Outline	Problem Statement	Static Anti-Windup	Cross-directional AW	Performance and complexity	References
	000000	00000	00000000	0000	

Static Anti-Windup Design for Discrete-Time Large-Scale Saturated Synchrotron System

Isabelle Queinnec, Sophie Tarbouriech, Sandira Gayadeen, Luca Zaccarian

LAAS-CNRS, France, Diamond Light Source, UK, LAAS-CNRS and University of Trento

Workshop LPV and AW, ONERA Toulouse, April 17, 2018

Outline	Problem Statement	Static Anti-Windup	Cross-directional AW	Performance and complexity	References
Outl	ine				

- 1 Problem Statement
- 2 Static Anti-Windup
- 3 Cross-directional static anti-windup
- Performance and complexity

Outline	Problem Statement	Static Anti-Windup	Cross-directional AW	Performance and complexity		References
	000000	00000	00000000	0000	0	

Problem Statement

Wha	at are cros	s-direction	al process	es?		
	00000	00000	00000000	0000	0	
Outline	Problem Statement	Static Anti-Windup	Cross-directional AW	Performance and complexity	Summary	References

• Processes in which the variations of a variable in a profile orthogonal to the direction of propagation of the variable are controlled

- Typical examples:
 - rolling processes involved in paper machines
 - plastic film extrusion
 - metal forming

 \bullet Everything you want to know on such processes in a special issue of IEE Proc - Control Theory Appl. in 2002, vol.149(5) (Guest editor: S. Duncan)

Outline	Problem Statement	Static Anti-Windup 00000	Cross-directional AW 000000000	Performance and complexity	References
Wha	at are sync	hrotrons?			

What are synchrotrons?

• Synchrotron light: electromagnetic radiation emitted by charged particles (electrons) that move at high speeds and change direction

• Acceleration of the electrons in a circumference storage ring in which they are confined by magnetic fields

• Ring: succession of identical cells involving straight sections and bending magnets to curve the electron beam

• Synchrotrons are cross-directional plants

- Electron beam subjected to disturbance
 ▷ control by acting on magnet power
- Change in a single corrector magnet extends around the ring > strong interactions
- Actuator saturations may strongly deteriorate the closed-loop behavior > anti-windup strategies to mitigate those saturation effects

Static linear anti-windup scheme, acting on the controller state and output equations

• N spatially distributed dynamic actuators/sensors form plant ${\cal P}$

$$y = p(z)Bu + d = B\begin{bmatrix} p(z) & & \\ & \ddots & \\ & & p(z)\end{bmatrix}\underbrace{\operatorname{sat}(y_c)}_{u} + d$$

• Using SVD of *B* matrix:

$$y = \Phi \Sigma \Psi^{\mathsf{T}} p(z) u + d = \Phi(p(z) \otimes I) \Sigma \Psi^{\mathsf{T}} u + d$$

• Allows to design a modular controller that works in the "modal space"

- \bullet Spatially distributed dynamic actuators/sensors form plant ${\cal P}$
- Using SVD: $y = B \begin{bmatrix} p(z) \\ \vdots \\ p(z) \end{bmatrix} \underbrace{\operatorname{sat}(y_c)}_{u} + d$ $= \Phi \Sigma \Psi^T p(z) u + d$

$$= \Phi(p(z) \otimes I) \Sigma \Psi^{T} u + d$$

 Controller C equally selected using SVD:

$$y_{c} = \Psi \Sigma^{-1} c(z) \Phi^{T} y$$
$$= \Psi \Sigma^{-1} \begin{bmatrix} c(z) \\ & \ddots \\ & c(z) \end{bmatrix} \Phi^{T} y$$

• Design of c(z) as SISO feedback \bigcirc

• Saturation mixes up everything 😂

Controller C design reduces to linear SISO feedback

- Spatially distributed dynamic actuators/sensors form plant \mathcal{P}
- Using SVD: $y = B \begin{bmatrix} p(z) \\ \vdots \\ p(z) \end{bmatrix} \underbrace{\operatorname{sat}(y_c)}_{p(z)} + d$

$$=\Phi\Sigma\Psi^{T}p(z)u+d$$

$$= \Phi(p(z) \otimes I) \Sigma \Psi^T u + d$$

• Controller C equally selected using SVD:

$$y_{c} = \Psi \Sigma^{-1} c(z) \Phi^{T} y$$
$$= \Psi \Sigma^{-1} \begin{bmatrix} c(z) \\ \ddots \\ c(z) \end{bmatrix} \Phi^{T} y$$

- Design of c(z) as SISO feedback ☺
- Saturation mixes up everything ^(C)

Outline	Problem Statement	Static Anti-Windup	Cross-directional AW	Performance and complexity		References
	000000	00000	00000000	0000	0	

Static Anti-Windup

- Given \mathcal{P} linear, \mathcal{C} linear, design only
 - linear anti-windup gain $D_{aw} = \begin{bmatrix} D_{aw,1} \\ D_{aw,2} \end{bmatrix}$
- Performance objective:
 - given s, minimize $\gamma_{d \to z}(s)$ s.t.: $\|z\|_2 \le \gamma \|d\|_2$ for all $\|d\|_2 \le s$
- Linear controller ${\cal K}$ equations

$$\begin{aligned} x_c^+ &= Ax_c + By + D_{aw,1}(y_c - \operatorname{sat}(y_c)) \\ y_c &= Cx_c + Dy + D_{aw,2}(y_c - \operatorname{sat}(y_c)) \end{aligned}$$

- LMI-based design Mulder et al. [2001], Grimm et al. [2003], Gomes da Silva Jr and Tarbouriech [2005], Hu et al. [2008]
- Preserve of *small signal* response $(D_{aw} \text{ multiplies } dz(y_c) = y_c sat(y_c))$ Asymptotically recover *large signal* response (global not always possible)

$$\mathcal{H}: \begin{cases} x_{cl}^{+} = A_{cl}x_{cl} + B_{cl,s}(y_{c} - \operatorname{sat}(y_{c})) + B_{cl,v}v + B_{cl,d}d \\ y_{c} = C_{cl,u}x_{p} + D_{cl,us}(y_{c} - \operatorname{sat}(y_{c})) + D_{cl,uv}v + D_{cl,ud}d \\ z = C_{cl,z}x_{p} + D_{cl,zs}\underbrace{(y_{c} - \operatorname{sat}(y_{c}))}_{\operatorname{dz}(y_{c})} + D_{cl,zv}v + D_{cl,zd}d, \end{cases}$$

 y_c

 \mathcal{K}

C

Proposition 1A: Given the above description and s > 0, if the LMI problem

$$\begin{split} \hat{\gamma}^2(s) &= \min_{\{\gamma^2, Q, Y, U\}} \gamma^2 \text{ subject to } Q = Q^T > 0, \ U > 0 \text{ diagonal}, \\ \mathrm{He} \begin{bmatrix} \frac{A_{cl}^T Q A_{cl} - Q}{2} & B_{cl,s} U + B_{cl,v} D_{aw} U + Y^T & B_{cl,d} & 0\\ C_{cl,u} Q & (D_{cl,us} - I) U + D_{cl,uv} D_{aw} U & D_{cl,ud} & 0\\ 0 & 0 & -I/2 & 0\\ C_{cl,z} Q & D_{cl,zs} U + D_{cl,zv} D_{aw} U & D_{cl,zd} - \frac{\gamma^2}{2}I \end{bmatrix} \prec 0, \quad \begin{bmatrix} Q & Y_{[k]}^T \\ Y_{[k]} & \overline{u}^2 / s^2 \\ k = 1, \dots, N \end{bmatrix} \succeq 0, \end{split}$$

is feasible, then the following holds for the saturated closed-loop:

- [Stab] the origin is locally exponentially stable (LES) with region of attraction (RA) containing the set E(Q, s) := {x : x^TQ⁻¹x ≤ s²};
- [Reach] the reachable set from x(0) = 0 with ||d||₂ ≤ s is contained in *E*(Q, s);
- [ℓ₂Perf] for each d such that ||d||₂ ≤ s, the zero state solution satisfies the ℓ₂ gain bound:

$$\|z\|_2 \leq \hat{\gamma}(s) \|d\|_2$$

Proposition 1B: Given the above description and s > 0, if the LMI problem

$$\begin{split} \hat{\gamma}^2(s) &= \min_{\{\gamma^2, Q, Y, U\}} \gamma^2 \text{ subject to } Q = Q^T > 0, \ U > 0 \text{ diagonal}, \\ \mathrm{He} \begin{bmatrix} \frac{A_{cl}^T Q A_{cl} - Q}{2} & B_{cl,s} U + B_{cl,v} D_{aw} U + Y^T & B_{cl,d} & 0\\ C_{cl,u} Q & (D_{cl,us} - I) U + D_{cl,uv} D_{aw} U & D_{cl,ud} & 0\\ 0 & 0 & -I/2 & 0\\ C_{cl,z} Q & D_{cl,zs} U + D_{cl,zv} D_{aw} U & D_{cl,zd} - \frac{\gamma^2}{2}I \end{bmatrix} \prec 0, \quad \begin{bmatrix} Q & Y_{[k]}^T \\ Y_{[k]} & \overline{u}^2 / s^2 \end{bmatrix} \succeq 0, \\ k = 1, \dots, N \end{split}$$

is feasible, then the following holds for the saturated closed-loop:

- [Stab] the origin is locally exponentially stable with region of attraction containing the set *E*(*Q*, *s*) := {*x* : *x*^T*Q*⁻¹*x* ≤ *s*²};
- **(Reach)** the reachable set from x(0) = 0 with ||d||₂ ≤ s is contained in *E*(*Q*, s);
- [ℓ₂Perf] for each d such that ||d||₂ ≤ s, the zero state solution satisfies the ℓ₂ gain bound:

$$\|z\|_2 \leq \hat{\gamma}(s) \|d\|_2$$

Proposition 1C: Given the above description and s > 0, if the LMI problem

$$\begin{split} \hat{\gamma}^2(s) &= \min_{\{\gamma^2, Q, Y, U, X\}} \gamma^2 \text{ subject to } Q = Q^T > 0, \ U > 0 \text{ diagonal}, \\ \mathrm{He} \begin{bmatrix} \frac{A_{cl}^T Q A_{cl} - Q}{2} & B_{cl,s} U + B_{cl,v} X + Y^T & B_{cl,d} & 0\\ C_{cl,u} Q & (D_{cl,us} - I) U + D_{cl,uv} X & D_{cl,ud} & 0\\ 0 & 0 & -I/2 & 0\\ C_{cl,z} Q & D_{cl,zs} U + D_{cl,zv} X & D_{cl,zd} & -\frac{\gamma^2}{2}I \end{bmatrix} \prec 0, \quad \begin{bmatrix} Q & Y_{[k]}^T \\ Y_{[k]} & \overline{u}^2/s^2 \\ k = 1, \dots, N \end{bmatrix} \succeq 0, \end{split}$$

is feasible, then, selecting the static AW gain as

$$D_{aw} = XU^{-1}$$

- [Stab] the origin is locally exponentially stable with region of attraction containing the set *E*(*Q*, *s*) := {*x* : *x*^T*Q*⁻¹*x* ≤ *s*²};
- [Reach] the reachable set from x(0) = 0 with ||d||₂ ≤ s is contained in E(Q, s);
- [ℓ₂Perf] for each d such that ||d||₂ ≤ s, the zero state solution satisfies the ℓ₂ gain bound:

$$\|z\|_2 \leq \hat{\gamma}(s) \|d\|_2$$

Outline	Problem Statement	Static Anti-Windup	Cross-directional AW	Performance and complexity		References
	000000	00000	00000000	0000	0	

Cross-directional static anti-windup

> Equivalent dynamics highlights generalized nonlinearity

 $\begin{aligned} \mathbf{x}_{cl}^{+} &= (A_{cl} \otimes I_N) \mathbf{x}_{cl} + (B_{cl,u} \otimes I_N) \mathrm{dz}_{\Psi}(\nu) + (B_{cl,v} \otimes I_N) \mathbf{v} + (B_{cl,d} \otimes I_N) \Phi^{\mathsf{T}} d \\ \nu &= (C_{cl,\nu} \otimes I_N) \mathbf{x}_{cl} + (D_{cl,\nu u} \otimes I_N) \mathrm{dz}_{\Psi}(\nu) + (D_{cl,\nu v} \otimes I_N) \mathbf{v} + (D_{cl,\nu d} \otimes I_N) \Phi^{\mathsf{T}} d \\ y &= \Phi \left((C_{cl,y} \otimes I_N) \mathbf{x}_{cl} + (D_{cl,y u} \otimes I_N) \mathrm{dz}_{\Psi}(\nu) + (D_{cl,y v} \otimes I_N) \mathbf{v} + (D_{cl,y d} \otimes I_N) \Phi^{\mathsf{T}} d \right) + d \\ &\text{with } \mathrm{dz}_{\Psi}(\nu) := \Sigma \Psi^{\mathsf{T}} \mathrm{dz}(\Psi \Sigma^{-1} \nu). \end{aligned}$

▷ Select anti-windup action as:

$$\mathbf{v} = D_{\mathsf{aw}} \mathrm{dz}_{\Psi}(\nu) = D_{\mathsf{aw}} \Sigma \Psi^{\mathsf{T}} \mathrm{dz}(\Psi \Sigma^{-1} \nu)$$

$$\begin{aligned} \mathbf{x}_{cl}^{+} &= \bar{A}_{cl} \mathbf{x}_{cl} + \bar{B}_{cl,u} \mathrm{dz}_{\Psi}(\nu) + \bar{B}_{cl,v} \mathbf{v} + \bar{B}_{cl,d} \Phi^{\mathsf{T}} d \\ \nu &= \bar{C}_{cl,\nu} \mathbf{x}_{cl} + \bar{D}_{cl,\nu u} \mathrm{dz}_{\Psi}(\nu) + \bar{D}_{cl,\nu v} \mathbf{v} + \bar{D}_{cl,\nu d} \Phi^{\mathsf{T}} d \\ \mathbf{y} &= \Phi \left(\bar{C}_{cl,y} \mathbf{x}_{cl} + \bar{D}_{cl,y u} \mathrm{dz}_{\Psi}(\nu) + \bar{D}_{cl,y v} \mathbf{v} + \bar{D}_{cl,y d} \Phi^{\mathsf{T}} d \right) \end{aligned}$$

with $dz_{\Psi}(\nu) := \Sigma \Psi^{T} dz (\Psi \Sigma^{-1} \nu)$ and the anti-windup action

$$\mathbf{v} = D_{\mathsf{aw}} \mathrm{dz}_{\Psi}(\nu) = D_{\mathsf{aw}} \Sigma \Psi^T \mathrm{dz}(\Psi \Sigma^{-1} \nu)$$

▷ Original lemma stated regardless of SVD:

Lemma 1: Given diagonal W > 0, for any $y_c, h \in \mathbb{R}^N$:

$$dz(h) = 0 \Rightarrow dz(y_c)^T W(y_c - dz(y_c) + h) \ge 0$$

 \triangleright A transformed version based on the SVD is useful:

Lemma 2: Given orthogonal matrix Ψ , diagonal matrices W > 0 and $\Sigma > 0$, denote $\overline{W} := \Sigma^{-1} \Psi^T W \Psi \Sigma^{-1}$ and

$$\mathrm{dz}_{\Psi}(\nu) := \Sigma \Psi^{\mathsf{T}} \mathrm{dz}(\Psi \Sigma^{-1} \nu)$$

Then for any $\nu, h \in \mathbb{R}^N$:

$$dz_{\Psi}(h) = 0 \Rightarrow dz_{\Psi}(\nu)^{T} \overline{W}(\nu - dz_{\Psi}(\nu) + h) \ge 0$$

 \triangleright A "decentralized" selection is $W = w_0 I \Rightarrow \bar{W} = w_0 \Sigma^{-2}$

Outline Problem Statement Static Anti-Windup Cross-directional AW Performance and complexity Summary Refere Quadratic synthesis conditions are still convex

Theorem 3. Given the above description and s > 0, If the LMI problem

$$\begin{split} \hat{\gamma}^2(\boldsymbol{s}) &= \min_{\{\gamma^2, Q, Y, U, X\}} \gamma^2 \text{ subject to } Q = Q^T > 0, \ \boldsymbol{U} > 0 \text{ diagonal}, \\ \mathrm{He} \begin{bmatrix} \frac{\bar{A}_{cl}^T Q \bar{A}_{cl} - Q}{2} & \bar{B}_{cl, u} \Sigma \Psi^T U \Psi \Sigma + \bar{B}_{cl, v} X + Y^T & \bar{B}_{cl, d} & 0\\ \bar{C}_{cl, v} Q & (\bar{D}_{cl, vu} - I) \Sigma \Psi^T U \Psi \Sigma + \bar{D}_{cl, vv} X & \bar{D}_{cl, vd} & 0\\ 0 & 0 & -I/2 & 0\\ \bar{C}_{cl, y} Q & \bar{D}_{cl, yu} \Sigma \Psi^T U \Psi \Sigma + \bar{D}_{cl, yv} X & \bar{D}_{cl, yd} & -\frac{\gamma^2}{2}I \end{bmatrix} \prec 0, \\ \begin{bmatrix} Q & Y_{[k]}^T \\ Y_{[k]} & \bar{u}^2/s^2 \end{bmatrix} \succeq 0, \text{ for all } k = 1, \dots, N \end{split}$$

is feasible, then, selecting the static AW gain as $D_{aw} = X \Sigma^{-1} \Psi^T U^{-1} \Psi \Sigma^{-1}$

- **(Stab)** the origin is **LES** with RA containing $\mathcal{E}(Q, \mathbf{s})$;
- [Reach] the reachable set from x(0) = 0 with ||d||₂ ≤ s is contained in E(Q, s);
- [ℓ₂Perf] for each d such that ||d||₂ ≤ s, the zero state solution satisfies the ℓ₂ gain bound ||z||₂ ≤ Ŷ(s)||d||₂

Outline Problem Statement Static Anti-Windup Cross-directional AW Performance and complexity Summary References 000000 00000 00000 0000

Conservatively reduce the number of constraints

Theorem 2. Given the above description and s > 0, If the LMI problem

$$\begin{split} \hat{\gamma}^{2}(s) &= \min_{\{\gamma^{2}, Q, Y, U, X\}} \gamma^{2} \text{ subject to } Q = Q^{T} > 0, \ U > 0 \text{ diagonal}, \\ \mathrm{He} \begin{bmatrix} \frac{\bar{A}_{cl}^{T}Q\bar{A}_{cl}-Q}{2} & \bar{B}_{cl,u}\Sigma\Psi^{T}U\Psi\Sigma + \bar{B}_{cl,v}X + Y^{T} & \bar{B}_{cl,d} & 0\\ \bar{C}_{cl,\nu}Q & (\bar{D}_{cl,\nu u} - I)\Sigma\Psi^{T}U\Psi\Sigma + \bar{D}_{cl,\nu v}X & \bar{D}_{cl,\nu d} & 0\\ 0 & 0 & -I/2 & 0\\ \bar{C}_{cl,y}Q & \bar{D}_{cl,yu}\Sigma\Psi^{T}U\Psi\Sigma + \bar{D}_{cl,yv}X & \bar{D}_{cl,yd} & -\frac{\gamma^{2}}{2}I \end{bmatrix} \prec 0, \\ \begin{bmatrix} Q & Y^{T} \\ Y & \overline{u}^{2}/s^{2}I \end{bmatrix} \succeq 0, \ \text{(a single constraint now)} \end{split}$$

is feasible, then, selecting the static AW gain as $D_{aw} = X \Sigma^{-1} \Psi^T U^{-1} \Psi \Sigma^{-1}$

- **(Stab)** the origin is **LES** with RA containing $\mathcal{E}(Q, s)$;
- [Reach] the reachable set from x(0) = 0 with ||d||₂ ≤ s is contained in E(Q, s);
- [ℓ₂Perf] for each d such that ||d||₂ ≤ s, the zero state solution satisfies the ℓ₂ gain bound ||z||₂ ≤ γ̂(s)||d||₂

Outline	Problem Statement	Static Anti-Windup 00000	Cross-directional AW 000000€00	Performance and complexity 0000	References
Com	iments				

- Proof of Theorem3:
 - Direct use of Proposition 1C and the generalized sector condition on the SVD
 - AW conditions are considered with $d_{\Phi} = \Phi d$ and $y_{\Phi} = \Phi^T y$
 - Since Φ is an orthogonal matrix, one obtains:

$$|d_{\Phi}|^2 = d^{T} \Phi \Phi^{T} d = d^{T} d = |d|^2$$
, and similarly $|y_{\Phi}|^2 = |y|^2$

• Proof of Theorem 2: The same + notice that

$$\begin{bmatrix} Q & Y^T \\ Y & \bar{u}^2/s^2I \end{bmatrix} \succeq 0, \quad \Rightarrow \begin{bmatrix} Q & Y_{[k]}^T \\ Y_{[k]} & \bar{u}^2/s^2 \end{bmatrix} \succeq 0, \text{ for all } k = 1, \dots, N$$

Outline Problem Statement Static Anti-Windup Cross-directional AW Performance and complexity Summary References Decentralized design for centralized compensation

Theorem 1. Given the above description and s > 0, If the LMI problem

$$\begin{split} \hat{\gamma}^{2}(s) &= \min_{\{\gamma^{2}, Q_{0}, Y_{0}, u_{0}, X\}} \gamma^{2} \text{ subject to } Q_{0} = Q_{0}^{T} > 0, \ u_{0} > 0, \\ \text{He} \begin{bmatrix} \frac{A_{cl}^{T}Q_{0}A_{cl} - Q_{0}}{2} & B_{cl,u}u_{0} + B_{cl,v}X_{0} + Y_{0}^{T} & B_{cl,d} & 0\\ C_{cl,\nu}Q_{0} & (D_{cl,\nu\nu} - I)u_{0} + D_{cl,\nu\nu}X_{0} & D_{cl,\nu d} & 0\\ 0 & 0 & -I/2 & 0\\ C_{cl,y}Q_{0} & D_{cl,yu}u_{0} + D_{cl,yv}X_{0} & D_{cl,yd} & -\frac{\sigma_{m}^{2}\gamma^{2}}{2\sigma_{M}^{2}}I \end{bmatrix} \prec 0, \\ \begin{bmatrix} Q_{0} & Y_{0}^{T} \\ Y_{0} & \overline{u}^{2}/(\sigma_{M}^{2}s^{2}) \end{bmatrix} \succeq 0, \ \text{(it is a single input small system)} \end{split}$$

is feasible, then, selecting the static AW gain as $D_{aw} = u_0^{-1} X_0 \otimes I_n$

- **(Stab)** the origin is **LEQ** with RA containing the set $\mathcal{E}(Q, s)$;
- [Reach] the reachable set from x(0) = 0 with ||d||₂ ≤ s is contained in E(Q, s);
- [ℓ₂Perf] for each d such that ||d||₂ ≤ s, the zero state solution satisfies the ℓ₂ gain bound ||z||₂ ≤ Ŷ(s)||d||₂

Outline	Problem Statement	Static Anti-Windup 00000	Cross-directional AW 00000000●	Performance and complexity	References
Proc	of of Theo	rem 1			

• AW conditions are considered with $\bar{d} = \Sigma^{-1} d_{\Phi}$ and $\bar{y} = \Sigma^{-1} y_{\Phi}$

• The solution Q_0, Y_0, X_0, u_0 of Theorem 1 allows to build $Q = Q_0 \otimes \Sigma^2$, $U = u_0 \otimes I_N$, $Y = Y_0 \otimes \Sigma^2$; which allows to show that the Lyapunov condition of Theorem 1 implies that one of Theorem 3.

• Similarly, for the sector condition, one uses the fact that

$$\begin{bmatrix} Q_0 \otimes \Sigma^2 & Y_0^T \otimes \Sigma^2 \\ Y_0 \otimes \Sigma^2 & \frac{\ddot{\mu}}{s^2} \otimes I_N \end{bmatrix} \geq \begin{bmatrix} Q_0 \otimes \Sigma^2 & Y_0^T \otimes \Sigma^2 \\ Y_0 \otimes \Sigma^2 & \frac{\ddot{\mu}}{s^2} \otimes \sigma_M^{-2} \Sigma^2 \end{bmatrix} \\ = \begin{bmatrix} \Sigma & 0 \\ 0 & \Sigma \end{bmatrix} \begin{bmatrix} Q_0 & Y_0^T \\ Y_0 & \frac{\ddot{\mu}}{(s\sigma_M)^2} \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & \Sigma \end{bmatrix} \ge 0$$

•
$$|y|^2 = |y_{\Phi}|^2 \le |\Sigma^2||\bar{y}|^2 \le |\Sigma|^2 \bar{\gamma}^2 |\bar{d}|^2$$

 $\le |\Sigma^2| \frac{\sigma_m^2}{\sigma_M^2} \gamma^2 |\Sigma^{-2}| |d_{\Phi}|^2 = \gamma^2 |d_{\Phi}|^2 = \gamma^2 |d_{\Phi}|^2$

Outline	Problem Statement	Static Anti-Windup	Cross-directional AW	Performance and complexity		References
	000000	00000	00000000	0000	0	

Performance and complexity discussed on an example

 \triangleright Hierarchical relation among the three results:

Proposition. The optimal values of the three optimization problems in Theorems 1, 2 and 3 satisfy:

$$\gamma_1^2 \ge \gamma_2^2 \ge \gamma_3^2.$$

 \triangleright Comparative computational complexity among the three anti-windup constructions

Result	Number of variables	Number of lines
Thm 1	$\frac{(n_p+n_c)(n_p+n_c+3)}{2} + n_c + 3$	$2(n_p+n_c)+5$
Thm 2	$\frac{N(n_{P}+n_{c})(N(n_{P}+n_{c})+2N+1)}{2} + N^{2}(n_{c}+1) + N + 1$	$N(2(n_p+n_c)+5)$
Thm 3	$\frac{N(n_p+n_c)(N(n_p+n_c)+2N+1)}{2} + N^2(n_c+1) + N + 1$	$N((1+N)(n_p+n_c)+5)$
whe	ere $N =$ number of sensors/actuators, $n_p, n_c =$ pl	lant, controller order

 Outline
 Problem Statement
 Static Anti-Windup
 Cross-directional AW
 Performance and complexity
 Summary
 References

 Sample numerical application to a synchrotron model

• Plant p(z) is order 8: first order response of the power supply units for the corrector magnet and delay in the sensor data acquisition and processing

$$p(z) = \frac{0.3558}{z^8 - 0.6442z^7}$$

• (IMC-based) controller c(z) is order 9

Gayadeen and Duncan [2013]

$$c(z) = rac{q(z)}{1-p(z)q(z)}, \quad q(z) = 0.4rac{0.3741z - 0.241}{z - 0.8669}$$

• Bound on the magnitude saturation and maximum size of the disturbance set as

$$\overline{u}=1$$
 , $s=10$

• Static map from the N actuators to the N sensors position issued from a real machine from Diamond Light Source (small case with N = 4)

$$B = \begin{bmatrix} 0.5984 & 0.9022 & -0.9192 & 1.0138\\ 1.5123 & 0.7611 & -0.7681 & 0.7771\\ -1.4066 & -0.7489 & 0.6329 & -0.6318\\ 0.6533 & 0.2355 & -0.1403 & 0.5424 \end{bmatrix}$$

 Outline
 Problem Statement
 Static Anti-Windup
 Cross-directional AW
 Performance and complexity
 Summary
 References

 00000 00000 00000 0000 0000 0000 0000

Comparisons of the theorems (complexity)

• Comparative synthesis computational time among the three anti-windup constructions for various values of actuators/sensors configurations.

		Theorem 1	Theorem 2	Theorem 3
	nb var	182	706	706
N=2	nb lines	39	78	112
	time (s)	< 1	12	13
	nb var	182	1573	1573
N=3	nb lines	39	117	219
	time (<i>s</i>)	< 1	648	810
	nb var	182	2783	2783
N=4	nb lines	39	156	360
	time (s)	< 1	5068	8102
	nb var	182	4336	4336
N=5	nb lines	39	195	535
	time (<i>s</i>)	< 1	26364	46445

Outline Problem Statement Static Anti-Windup Cross-directional AW Performance and complexity Summary References 00000 00000 00000 0000 0000 0000 0000 Comparisons of the theorems (performance)

• Computation of the anti-windup gains

$$D_{aw1} = \begin{bmatrix} D_{aw11} & 0 & 0 & 0 \\ 0 & D_{aw11} & 0 & 0 \\ 0 & 0 & D_{aw11} & 0 \\ 0 & 0 & 0 & D_{aw11} \end{bmatrix}, D_{aw2,3} = \begin{bmatrix} D_{awi1} & \bullet & \bullet & \bullet \\ \bullet & D_{awi2} & \bullet & \bullet \\ \bullet & \bullet & D_{awi3} & \bullet \\ \bullet & \bullet & \bullet & D_{awi4} \end{bmatrix}$$

• Use of Theorem 3 to compute the performance index of the three anti-windup gains issued from Theorems 1, 2 and 3

Anti-windup	$D_{aw} = 0$	D_{aw1}	D_{aw2}	D_{aw3}
γ_3	30.1605	6.8568	4.4839	4.4743

Outline	Problem Statement	Static Anti-Windup	Cross-directional AW	Performance and complexity	Summary	References
	000000	00000	00000000	0000	0	

Summary

Outline	Problem Statement	Static Anti-Windup 00000	Cross-directional AW 000000000	Performance and complexity	Summary •	References
Sum	mary					

• LMI-based (Direct Linear) anti-windup can exploit special structure of cross-directional control systems

• Three approaches proposed, only one is numerically reasonable for synchrotron models

• Suitable characterizations of performance levels versus computational complexity has been established

Outline	Problem Statement	Static Anti-Windup 00000	Cross-directional AW	Performance and complexity 0000	Summary O	References

- S. Gayadeen and S. Duncan. Anti-windup compensation for electron beam stabilisation control systems on synchrotrons with rate constrained actuators. In 2013 European Control Conference, pages 2752–2757, 2013.
- J.M. Gomes da Silva Jr and S. Tarbouriech. Anti-windup design with guaranteed regions of stability: an LMI-based approach. *IEEE Transactions on Automatic Control*, 50(1):106–111, 2005.
- G. Grimm, J. Hatfield, I. Postlethwaite, A.R. Teel, M.C. Turner, and L. Zaccarian. Antiwindup for stable linear systems with input saturation: an Imi-based synthesis. *IEEE Transactions on Automatic Control*, 48(9): 1509–1525, 2003.
- T. Hu, A.R. Teel, and L. Zaccarian. Anti-windup synthesis for linear control systems with input saturation: achieving regional, nonlinear performance. *Automatica*, 44(2):512–519, 2008.
- E.F. Mulder, M.V. Kothare, and M. Morari. Multivariable anti-windup controller synthesis using linear matrix inequalities. *Automatica*, 37(9): 1407–1416, September 2001.

