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Disclaimer

◮ Not an expert in adaptive control

◮ MRAC is not a perfect method

◮ Encouraging MRAC results from Wise and Lavretsky
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Historical perspective

Anti-windup
Constrained adaptive control
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Architectural perspectives

Standard, agreed form of architecture for linear control laws:

Not much agreed at all with adaptive “anti-windup”....
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Exceptions

Some systematic approaches to anti-windup for adaptive control exist:

◮ Kahveci, Ioannou et al: Anti-windup for indirect adaptive control schemes.
Computationally intensive. Quite well developed. Questionnable stability
guarantees.

◮ Tregouet, Arzelier, Peaucelle, Pittet, and Zaccarian. Adaptive law used to
de-saturate when gains become too high (sort of saturation avoidance).
Works on satellite.

◮ E. Johnson et al. “Hedging” schemes. Quite complicated. A lot of
assumptions. Seems to work on examples.

◮ Lavretsky and Hovakimyan. Positive µ modification. Actually can be
written as an anti-windup scheme. Inspiration for work here.
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Plant and Assumptions

Plant:
ẋ = Ax + Bλsat(u)

Assumptions:

◮ A ∈ R
n×n unknown, but Hurwitz

◮ B ∈ R
n known

◮ λ ∈ R unknown, but positive

◮ State x available for feedback

Implication:

A Hurwitz and saturated input imply state is bounded
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Typical MRAC algorithm

Reference Model:

ẋr = Amxr + Bmr

State-feedback:

u = K̂x (t)
′
x + K̂r (t)

′
r

Adaptation (e = x − xr ):

{

˙̂
Kx = −Γxx(e

′PB) Γx > 0
˙̂
Kr = −Γr r(e

′PB) Γr > 0

Ensures asymptotic tracking if there exists matrices K∗

x , K
∗

r , P > 0 such that

Am = A+ BλK
∗

x Bm = BλK
∗

r A
′

mP + PAm < 0

...and no saturation!
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MRAC with anti-windup (Lavretsky’s scheme in disguise)

Modifed Reference Model (£):

ẋm = Amxm + Bmr − B(1 + µ(x , xm))K̂u(t)
′Dz(u)

State-feedback ($):

u = K̂x (t)
′
x + K̂r (t)

′
r − µ(x , xm)Dz(u) µ(., .) : Rn

× R
n
7→ R

Adaptation (e = x − xm) (AC):











˙̂
Kx = −Γxx(e

′PB) Γx > 0
˙̂
Kr = −Γr r(e

′PB) Γr > 0
˙̂
Ku = −Γu(1 + µ(x , xm))Dz(u)(e′PB) Γu > 0

When no saturation occurs Dz(u) ≡ 0, standard MRAC is recovered.
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Intermediate Result

Tracking result 1 (essentially main result of Lavretsky)

The MRAC algorithm (£), ($), (AC) ensures

◮ All closed loop signals are bounded (L∞ stability)

◮ Asymptotic tracking

lim
t→∞

e(t) = lim
t→∞

(x(t)− xm(t)) = 0

But is this what we want?

MRAC reference model:

ẋm = Amxm + Bmr − B(1 + µ(x , xm))K̂u(t)
′Dz(u)

Ideal reference model:
ẋr = Amxr + Bmr
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More satisfactory result

Tracking result 2

The MRAC algorithm (£), ($), (AC) ensures

◮ All closed loop signals are bounded (L∞ stability)

◮ Asymptotic tracking

lim
t→∞

em(t) = lim
t→∞

(xm(t)− xr (t)) = 0

if

1. Dz(u∗) ∈ L2 u∗ := K∗

x x(t) + K∗

r r(t)
(ideal nominal control signal)

2. ∆u ∈ L2 ∆u := ∆Kx (t)
′x(t) + ∆Kr (t)

′r(t)

where

∆K
′

x = K̂
′

x − K
∗

x ∆K
′

r = K̂
′

r − K
∗

r

MRAC with anti-windup terms achieves tracking under anti-windup-like conditions
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Critique

◮ Dz(u∗) ∈ L2 mirrors typical linear anti-windup results

◮ Only two tuning parameters: µ(., .) and Γu > 0

◮ ∆u ∈ L2 essentially means that adaptive gains have to converge to their
ideal values:

Kx(t) → K
∗

x Kr (t) → K
∗

r

Perhaps not always possible....
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A modified result

Define:

lim
t→∞

K̂x (t) :=Kx,ss

lim
t→∞

K̂r (t) :=Kr,ss

lim
t→∞

∆Kx (t) :=∆Kx,ss

lim
t→∞

∆Kr (t) :=∆Kr,ss

∆uss(t) := ∆K̂x,ssx(t) + ∆K̂r,ss r(t)

Tracking result 3

The MRAC algorithm (£), ($), (AC) ensures

◮ All closed loop signals are bounded (L∞ stability)

◮ Asymptotic tracking

lim
t→∞

em(t) = lim
t→∞

(xm(t)− xr (t)) = 0

if

1. Dz(u∗ +∆uss) ∈ L2 (nominal, but not necessarily ideal control signal)

2. ∆u −∆uss ∈ L2 (gains must converge to steady state values)
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Hydraulic Actuator - no saturation
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Response of adaptive control system without input saturation: left,
plant/model state evolution; right, control signal
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Hydraulic Actuator - no saturation
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Response of adaptive control system with input saturation: left, plant/model
state evolution; right, control signal
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Hydraulic Actuator - saturation, anti-windup
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Response of adaptive control system with input saturation and anti-windup:
left, plant/model state evolution; right, control signal
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Conclusion

Positive µ modification exhibits an anti-windup-like structure

◮ It also provides anti-windup-like solutions

◮ It requires minimal tuning (Γu, µ(., .))

◮ It seems to be effective if MRAC itself is effective

◮ Can be extended to rate-limited actuators (some technical difficulties)

It has some problems:

◮ Some fundamental difficulties for open-loop unstable plants
(A is unknown and if unknown how can a region of attraction be
estimated?)

◮ Incorporation into an incremental adaptive scheme may make it more
useful in practice
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