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Page 63: Natural frequency
with ”good and bad
vibrations”

[David A. Lind et Scott P. Sanders, The Physics of Skiing: Skiing
at the Triple Point, 2nd edition; 2013]
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One way to kill bad vibrations?

Control your skis with smart
materials!

Use passively piezoelectric
patches
[L. Rothemann, H. Schretter,
Active vibration damping of
the alpine ski; 2010]

How to do it actively?
Need to consider a distributed
parameter systems:
How to control the flexible ski
structure? Euler Bernoulli
equation:

ρ∂
2w
∂t2

+ YI ∂
4w
∂x4

= piezo force under control
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Another domain with large flexible structures:
• satellites with large flexible structures
• and large airplanes with flexible wings and fluid dynamics

Flexible structure+ sloshing modes

control of distributed
parameters systems (PDE)
with
• robustness
• experiments
• in-domain control

See [Robu, Baudouin, CP; 12], [Robu, Baudouin, CP, Arzelier; 12]
Can we use saturated control?
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Given a PDE, there exists now a large variety on methods to
design linear controllers. It is well known that saturation can
reduce the performance or even destabilize the system, even for
finite-dimensional systems.
More precisely, even if

ż = Az + BKz (1)

is asymp. stable, it may hold that

ż = Az + sat(BKz) (2)

is not globally asymptotically stable.
It may exist new equilibrium, new limit cycles...
See e.g. [Tarbouriech, Garcia, Gomes da Silva Jr., Queinnec; 2011]
Goal of this talk:
What happens if in (2), instead of matrices A, B..., we have
operators? More precisely, what happens if A generates a
semigroup and B is a bounded control operator? An example of
such a nonlinear PDE given by (2):
Wave equation with saturating in-domain control
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Two objectives

Well-posedness

Stability

of the wave equation in presence of a disturbed saturating control
with a Lyapunov method.
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Outline

1 Well-posedness and stability of linear wave equation with a
saturated in-domain control

Lyapunov method, LaSalle invariance principle

2 Well-posedness and stability of linear abstract systems with a
saturated in-domain control

strict Lyapunov method, robustness result

3 Numerical simulations on wave equation
effect of the saturation level

4 Conclusion
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1 – Wave equation with an in-domain control

f (x , t)

z(x , t)

x = 0 x = 1

1D wave equation with in-domain control.
Dynamics of the vibration:

ztt(x , t) = zxx(x , t) + f (x , t), ∀x ∈ (0, 1), t ≥ 0, (3)

Boundary conditions, ∀t ≥ 0,

z(0, t) = 0 ,
z(1, t) = 0 ,

(4)

and with the following initial condition, ∀x ∈ (0, 1),

z(x , 0) = z0(x) ,
zt(x , 0) = z1(x) ,

(5)

where z0 and z1 stand respectively for the initial deflection and the
initial deflection speed.
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When closing the loop with a linear control

Let us define the linear control by

f (x , t) = −azt(x , t), x ∈ (0, 1), ∀t ≥ 0, (6)

and consider

V1 =
1

2

∫
(z2x + z2t )dx .

Formal computation. Along the solutions to (3), (4) and (6):

V̇1 =
∫ 1
0 (zxzxt − az2t + ztzxx)dx

= −
∫ 1
0 az2t dx + [ztzx ]x=1

x=0

= −
∫ 1
0 az2t dx

Thus, it a > 0, V1 is a (non strict) Lyapunov function.
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Using standard technics (Lumer-Philipps thereom (for the
well-posedness) and Huang-Prüss theorem (for the exp. stability)):

Proposition

∀a > 0, ∀(z0, z1) in H1
0 (0, 1)× L2(0, 1),

∃ ! solution z : [0,∞)→ H1
0 (0, 1)× L2(0, 1) to (3)-(6). Moreover,

∃ C , µ > 0, such that, for any initial condition H1
0 (0, 1)× L2(0, 1),

it holds, ∀t ≥ 0,

‖z‖H1
0 (0,1)

+ ‖zt‖L2(0,1) ≤ Ce−µt(‖z0‖H1
0 (0,1)

+ ‖z1‖L2(0,1)).

In the previous proposition:

stability

attractivity of the equilibrium

with an exponential speed
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When closing the loop with a saturating control

Let us consider now the nonlinear control

f (x , t) = −sat(azt(x , t)), x ∈ (0, 1), ∀t ≥ 0, (7)

where sat is the localized saturated map:
sat(σ)

σ
sat(σ) =

{
σ if |σ| < 1
sign(σ) else

Equation (3) in closed loop with the control (7) becomes

ztt = zxx − sat(azt) (8)

A formal computation gives, along the solutions to (8) and (4),

V̇1 = −
∫ 1

0
ztsat(azt)dx

which asks to handle the nonlinearity ztsat(azt).
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Remark: Choice of the saturation map

[Slemrod; 1989] and [Lasiecka and Seidman; 2003] deal with
L2 saturation:
Given σ : [0, 1]→ R, sat2(σ) is the function defined by

sat2(σ)(x) =

{
σ(x) if ‖σ‖L2(0,1) < 1
σ(x)

‖σ‖L2(0,1)
else

Here we consider localized saturation which is more physically
relevant:

sat(σ(x)) =

{
σ(x) if |σ(x)| < 1
sign(σ(x)) else
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Well-posedness of this nonlinear PDE

Theorem 1 [CP, Tarbouriech, Gomes da Silva Jr; 2016]

∀a ≥ 0, for all (z0, z1) in (H2(0, 1) ∩ H1
0 (0, 1))× H1

0 (0, 1), there
exists a unique solution z : [0,∞)→ H2(0, 1) ∩ H1

0 (0, 1) to (8)
with the boundary conditions (4) and the initial condition (5).
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Consider

A1

(
u
v

)
=

(
v

uxx − sat(av)

)
with the domain D(A1) = (H2(0, 1) ∩ H1

0 (0, 1))× H1
0 (0, 1).

Let us use a generalization of Lumer-Phillips theorem which is the
so-called Crandall-Liggett theorem, as given in [Barbu; 1976]. See
also [Brezis; 1973] and [Miyadera; 1992].
Again two conditions

1 A1 is dissipative, that is

<
(
〈A1

(
u
v

)
− A1

(
ũ
ṽ

)
,

(
u
v

)
−
(

ũ
ṽ

)
〉
)
≤ 0

2 For all λ > 0, D(A1) ⊂ Ran(I − λA1)
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First item: Easy step!
Instead of proving

<
(
〈A1

(
u
v

)
− A1

(
ũ
ṽ

)
,

(
u
v

)
−
(

ũ
ṽ

)
〉
)
≤ 0, let us

check, for all

(
u
v

)
∈ H1

0 (0, 1)× L2(0, 1):

<
(
〈A1

(
u
v

)
,

(
u
v

)
〉
)
≤ 0

To do that, using the definition of A1, and of the scalar product in
H1
0 (0, 1)× L2(0, 1), it is equal to:∫ 1

0 vx(x)ux(x)dx +
∫ 1
0 (uxx(x)− sat(a v(x)))v(x)dx ,

=
∫ 1
0 vx(x)ux(x)dx +

∫ 1
0 uxx(x)v(x)dx −

∫ 1
0 sat(a v(x))v(x)dx

= [ux(x)v(x)]x=1
x=0 −

∫ 1
0 sat(a v(x))v(x)dx ≤ 0

due to the boundary and since a ≥ 0.
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Second item asks to deal with a nonlinear ODE.

Let

(
u
v

)
∈ H1

0 (0, 1)× L2(0, 1) we have to find

(
ũ
ṽ

)
∈ D(A1)

such that

(I − λA1)

(
ũ
ṽ

)
=

(
u
v

)
that is {

ũ − λṽ = u ,
ṽ − λ(ũxx − sat(a ṽ)) = v ,

In particular, we have to find ũ such that

ũxx −
1

λ2
ũ − sat(

a

λ
(ũ − u)) = − 1

λ
v − 1

λ2
u

ũ(0) = ũ(1) = 0

holds.
Nonhomogeneous nonlinear ODE with two boundary conditions

16/35 C. Prieur Toulouse, April 2018



Lemma

If a is nonnegative and λ is positive, then there exists ũ solution to

ũxx − 1
λ2
ũ − sat( a

λ(ũ − u)) = − 1
λv −

1
λ2
u

ũ(0) = ũ(1) = 0
(9)

To prove this lemma, let us introduce the following map

T : L2(0, 1) → L2(0, 1) ,
y 7→ z = T (y) ,

where z = T (y) is the unique solution to

zxx − 1
λ2
z = − 1

λv −
1
λ2
u + sat( a

λ(y − u)) ,
z(0) = z(1) = 0 .

Prove that T is well defined and apply the Schauder fixed-point
theorem (see e.g., [Coron; 2007]), to deduce that there exists y
such that T (y) = y

ũ = y solves (9)
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Global asymptotic stability of this nonlinear PDE

Theorem 2

∀a > 0, for all (z0, z1) in (H2(0, 1) ∩ H1
0 (0, 1))× H1

0 (0, 1), the
solution to (8) with the boundary conditions (4) and the initial
condition (5) satisfies the following stability property, ∀t ≥ 0,

‖z(., t)‖H1
0 (0,1)

+ ‖zt(., t)‖L2(0,1) ≤ ‖z0‖H1
0 (0,1)

+ ‖z1‖L2(0,1) ,

together with the attractivity property

‖z(., t)‖H1
0 (0,1)

+ ‖zt(., t)‖L2(0,1) → 0, as t →∞ .
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Due to Theorem 1, the formal computation

V̇1 = −
∫ 1

0
ztsat(azt)dx

makes sense. This is only a weak Lyapunov function V̇1 ≤ 0
(the state is (z , zt), and there is no −z2).

To be able to apply LaSalle’s Invariance Principle, we have to
check that the trajectories are precompact
(see e.g. [Dafermos, Slemrod; 1973], [d’Andréa-Novel et al; 1994]).
It comes from:

Lemma

The canonical embedding from D(A1), equipped with the graph
norm, into H1

0 (0, 1)× L2(0, 1) is compact.
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Sketch of the proof of

The canonical embedding from D(A1), equipped with the graph
norm, into H1

0 (0, 1)× L2(0, 1) is compact.

Consider a sequence

(
un
vn

)
n∈N

in D(A1), which is bounded with

the graph norm, that is ∃M > 0, ∀n ∈ N,∥∥∥∥( un
vn

)∥∥∥∥2
D(A1)

:=

∥∥∥∥( un
vn

)∥∥∥∥2 +

∥∥∥∥A1

(
un
vn

)∥∥∥∥2 ,

=

∫ 1

0
(
∣∣u′n∣∣2 + |vn|2 +

∣∣v ′n∣∣2
+
∣∣u′′n − asat(vn)

∣∣2)dx < M

From that, we deduce that
∫ 1
0 (|vn|2 + |v ′n|

2)dx and∫ 1
0 (|u′n|

2 + |u′′n |
2)dx are bounded.

Thus there exists a subsequence which converges in
H1
0 (0, 1)× L2(0, 1). �
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Using the dissipativity of A1, and previous lemma the trajectory(
z(., t)
zt(., t)

)
is precompact in H1

0 (0, 1)× L2(0, 1).

Moreover the ω-limit set ω

[(
z(., 0)
zt(., 0)

)]
⊂ D(A1), is not empty

and invariant with respect to the nonlinear semigroup T (t) (see
[Slemrod; 1989]).
We now use LaSalle’s invariance principle to show that

ω

[(
z(., 0)
zt(., 0)

)]
= {0}.

Therefore the convergence property holds. �
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Remark: Boundary control
g(t)

z(x , t)

x = 0 x = 1

1D wave equation with a boundary control.
Dynamics: ∀x ∈ (0, 1), t ≥ 0,

ztt(x , t) = zxx(x , t),

Boundary conditions: ∀t ≥ 0,

z(0, t) = 0 ,
zx(1, t) = −sat(bzt(1, t)) ,

In the same work, stability proof using the sector condition
+ strict Lyapunov function.

Wave equation and saturated boundary control
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2 – Strict Lyapunov function

For the wave equation+ saturated in-domain control, a non-strict
Lyapunov function has been computed. Thus:

No robustness margin. What happens in presence of noise?

For linear PDE, we have exponential convergence
(see Proposition on Slide 10).
Do we have exp. stability for the nonlinear PDE?

Let us start with the abstract control system
d

dt
z = Az + Bu,

z(0) = z0,
(10)

where A : D(A) ⊂ H → H be a linear operator whose domain
D(A) is dense in H. Assume it generates a strongly continuous
semigroup of contractions denoted by etA.
Let B : U → H be a bounded operator.
Wave equation with in-domain control applies !
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A natural feedback law for (10) is u = −B?z .

Assumption 1: a linear feedback law is given

The linear closed-loop system
d

dt
z = (A− BB?)z ,

z(0) = z0.
(11)

globally exponentially stable.

Under Assumption 1, there exist a self-adjoint and definite positive
operator P ∈ L(H) and a positive value C such that

〈Ãz ,Pz , 〉H + 〈Pz , Ãz〉H ≤ −C‖z‖2H , ∀z ∈ D(Ã), (12)

with Ã = A− BB?.
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In presence of saturated input and disturbances

Consider the saturated case
d

dt
z = Az − BsatU(B?z),

z(0) = z0,
(13)
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In presence of saturated input and disturbances

Consider the saturated case + disturbance
d

dt
z = Az − BsatU(B?z + d),

z(0) = z0,
(13)

where d : (0,∞)→ U is a disturbance.
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function defined by sat2(σ) =

{
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σ
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else

Here the same with U = L2(0, 1): Given σ ∈ U, satU(σ) is the

function defined by satU(σ) =

{
σ if ‖σ‖U < 1
σ
‖σ‖U else

What can be said about the exp. stability when d = 0
and about the robustness in presence of d?

25/35 C. Prieur Toulouse, April 2018



ISS notion

Input-to-State Stability definition

A positive definite function V : H → R≥0 is said to be an
ISS-Lyapunov function with respect to d if ∃ two class K∞
functions α and ρ such that, for any solution to (13)

d

dt
V (z) ≤ −α(‖z‖) + ρ(‖d‖U).

Remark: Of course ISS Lyapunov function
+ ∃ two functions α and α of class K such that

α(‖z‖H) ≤ V (z) ≤ α(‖z‖H) ,∀z ∈ H

⇒ the origin of (13) with d = 0 is globally asymptotically stable.
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Input-to-state stability result

Theorem 3 [Marx, Chitour, CP; 2018]

Suppose that Assumption 1 holds and let P ∈ L(H) be a
self-adjoint and positive operator satisfying (12). Then, there
exists M such that

V (z) := 〈Pz , z〉H + M‖z‖3H (14)

is an ISS-Lyapunov function for (13).

The proof follows the finite-dimensional case considered in
[Liu, Chitour, and Sontag; 1996].
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Let us consider the following candidate Lyapunov function

V (z) := 〈Pz , z〉H + 2M
3 ‖z‖

3
H = V1(z) + 2M

3 ‖z‖
3
H , (15)

Along the strong solutions to (13), with Ã = A− BB?

d

dt
V1(z) = 〈Pz ,Az〉H + 〈PAz , z〉H

+ 〈PB(satU(B?z)− satU(B?z + d)), z〉H
+ 〈z ,PB(satU(B?z)− satU(B?z + d))〉H
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≤− C‖z‖2H + 2‖B?z‖U‖P‖L(H)‖B?z − satU(B?z)‖U
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using satU Lipchitz, Cauchy-Schwarz inequality and the fact that
B? is bounded.
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Moreover using ‖d‖U‖z‖H ≤ ε‖d‖2U + 1
ε‖z‖

2
H and

‖B?z − satU(B?z)‖U ≤ 〈satU(B?z),B?z〉U , we get

d

dt
V1(z) ≤−

(
C −

‖B?‖2L(H,U)‖P‖
2
L(H)

ε1

)
‖z‖2H

+2‖B?‖L(H,U)‖P‖L(H)‖z‖H〈satU(B?z),B?z〉U
+k2ε1‖d‖2U

where ε1 is a positive value that will be selected later.

Thus

d

dt
V1(z) ≤ good term + bad term + d2
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Secondly, using the dissipativity of the operator Asat,
〈satU(B?z)− satU(B?z + d),B?z〉U ≤ C0‖d‖U , and
‖z‖H‖d‖U ≤ 1

ε2
‖z‖2H + ε2‖d‖2U , one has

2M

3

d

dt
‖z‖3H =M‖z‖

(
〈Az , z〉H + 〈z ,Az〉H

)
− 2M‖z‖H〈BsatU(B?z + d), z〉H
≤− 2M‖z‖H

(
〈satU(B?z),B?z〉U

+ 〈satU(B?z)− satU(B?z + d),B?z〉U
)

≤− 2M‖z‖H〈satU(B?z),B?z〉U
+ 2MC0‖z‖H‖d‖U
≤−2M‖z‖H〈satU(B?z),B?z〉U

+
2MC0

ε2
‖z‖2H + 2MC0ε2‖d‖2U ,

where ε2 is a positive value that has to be selected. For an
appropriate choice of M, ε1 and ε2 we deduce the result. �
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3 – Numerical simulations

Consider again the wave equation
(with S. Tarbouriech and JM Gomes da Silva; 16):

ztt(x , t) = zxx(x , t)−sat(azt(x , t)), ∀x ∈ (0, 1), t ≥ 0,

Boundary conditions, ∀t ≥ 0,

z(0, t) = 0 ,
z(1, t) = 0 ,

and with the following initial condition, ∀x ∈ (0, 1),

z(x , 0) = z0(x) ,
zt(x , 0) = z1(x) ,

with z0(x) = sin(2πx) and z1(x) = 0, for all x ∈ [0, 1].
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With the damping a = 0.1 and the level of the saturation u0 = 5:
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Figure: Time evolution of solution
to nonlinear PDE with u0 = 5.
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Let us now select a lower saturation level: u0 = 1.
It takes a longer time to converge, but still converging!
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to nonlinear PDE with u0 = 1.
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4 – Conclusion

Conclusion

Well-posedness and global asymptotic stability for the
nonlinear PDEs:{

ztt = zxx − sat(azt)
z(0, t) = z(1, t) = 0

{
ztt = zxx
z(0, t) = 0, zx(1, t) = −sat(bz(1, t))

control abstract problems and ISS results

distributed/localized (localized/L2) saturating control

strict and non-strict Lyapunov functions have been used
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Under actual investigation

Under actual investigation #1

ISS stability results for saturated boundary control?

Under actual investigation #2

Other PDE with saturated input? Beam equation?
See also [Tarbouriech, CP, and Gomes da Silva Jr.; 2005] for
anti-windup and (discretized) beam equation.

Under actual investigation #3

Anti-windup design to improve the performance?
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Bonus – Wave equation with a boundary control
g(t)

z(x , t)

x = 0 x = 1

1D wave equation with a boundary control.
Dynamics:

ztt(x , t) = zxx(x , t), ∀x ∈ (0, 1), t ≥ 0, (16)

Boundary conditions, ∀t ≥ 0,

z(0, t) = 0 ,
zx(1, t) = g(t) ,

(17)

and with the same initial condition, ∀x ∈ (0, 1),

z(x , 0) = z0(x) ,
zt(x , 0) = z1(x) .

(18)
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When closing the loop with a linear boundary control

Let us define the linear control by

g(t) = −bzt(1, t), x ∈ (0, 1), ∀t ≥ 0 (19)

and consider

V2 =
1

2

∫
(eµx(zt + zx)2dx +

∫
(e−µx(zt − zx)2dx ,

Formal computation. Along the solutions to (16), (17) and (19):

V̇2 = −µV2 + 1
2

(
eµ(1− b)2 − e−µ(1 + b)2

)
z2t (1, t)

Assuming b > 0 and letting µ > 0 such that
eµ(1− b)2 ≤ e−µ(1 + b)2, it holds V̇2 ≤ −µV2 and thus V2 is a
strict Lyapunov function and thus (16)-(19) is exponentially stable.
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When closing the loop with a saturating control

Let us consider now the nonlinear control
g(t) = −sat(bzt(1, t)), ∀t ≥ 0. The boundary conditions become:

z(0, t) = 0 , zx(1, t) = −sat(bzt(1, t)) . (20)

Theorem 3

∀b > 0, for all (z0, z1) in {(u, v), (u, v) ∈
H2(0, 1)× H1

(0)(0, 1), ux(1) + sat(bv(1)) = 0, u(0) = 0}, the

solution to (16) with the boundary conditions (20) and the initial
condition (5) satisfies the following stability property, ∀t ≥ 0,

‖z(., t)‖H1
(0)

(0,1) + ‖zt(., t)‖L2(0,1) ≤ ‖z0‖H1
(0)

(0,1) + ‖z1‖L2(0,1) ,

together with the attractivity property

‖z(., t)‖H1
(0)

(0,1) + ‖zt(., t)‖L2(0,1) → 0, as t →∞ .
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To prove the well-posedness of the Cauchy problem we prove that
A2 defined by

A2

(
u
v

)
=

(
v
u′′

)
with the domain D(A2) = {(u, v), (u, v) ∈
H2(0, 1)× H1

(0)(0, 1), u′(1) + sat(bv(1)) = 0, u(0) = 0} is a
semigroup of contraction.

The global stability property comes directly from the dissipativity
of A2.

The global attractivity property comes from the following lemma:
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Lemma (semi-global exponential stability)

For all r > 0, there exists µ > 0 such that, for all initial condition
satisfying

‖z0′′‖2L2(0,1) + ‖z1‖2H1
(0)

(0,1) ≤ r2 , (21)

it holds
V̇2 ≤ −µV2

along the solutions to (16) with the boundary conditions (20).
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Sketch of the proof of this lemma

First note that by dissipativity of A2, it holds that

t 7→
∥∥∥∥A2

(
z(., t)
zt(., t)

)∥∥∥∥
is a non-increasing function. Thus, for all t ≥ 0,

|zt(1, t)| ≤
∥∥∥∥A2

(
z(., 0)
zt(., 0)

)∥∥∥∥ . (22)

Now for all initial conditions satisfying (21), there exists c 6= b
such that, for all t ≥ 0,

(b − c)|zt(1, t)| ≤ 1

and thus the following local sector condition holds:
sat(bσ)

b
|b−c|

bσ Letting σ = zt(1, t), it holds
(sat(bσ)− bσ)(sat(bσ)− (b − c)σ) ≤ 0
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We come back to the Lyapunov function candidate V2. Given
b > 0, using the previous inequality, we compute

V̇2 = −µV2 + eµ(σ − sat(bσ))2 − e−µ(σ + sat(bσ))2

≤ −µV2 +
(

σ
sat(bσ)

)> ( eµ − e−µ − b2(b − c) −eµ − e−µ + b + b(b − c)

−eµ − e−µ + b + b(b − c) −1 + eµ − e−µ

)
×
(

σ
sat(bσ)

)
≤ −µV2

with a suitable choice of constant values µ and c.
The semi-global exponential stability follows. �

Back to the wave equation with in-domain control
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