 1573 1573
N=3 nb lines 39 117 219

time (s) < 1 648 810

nb var 182 2783 2783
N=4 nb lines 39 156 360

time (s) < 1 5068 8102

nb var 182 4336 4336
N=5 nb lines 39 195 535

time (s) < 1 26364 46445
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Comparisons of the theorems (performance)

• Computation of the anti-windup gains

Daw1 =




Daw11 0 0 0
0 Daw11 0 0
0 0 Daw11 0
0 0 0 Daw11


, Daw2,3 =




Dawi1 • • •
• Dawi2 • •
• • Dawi3 •
• • • Dawi4




• Use of Theorem 3 to compute the performance index of the three
anti-windup gains issued from Theorems 1, 2 and 3

Anti-windup Daw = 0 Daw1 Daw2 Daw3

γ3 30.1605 6.8568 4.4839 4.4743
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Summary
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Summary

• LMI-based (Direct Linear) anti-windup can exploit special structure of
cross-directional control systems

• Three approaches proposed, only one is numerically reasonable for
synchrotron models

• Suitable characterizations of performance levels versus computational
complexity has been established
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