Saturated control of infinite-dimensional systems

Christophe PRIEUR

CNRS, Gipsa-lab, Grenoble, France

International Workshop on Robust LPV Control Techniques and Anti-Windup Design

Toulouse, April 2018

Figure 3.5. The frequency distribution of the normal vibration modes of a ski. The ski is clamped at the center to a shaker and driven. An output accelerometer located on the afterbody records the vibration response shown. [Reprinted with permission from R. L. Pizialli and C. D. Mote, Jr., "The Snow Ski as a Dynamic System," J. Dynamic Syst. Meas. Control, Trans. ASME 94, 134 (1972).|

Page 63: Natural frequency with "good and bad vibrations"
[David A. Lind et Scott P. Sanders, The Physics of Skiing: Skiing at the Triple Point, 2nd edition; 2013]

Use passively piezoelectric patches
 [L. Rothemann, H. Schretter, Active vibration damping of the alpine ski; 2010]

One way to kill bad vibrations?

Control your skis with smart materials!

How to do it actively?
Need to consider a distributed

parameter systems:

How to control the flexible ski structure? Euler Bernoulli equation:

$$
\begin{gathered}
\rho \frac{\partial^{2} w}{\partial t^{2}}+Y I \frac{\partial^{4} w}{\partial x^{4}} \\
=\text { piezo force under control }
\end{gathered}
$$

One way to kill bad vibrations?

Figure 2.1. This skier heads down the hill, his skis lubricated by a film of water that forms under his skis. In his thoughts he mulls over a mathematical formula that we will discuss later in Chapter 8 on snow friction processes. (Colbeck, 1992. Drawn by Marilyn Aber, CRREL.)

Control your skis with smart materials!

Use passively piezoelectric patches
[L. Rothemann, H. Schretter, Active vibration damping of the alpine ski; 2010]

How to do it actively? Need to consider a distributed parameter systems: How to control the flexible ski structure? Euler Bernoulli
equation

One way to kill bad vibrations?

Figure 2.1. This skier heads down the hill, his skis lubricated by a film of water that forms under his skis. In his thoughts he mulls over a mathematical formula that we will discuss later in Chapter 8 on snow friction processes. (Colbeck, 1992. Drawn by Marilyn Aber, CRREL.)

Control your skis with smart materials!

Use passively piezoelectric patches
[L. Rothemann, H. Schretter, Active vibration damping of the alpine ski; 2010]

How to do it actively?
Need to consider a distributed parameter systems:
How to control the flexible ski structure? Euler Bernoulli equation:

$$
\rho \frac{\partial^{2} w}{\partial t^{2}}+Y I \frac{\partial^{4} w}{\partial x^{4}}
$$
$=$ piezo force under control

Another domain with large flexible structures:

- satellites with large flexible structures
- and large airplanes with flexible wings and fluid dynamics

Flexible structure+ sloshing modes

control of distributed parameters systems (PDE) with

- robustness
- experiments
- in-domain control

See [Robu, Baudouin, CP; 12], [Robu, Baudouin, CP, Arzelier; 12]
Can we use

Another domain with large flexible structures:

- satellites with large flexible structures
- and large airplanes with flexible wings and fluid dynamics

Flexible structure+ sloshing modes

control of distributed parameters systems (PDE) with

- robustness
- experiments
- in-domain control

See [Robu, Baudouin, CP; 12], [Robu, Baudouin, CP, Arzelier; 12] Can we use saturated control?

Given a PDE, there exists now a large variety on methods to design linear controllers. It is well known that saturation can reduce the performance or even destabilize the system, even for finite-dimensional systems.
More precisely, even if

$$
\begin{equation*}
\dot{z}=A z+B K z \tag{1}
\end{equation*}
$$

is asymp. stable, it may hold that

$$
\begin{equation*}
\dot{z}=A z+\operatorname{sat}(B K z) \tag{2}
\end{equation*}
$$

is not globally asymptotically stable.

Given a PDE, there exists now a large variety on methods to design linear controllers. It is well known that saturation can reduce the performance or even destabilize the system, even for finite-dimensional systems.
More precisely, even if

$$
\begin{equation*}
\dot{z}=A z+B K z \tag{1}
\end{equation*}
$$

is asymp. stable, it may hold that

$$
\begin{equation*}
\dot{z}=A z+\operatorname{sat}(B K z) \tag{2}
\end{equation*}
$$

is not globally asymptotically stable.
It may exist new equilibrium, new limit cycles...
See e.g. [Tarbouriech, Garcia, Gomes da Silva Jr., Queinnec; 2011]
Goal of this talk:
What happens if in (2), instead of matrices $A, B \ldots$, we have
operators? More precisely, what happens if A generates a
semigroup and B is a bounded control operator? An example of such a nonlinear PDE given by (2):

Given a PDE, there exists now a large variety on methods to design linear controllers. It is well known that saturation can reduce the performance or even destabilize the system, even for finite-dimensional systems.
More precisely, even if

$$
\begin{equation*}
\dot{z}=A z+B K z \tag{1}
\end{equation*}
$$

is asymp. stable, it may hold that

$$
\begin{equation*}
\dot{z}=A z+\operatorname{sat}(B K z) \tag{2}
\end{equation*}
$$

is not globally asymptotically stable.
It may exist new equilibrium, new limit cycles...
See e.g. [Tarbouriech, Garcia, Gomes da Silva Jr., Queinnec; 2011]
Goal of this talk:
What happens if in (2), instead of matrices $A, B \ldots$, we have operators? More precisely, what happens if A generates a semigroup and B is a bounded control operator? An example of such a nonlinear PDE given by (2):
Wave equation with saturating in-domain control

Two objectives

- Well-posedness
- Stability
of the wave equation in presence of a disturbed saturating control with a Lyapunov method.

Outline

1 Well-posedness and stability of linear wave equation with a saturated in-domain control

Lyapunov method, LaSalle invariance principle
2 Well-posedness and stability of linear abstract systems with a
saturated in-domain control
strict Lyapunov method, robustness result
3 Numerical simulations on wave equation
effect of the saturation level
4 Conclusion

Outline

1 Well-posedness and stability of linear wave equation with a saturated in-domain control

Lyapunov method, LaSalle invariance principle
2 Well-posedness and stability of linear abstract systems with a saturated in-domain control
strict Lyapunov method, robustness result
3 Numerical simulations on wave equation \quad effect of the saturation level
4 Conclusion

Outline

1 Well-posedness and stability of linear wave equation with a saturated in-domain control

Lyapunov method, LaSalle invariance principle
2 Well-posedness and stability of linear abstract systems with a saturated in-domain control
strict Lyapunov method, robustness result
3 Numerical simulations on wave equation effect of the saturation level

4 Conclusion

1 - Wave equation with an in-domain control

1D wave equation with in-domain control.
Dynamics of the vibration:

$$
\begin{equation*}
z_{t t}(x, t)=z_{x x}(x, t)+f(x, t), \forall x \in(0,1), t \geq 0 \tag{3}
\end{equation*}
$$

Boundary conditions, $\forall t \geq 0$,

$$
\begin{align*}
& z(0, t)=0 \tag{4}\\
& z(1, t)=0,
\end{align*}
$$

and with the following initial condition, $\forall x \in(0,1)$,

$$
\begin{align*}
z(x, 0) & =z^{0}(x) \\
z_{t}(x, 0) & =z^{1}(x) \tag{5}
\end{align*}
$$

where z^{0} and z^{1} stand respectively for the initial deflection and the initial deflection speed.

When closing the loop with a linear control

Let us define the linear control by

$$
\begin{equation*}
f(x, t)=-a z_{t}(x, t), x \in(0,1), \forall t \geq 0 \tag{6}
\end{equation*}
$$

and consider

$$
V_{1}=\frac{1}{2} \int\left(z_{x}^{2}+z_{t}^{2}\right) d x
$$

Formal computation. Along the solutions to (3), (4) and (6):

$$
\begin{aligned}
\dot{V}_{1} & =\int_{0}^{1}\left(z_{x} z_{x t}-a z_{t}^{2}+z_{t} z_{x x}\right) d x \\
& =-\int_{0}^{1} a z_{t}^{2} d x+\left[z_{t} z_{x}\right]_{x=0}^{x=1} \\
& =-\int_{0}^{1} a z_{t}^{2} d x
\end{aligned}
$$

Thus, it $a>0, V_{1}$ is a (non strict) Lyapunov function.

Using standard technics (Lumer-Philipps thereom (for the well-posedness) and Huang-Prüss theorem (for the exp. stability)):

Proposition

$\forall a>0, \forall\left(z^{0}, z^{1}\right)$ in $H_{0}^{1}(0,1) \times L^{2}(0,1)$,
\exists ! solution z : $[0, \infty) \rightarrow H_{0}^{1}(0,1) \times L^{2}(0,1)$ to (3)-(6).

In the previous proposition:

- stability
- attractivity of the equilibrium
- with an exponential speed

Using standard technics (Lumer-Philipps thereom (for the well-posedness) and Huang-Prüss theorem (for the exp. stability)):

Proposition

$\forall a>0, \forall\left(z^{0}, z^{1}\right)$ in $H_{0}^{1}(0,1) \times L^{2}(0,1)$,
$\exists!$ solution $z:[0, \infty) \rightarrow H_{0}^{1}(0,1) \times L^{2}(0,1)$ to (3)-(6). Moreover,
$\exists C, \mu>0$, such that, for any initial condition $H_{0}^{1}(0,1) \times L^{2}(0,1)$, it holds, $\forall t \geq 0$,

$$
\|z\|_{H_{0}^{1}(0,1)}+\left\|z_{t}\right\|_{L^{2}(0,1)} \leq C e^{-\mu t}\left(\left\|z^{0}\right\|_{H_{0}^{1}(0,1)}+\left\|z^{1}\right\|_{L^{2}(0,1)}\right)
$$

Using standard technics (Lumer-Philipps thereom (for the well-posedness) and Huang-Prüss theorem (for the exp. stability)):

Proposition

$\forall a>0, \forall\left(z^{0}, z^{1}\right)$ in $H_{0}^{1}(0,1) \times L^{2}(0,1)$,
$\exists!$ solution $z:[0, \infty) \rightarrow H_{0}^{1}(0,1) \times L^{2}(0,1)$ to (3)-(6). Moreover,
$\exists C, \mu>0$, such that, for any initial condition $H_{0}^{1}(0,1) \times L^{2}(0,1)$, it holds, $\forall t \geq 0$,

$$
\|z\|_{H_{0}^{1}(0,1)}+\left\|z_{t}\right\|_{L^{2}(0,1)} \leq C e^{-\mu t}\left(\left\|z^{0}\right\|_{H_{0}^{1}(0,1)}+\left\|z^{1}\right\|_{L^{2}(0,1)}\right) .
$$

In the previous proposition:

- stability
- attractivity of the equilibrium
- with an exponential speed

When closing the loop with a saturating control

Let us consider now the nonlinear control

$$
\begin{equation*}
f(x, t)=-\operatorname{sat}\left(a z_{t}(x, t)\right), x \in(0,1), \forall t \geq 0 \tag{7}
\end{equation*}
$$

where sat is the localized saturated map:

$$
\operatorname{sat}(\sigma)= \begin{cases}\sigma & \text { if }|\sigma|<1 \\ \operatorname{sign}(\sigma) & \text { else }\end{cases}
$$

Equation (3) in closed loop with the control (7) becomes

$$
\begin{equation*}
z_{t t}=z_{x x}-\operatorname{sat}\left(a z_{t}\right) \tag{8}
\end{equation*}
$$

A formal computation gives, along the solutions to (8) and (4),

$$
\dot{V}_{1}=-\int_{0}^{1} z_{t} \operatorname{sat}\left(a z_{t}\right) d x
$$

which asks to handle the nonlinearity $z_{t} \operatorname{sat}\left(a z_{t}\right)$.

Remark: Choice of the saturation map

[Slemrod; 1989] and [Lasiecka and Seidman; 2003] deal with L^{2} saturation:
Given $\sigma:[0,1] \rightarrow \mathbb{R}$, sat $_{2}(\sigma)$ is the function defined by $\operatorname{sat}_{2}(\sigma)(x)= \begin{cases}\sigma(x) & \text { if }\|\sigma\|_{L^{2}(0,1)}<1 \\ \frac{\sigma(x)}{\|\sigma\|_{L^{2}(0,1)}} & \text { else }\end{cases}$

Here we consider localized saturation which is more physically relevant:
$\operatorname{sat}(\sigma(x))= \begin{cases}\sigma(x) & \text { if }|\sigma(x)|<1 \\ \operatorname{sign}(\sigma(x)) & \text { else }\end{cases}$

Well-posedness of this nonlinear PDE

Theorem 1 [CP, Tarbouriech, Gomes da Silva Jr; 2016]
$\forall a \geq 0$, for all $\left(z^{0}, z^{1}\right)$ in $\left(H^{2}(0,1) \cap H_{0}^{1}(0,1)\right) \times H_{0}^{1}(0,1)$, there exists a unique solution z : $[0, \infty) \rightarrow H^{2}(0,1) \cap H_{0}^{1}(0,1)$ to (8) with the boundary conditions (4) and the initial condition (5).

Consider

$$
A_{1}\binom{u}{v}=\binom{v}{u_{x x}-\operatorname{sat}(a v)}
$$

with the domain $D\left(A_{1}\right)=\left(H^{2}(0,1) \cap H_{0}^{1}(0,1)\right) \times H_{0}^{1}(0,1)$.
Let us use a generalization of Lumer-Phillips theorem which is the so-called Crandall-Liggett theorem, as given in [Barbu; 1976]. See also [Brezis; 1973] and [Miyadera; 1992].
Again two conditions
(1) A_{1} is dissipative, that is

$$
\Re\left(\left\langle A_{1}\binom{u}{v}-A_{1}\binom{\tilde{u}}{\tilde{v}},\binom{u}{v}-\binom{\tilde{u}}{\tilde{v}}\right\rangle\right) \leq 0
$$

(2) For all $\lambda>0, D\left(A_{1}\right) \subset \operatorname{Ran}\left(I-\lambda A_{1}\right)$

First item: Easy step!
Instead of proving
$\Re\left(\left\langle A_{1}\binom{u}{v}-A_{1}\binom{\tilde{u}}{\tilde{v}},\binom{u}{v}-\binom{\tilde{u}}{\tilde{v}}\right\rangle\right) \leq 0$, let us check, for all $\binom{u}{v} \in H_{0}^{1}(0,1) \times L^{2}(0,1)$:

$$
\Re\left(\left\langle A_{1}\binom{u}{v},\binom{u}{v}\right\rangle\right) \leq 0
$$

To do that, using the definition of A_{1}, and of the scalar product in $H_{0}^{1}(0,1) \times L^{2}(0,1)$, it is equal to:

$$
\begin{gathered}
\int_{0}^{1} v_{x}(x) \overline{u_{x}(x)} d x+\int_{0}^{1}\left(u_{x x}(x)-\operatorname{sat}(\operatorname{av(x)})\right) \overline{v(x)} d x, \\
=\int_{0}^{1} v_{x}(x) \overline{u_{x}(x)} d x+\int_{0}^{1} u_{x x}(x) \overline{v(x)} d x-\int_{0}^{1} \operatorname{sat}(\operatorname{av(x)} \overline{v(x)} d x \\
=\left[u_{x}(x) \overline{v(x)}\right]_{x=0}^{x=1}-\int_{0}^{1} \operatorname{sat}(\operatorname{av}(x)) \overline{v(x)} d x \leq 0
\end{gathered}
$$

due to the boundary and since $a \geq 0$.

Second item asks to deal with a nonlinear ODE.
Let $\binom{u}{v} \in H_{0}^{1}(0,1) \times L^{2}(0,1)$ we have to find $\binom{\tilde{u}}{\tilde{v}} \in D\left(A_{1}\right)$
such that

$$
\left(I-\lambda A_{1}\right)\binom{\tilde{u}}{\tilde{v}}=\binom{u}{v}
$$

that is

$$
\left\{\begin{array}{c}
\tilde{u}-\lambda \tilde{v}=u \\
\tilde{v}-\lambda\left(\tilde{u}_{x x}-\operatorname{sat}(a \tilde{v})\right)=v,
\end{array}\right.
$$

In particular, we have to find \tilde{u} such that

$$
\begin{aligned}
& \tilde{u}_{x x}-\frac{1}{\lambda^{2}} \tilde{u}-\operatorname{sat}\left(\frac{a}{\lambda}(\tilde{u}-u)\right)=-\frac{1}{\lambda} v-\frac{1}{\lambda^{2}} u \\
& \tilde{u}(0)=\tilde{u}(1)=0
\end{aligned}
$$

holds.
Nonhomogeneous nonlinear ODE with two boundary conditions

Lemma

If a is nonnegative and λ is positive, then there exists \tilde{u} solution to

$$
\begin{gather*}
\tilde{u}_{x x}-\frac{1}{\lambda^{2}} \tilde{u}-\operatorname{sat}\left(\frac{a}{\lambda}(\tilde{u}-u)\right)=-\frac{1}{\lambda} v-\frac{1}{\lambda^{2}} u \tag{9}\\
\tilde{u}(0)=\tilde{u}(1)=0
\end{gather*}
$$

To prove this lemma, let us introduce the following map

$$
\begin{aligned}
\mathcal{T}: \quad L^{2}(0,1) & \rightarrow L^{2}(0,1) \\
y & \mapsto z=\mathcal{T}(y)
\end{aligned}
$$

where $z=\mathcal{T}(y)$ is the unique solution to

$$
\begin{gathered}
z_{x x}-\frac{1}{\lambda^{2}} z=-\frac{1}{\lambda} v-\frac{1}{\lambda^{2}} u+\operatorname{sat}\left(\frac{a}{\lambda}(y-u)\right), \\
z(0)=z(1)=0
\end{gathered}
$$

Prove that \mathcal{T} is well defined and apply the Schauder fixed-point theorem (see e.g., [Coron; 2007]), to deduce that there exists y such that $\mathcal{T}(y)=y$

Lemma

If a is nonnegative and λ is positive, then there exists \tilde{u} solution to

$$
\begin{gather*}
\tilde{u}_{x x}-\frac{1}{\lambda^{2}} \tilde{u}-\operatorname{sat}\left(\frac{a}{\lambda}(\tilde{u}-u)\right)=-\frac{1}{\lambda} v-\frac{1}{\lambda^{2}} u \tag{9}\\
\tilde{u}(0)=\tilde{u}(1)=0
\end{gather*}
$$

To prove this lemma, let us introduce the following map

$$
\begin{aligned}
\mathcal{T}: \quad L^{2}(0,1) & \rightarrow L^{2}(0,1) \\
y & \mapsto z=\mathcal{T}(y)
\end{aligned}
$$

where $z=\mathcal{T}(y)$ is the unique solution to

$$
\begin{gathered}
z_{x x}-\frac{1}{\lambda^{2}} z=-\frac{1}{\lambda} v-\frac{1}{\lambda^{2}} u+\operatorname{sat}\left(\frac{a}{\lambda}(y-u)\right), \\
z(0)=z(1)=0
\end{gathered}
$$

Prove that \mathcal{T} is well defined and apply the Schauder fixed-point theorem (see e.g., [Coron; 2007]), to deduce that there exists y such that $\mathcal{T}(y)=y$

$$
\tilde{u}=y \text { solves }(9)
$$

Global asymptotic stability of this nonlinear PDE

Theorem 2

$\forall a>0$, for all $\left(z^{0}, z^{1}\right)$ in $\left(H^{2}(0,1) \cap H_{0}^{1}(0,1)\right) \times H_{0}^{1}(0,1)$, the solution to (8) with the boundary conditions (4) and the initial condition (5) satisfies the following stability property, $\forall t \geq 0$,

$$
\|z(., t)\|_{H_{0}^{1}(0,1)}+\left\|z_{t}(., t)\right\|_{L^{2}(0,1)} \leq\left\|z^{0}\right\|_{H_{0}^{1}(0,1)}+\left\|z^{1}\right\|_{L^{2}(0,1)}
$$

together with the attractivity property

$$
\|z(., t)\|_{H_{0}^{1}(0,1)}+\left\|z_{t}(., t)\right\|_{L^{2}(0,1)} \rightarrow 0, \text { as } t \rightarrow \infty
$$

Due to Theorem 1, the formal computation

$$
\dot{V}_{1}=-\int_{0}^{1} z_{t} \operatorname{sat}\left(a z_{t}\right) d x
$$

makes sense. This is only a weak Lyapunov function $\dot{V}_{1} \leq 0$ (the state is $\left(z, z_{t}\right)$, and there is no $-z^{2}$).
To be able to apply LaSalle's Invariance Principle, we have to check that the trajectories are precompact (see e.g. [Dafermos, Slemrod; 1973], [d'Andréa-Novel et al; 1994]). It comes from:

Lemma

The canonical embedding from $D\left(A_{1}\right)$, equipped with the graph norm, into $H_{0}^{1}(0,1) \times L^{2}(0,1)$ is compact.

Sketch of the proof of

The canonical embedding from $D\left(A_{1}\right)$, equipped with the graph norm, into $H_{0}^{1}(0,1) \times L^{2}(0,1)$ is compact.

Consider a sequence $\binom{u_{n}}{v_{n}}_{n \in \mathbb{N}}$ in $D\left(A_{1}\right)$, which is bounded with the graph norm, that is $\exists M>0, \forall n \in \mathbb{N}$,

$$
\begin{aligned}
\left\|\binom{u_{n}}{v_{n}}\right\|_{D\left(A_{1}\right)}^{2}:= & \left\|\binom{u_{n}}{v_{n}}\right\|^{2}+\left\|A_{1}\binom{u_{n}}{v_{n}}\right\|^{2}, \\
= & \int_{0}^{1}\left(\left|u_{n}^{\prime}\right|^{2}+\left|v_{n}\right|^{2}+\left|v_{n}^{\prime}\right|^{2}\right. \\
& \left.+\left|u_{n}^{\prime \prime}-\operatorname{asat}\left(v_{n}\right)\right|^{2}\right) d x<M
\end{aligned}
$$

From that, we deduce that $\int_{0}^{1}\left(\left|v_{n}\right|^{2}+\left|v_{n}^{\prime}\right|^{2}\right) d x$ and $\int_{0}^{1}\left(\left|u_{n}^{\prime}\right|^{2}+\left|u_{n}^{\prime \prime}\right|^{2}\right) d x$ are bounded.
Thus there exists a subsequence which converges in $H_{0}^{1}(0,1) \times L^{2}(0,1)$.

Using the dissipativity of A_{1}, and previous lemma the trajectory $\binom{z(., t)}{z_{t}(., t)}$ is precompact in $H_{0}^{1}(0,1) \times L^{2}(0,1)$.
Moreover the ω-limit set $\omega\left[\binom{z(., 0)}{z_{t}(., 0)}\right] \subset D\left(A_{1}\right)$, is not empty and invariant with respect to the nonlinear semigroup $T(t)$ (see [Slemrod; 1989]).
We now use LaSalle's invariance principle to show that $\omega\left[\binom{z(., 0)}{z_{t}(., 0)}\right]=\{0\}$.
Therefore the convergence property holds.

Remark: Boundary control

1D wave equation with a boundary control.
Dynamics: $\forall x \in(0,1), t \geq 0$,

$$
z_{t t}(x, t)=z_{x x}(x, t)
$$

Boundary conditions: $\forall t \geq 0$,

$$
\begin{aligned}
z(0, t) & =0 \\
z_{x}(1, t) & =-\operatorname{sat}\left(b z_{t}(1, t)\right),
\end{aligned}
$$

In the same work, stability proof using the sector condition + strict Lyapunov function.

2 - Strict Lyapunov function

For the wave equation+ saturated in-domain control, a non-strict Lyapunov function has been computed. Thus:

- No robustness margin. What happens in presence of noise?
- For linear PDE, we have exponential convergence (see Proposition on Slide 10).
Do we have exp. stability for the nonlinear PDE?
Let us start with the abstract control system

$$
\left\{\begin{array}{l}
\frac{d}{d t} z=A z+B u \tag{10}\\
z(0)=z_{0}
\end{array}\right.
$$

where $A: D(A) \subset H \rightarrow H$ be a linear operator whose domain $D(A)$ is dense in H. Assume it generates a strongly continuous semigroup of contractions denoted by $e^{t A}$.
Let $B: U \rightarrow H$ be a bounded operator.
Wave equation with in-domain control applies !

A natural feedback law for (10) is $u=-B^{\star} z$.
Assumption 1: a linear feedback law is given
The linear closed-loop system

$$
\left\{\begin{align*}
\frac{d}{d t} z & =\left(A-B B^{\star}\right) z \tag{11}\\
z(0) & =z_{0}
\end{align*}\right.
$$

globally exponentially stable.
Under Assumption 1, there exist a self-adjoint and definite positive operator $P \in \mathcal{L}(H)$ and a positive value C such that

$$
\begin{equation*}
\left\langle\tilde{A} z, P_{z},\right\rangle_{H}+\left\langle P_{z}, \tilde{A} z\right\rangle_{H} \leq-C\|z\|_{H}^{2}, \quad \forall z \in D(\tilde{A}), \tag{12}
\end{equation*}
$$

with $\tilde{A}=A-B B^{\star}$

A natural feedback law for (10) is $u=-B^{\star} z$.

Assumption 1: a linear feedback law is given

The linear closed-loop system

$$
\left\{\begin{align*}
\frac{d}{d t} z & =\left(A-B B^{\star}\right) z \tag{11}\\
z(0) & =z_{0}
\end{align*}\right.
$$

globally exponentially stable.
Under Assumption 1, there exist a self-adjoint and definite positive operator $P \in \mathcal{L}(H)$ and a positive value C such that

$$
\begin{equation*}
\langle\tilde{A} z, P z,\rangle_{H}+\langle P z, \tilde{A} z\rangle_{H} \leq-C\|z\|_{H}^{2}, \quad \forall z \in D(\tilde{A}) \tag{12}
\end{equation*}
$$

with $\tilde{A}=A-B B^{\star}$.

In presence of saturated input and disturbances

Consider the saturated case

$$
\left\{\begin{array}{l}
\frac{d}{d t} z=A z-B \operatorname{sat}_{u}\left(B^{\star} z\right) \tag{13}\\
z(0)=z_{0}
\end{array}\right.
$$

In presence of saturated input and disturbances

Consider the saturated case + disturbance

$$
\left\{\begin{align*}
\frac{d}{d t} z & =A z-B \operatorname{sat}_{u}\left(B^{\star} z+\underline{d}\right) \tag{13}\\
z(0) & =z_{0}
\end{align*}\right.
$$

where $d:(0, \infty) \rightarrow U$ is a disturbance.

In presence of saturated input and disturbances

Consider the saturated case $+\underline{\text { disturbance }}$

$$
\left\{\begin{align*}
\frac{d}{d t} z & =A z-B \operatorname{sat}_{U}\left(B^{\star} z+\underline{d}\right) \tag{13}\\
z(0) & =z_{0}
\end{align*}\right.
$$

where $d:(0, \infty) \rightarrow U$ is a disturbance.
Recall the L^{2} saturation: Given $u:[0,1] \rightarrow \mathbb{R}, \operatorname{sat}_{2}(\sigma)$ is the function defined by $\operatorname{sat}_{2}(\sigma)= \begin{cases}\sigma & \text { if }\|\sigma\|_{L^{2}(0,1)}<1 \\ \frac{\sigma}{\|\sigma\|_{L^{2}(0,1)}} & \text { else }\end{cases}$

In presence of saturated input and disturbances

Consider the saturated case + disturbance

$$
\left\{\begin{align*}
\frac{d}{d t} z & =A z-B \operatorname{sat}_{u}\left(B^{\star} z+\underline{d}\right), \tag{13}\\
z(0) & =z_{0},
\end{align*}\right.
$$

where $d:(0, \infty) \rightarrow U$ is a disturbance.
Recall the L^{2} saturation: Given $u:[0,1] \rightarrow \mathbb{R}$, $\operatorname{sat}_{2}(\sigma)$ is the
function defined by $\operatorname{sat}_{2}(\sigma)=\left\{\begin{array}{cc}\sigma & \\ & \\ & \text { if }\|\sigma\|_{L^{2}(0,1)}<1\end{array}\right.$ else

Here the same with $U=L^{2}(0,1)$: Given $\sigma \in U$, $\operatorname{sat}_{U}(\sigma)$ is the
function defined by $\operatorname{sat}_{U}(\sigma)= \begin{cases}\sigma & \text { if } \| \sigma \\ \frac{\sigma}{\|\sigma\|_{U}} & \text { else }\end{cases}$

In presence of saturated input and disturbances

Consider the saturated case + disturbance

$$
\left\{\begin{array}{l}
\frac{d}{d t} z=A z-B \operatorname{sat}_{u}\left(B^{\star} z+\underline{d}\right) \tag{13}\\
z(0)=z_{0}
\end{array}\right.
$$

where $d:(0, \infty) \rightarrow U$ is a disturbance.
Recall the L^{2} saturation: Given $u:[0,1] \rightarrow \mathbb{R}, \operatorname{sat}_{2}(\sigma)$ is the function defined by $\operatorname{sat}_{2}(\sigma)= \begin{cases}\sigma & \text { if } \| \sigma \\ \frac{\sigma}{\|\sigma\|_{L^{2}(0,1)}} & \text { else }\end{cases}$ Here the same with $U=L^{2}(0,1)$: Given $\sigma \in U$, sat $U(\sigma)$ is the function defined by $\operatorname{sat}_{U}(\sigma)= \begin{cases}\sigma & \text { if }\|\sigma\|_{u}<1 \\ \frac{\sigma}{\|\sigma\|_{u}} & \text { else }\end{cases}$

What can be said about the exp. stability when $d=0$ and about the robustness in presence of d ?

ISS notion

Input-to-State Stability definition

A positive definite function $V: H \rightarrow \mathbb{R}_{>0}$ is said to be an ISS-Lyapunov function with respect to d if \exists two class \mathcal{K}_{∞} functions α and ρ such that, for any solution to (13)

$$
\frac{d}{d t} V(z) \leq-\alpha(\|z\|)+\rho\left(\|d\|_{U}\right)
$$

Remark: Of course ISS Lyapunov function
$+\exists$ two functions $\underline{\alpha}$ and $\bar{\alpha}$ of class \mathcal{K} such that

$$
\alpha(\|z\| H) \leq V(z) \leq a\left(\|z\|_{H}\right), \forall z \in H
$$

\Rightarrow the origin of (13) with $d=0$ is globally asymptotically stable.

ISS notion

Input-to-State Stability definition

A positive definite function $V: H \rightarrow \mathbb{R}_{\geq 0}$ is said to be an ISS-Lyapunov function with respect to d if \exists two class \mathcal{K}_{∞} functions α and ρ such that, for any solution to (13)

$$
\frac{d}{d t} V(z) \leq-\alpha(\|z\|)+\rho\left(\|d\|_{U}\right)
$$

Remark: Of course ISS Lyapunov function $+\exists$ two functions $\underline{\alpha}$ and $\bar{\alpha}$ of class \mathcal{K} such that

$$
\underline{\alpha}\left(\|z\|_{H}\right) \leq V(z) \leq \underline{\alpha}\left(\|z\|_{H}\right), \forall z \in H
$$

\Rightarrow the origin of (13) with $d=0$ is globally asymptotically stable.

Input-to-state stability result

Theorem 3 [Marx, Chitour, CP; 2018]

Suppose that Assumption 1 holds and let $P \in \mathcal{L}(H)$ be a self-adjoint and positive operator satisfying (12). Then, there exists M such that

$$
\begin{equation*}
V(z):=\langle P z, z\rangle_{H}+M\|z\|_{H}^{3} \tag{14}
\end{equation*}
$$

is an ISS-Lyapunov function for (13).

The proof follows the finite-dimensional case considered in [Liu, Chitour, and Sontag; 1996]

Input-to-state stability result

Theorem 3 [Marx, Chitour, CP; 2018]

Suppose that Assumption 1 holds and let $P \in \mathcal{L}(H)$ be a self-adjoint and positive operator satisfying (12). Then, there exists M such that

$$
\begin{equation*}
V(z):=\langle P z, z\rangle_{H}+M\|z\|_{H}^{3} \tag{14}
\end{equation*}
$$

is an ISS-Lyapunov function for (13).

The proof follows the finite-dimensional case considered in [Liu, Chitour, and Sontag; 1996].

Let us consider the following candidate Lyapunov function

$$
\begin{equation*}
V(z):=\langle P z, z\rangle_{H}+\frac{2 M}{3}\|z\|_{H}^{3}=V_{1}(z)+\frac{2 M}{3}\|z\|_{H}^{3}, \tag{15}
\end{equation*}
$$

Along the strong solutions to (13), with $\tilde{A}=A-B B^{\star}$

$$
\begin{aligned}
\frac{d}{d t} V_{1}(z)= & \langle P z, A z\rangle_{H}+\langle P A z, z\rangle_{H} \\
& +\left\langle P B\left(\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right)\right), z\right\rangle_{H} \\
& +\left\langle z, P B\left(\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right)\right)\right\rangle_{H}
\end{aligned}
$$

Let us consider the following candidate Lyapunov function

$$
\begin{equation*}
V(z):=\langle P z, z\rangle_{H}+\frac{2 M}{3}\|z\|_{H}^{3}=V_{1}(z)+\frac{2 M}{3}\|z\|_{H}^{3}, \tag{15}
\end{equation*}
$$

Along the strong solutions to (13), with $\tilde{A}=A-B B^{\star}$

$$
\begin{aligned}
\frac{d}{d t} V_{1}(z)= & \langle P z, \tilde{A} z\rangle_{H}+\langle P \tilde{A} z, z\rangle_{H} \\
& +\left\langle P B\left(B^{\star} z-\operatorname{sat}_{U}\left(B^{\star} z\right), z\right\rangle_{H}\right. \\
& +\left\langle P z, B\left(B^{\star} z-\operatorname{sat}_{u}\left(B^{\star} z\right)\right\rangle_{H}\right. \\
& +\left\langle P B\left(\operatorname{sat}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right)\right), z\right\rangle_{H} \\
& +\left\langle z, P B\left(\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right)\right)\right\rangle_{H}
\end{aligned}
$$

Let us consider the following candidate Lyapunov function

$$
\begin{equation*}
V(z):=\langle P z, z\rangle_{H}+\frac{2 M}{3}\|z\|_{H}^{3}=V_{1}(z)+\frac{2 M}{3}\|z\|_{H}^{3}, \tag{15}
\end{equation*}
$$

Along the strong solutions to (13), with $\tilde{A}=A-B B^{\star}$

$$
\begin{aligned}
\frac{d}{d t} V_{1}(z)= & \langle P z, \tilde{A} z\rangle_{H}+\langle P \tilde{A} z, z\rangle_{H} \\
& +\left\langle P B\left(B^{\star} z-\operatorname{sat}_{U}\left(B^{\star} z\right), z\right\rangle_{H}\right. \\
& +\left\langle P z, B\left(B^{\star} z-\operatorname{sat}_{U}\left(B^{\star} z\right)\right\rangle_{H}\right. \\
& +\left\langle P B\left(\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right)\right), z\right\rangle_{H} \\
& +\left\langle z, P B\left(\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right)\right)\right\rangle_{H} \\
\leq & -C\|z\|_{H}^{2}+2\left\|B^{\star} z\right\|_{U}\|P\|_{\mathcal{L}(H)}\left\|B^{\star} z-\operatorname{sat}_{U}\left(B^{\star} z\right)\right\|_{U} \\
& +2\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right), B^{\star} P z\right\rangle_{U}
\end{aligned}
$$

Let us consider the following candidate Lyapunov function

$$
\begin{equation*}
V(z):=\langle P z, z\rangle_{H}+\frac{2 M}{3}\|z\|_{H}^{3}=V_{1}(z)+\frac{2 M}{3}\|z\|_{H}^{3}, \tag{15}
\end{equation*}
$$

Along the strong solutions to (13), with $\tilde{A}=A-B B^{\star}$

$$
\begin{aligned}
\frac{d}{d t} V_{1}(z)= & \langle P z, \tilde{A} z\rangle_{H}+\langle P \tilde{A} z, z\rangle_{H} \\
& +\left\langle P B\left(B^{\star} z-\operatorname{sat}_{U}\left(B^{\star} z\right), z\right\rangle_{H}\right. \\
& +\left\langle P z, B\left(B^{\star} z-\operatorname{sat}_{U}\left(B^{\star} z\right)\right\rangle_{H}\right. \\
& +\left\langle P B\left(\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right)\right), z\right\rangle_{H} \\
& +\left\langle z, P B\left(\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right)\right)\right\rangle_{H} \\
\leq & -C\|z\|_{H}^{2}+2\left\|B^{\star} z\right\|_{U}\|P\|_{\mathcal{L}(H)}\left\|B^{\star} z-\operatorname{sat}_{U}\left(B^{\star} z\right)\right\|_{U} \\
& +2\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right), B^{\star} P z\right\rangle_{U} \\
\leq & -C\|z\|_{H}^{2}+2\left\|B^{\star} z\right\|_{U}\|P\|_{\mathcal{L}(H)}\left\|B^{\star} z-\operatorname{sat}_{U}\left(B^{\star} z\right)\right\|_{U} \\
& +2 k\left\|_{U}\right\|_{U}\left\|B^{\star}\right\|_{\mathcal{L}(H, U)}\|P\|_{\mathcal{L}(H)}\|z\|_{H},
\end{aligned}
$$

using sat U Lipchitz, Cauchy-Schwarz inequality and the fact that B^{\star} is bounded.

Moreover using $\|d\|_{U}\left\|_{z}\right\|_{H} \leq \varepsilon\|d\|_{U}^{2}+\frac{1}{\varepsilon}\|z\|_{H}^{2}$ and $\left\|B^{\star} z-\operatorname{sat}_{U}\left(B^{\star} z\right)\right\|_{U} \leq\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right), B^{\star} z\right\rangle_{U}$, we get

$$
\begin{aligned}
\frac{d}{d t} V_{1}(z) \leq & -\left(C-\frac{\left\|B^{\star}\right\|_{\mathcal{L}(H, U)}^{2}\|P\|_{\mathcal{L}(H)}^{2}}{\varepsilon_{1}}\right)\|z\|_{H}^{2} \\
& +2\left\|B^{\star}\right\|_{\mathcal{L}(H, U)}\|P\|_{\mathcal{L}(H)}\|z\|_{H}\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right), B^{\star} z\right\rangle_{U} \\
& +k^{2} \varepsilon_{1}\|d\|_{U}^{2}
\end{aligned}
$$

where ε_{1} is a positive value that will be selected later.
Thus

$$
\frac{d}{d t} V_{1}(z) \leq \text { good term }+ \text { bad term }+d^{2}
$$

Secondly, using the dissipativity of the operator $A_{\text {sat }}$, $\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{U} \leq C_{0}\|d\|_{U}$, and $\|z\|_{H}\|d\|_{U} \leq \frac{1}{\varepsilon_{2}}\|z\|_{H}^{2}+\varepsilon_{2}\|d\|_{U}^{2}$, one has

$$
\begin{aligned}
\frac{2 M}{3} \frac{d}{d t}\|z\|_{H}^{3}= & M\|z\|\left(\langle A z, z\rangle_{H}+\langle z, A z\rangle_{H}\right) \\
& -2 M\left\|_{z}\right\|_{H}\left\langle B \operatorname{sat}_{U}\left(B^{\star} z+d\right), z\right\rangle_{H}
\end{aligned}
$$

Secondly, using the dissipativity of the operator $A_{\text {sat }}$, $\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{U} \leq C_{0}\|d\|_{U}$, and $\|z\|_{H}\left\|_{d}\right\|_{U} \leq \frac{1}{\varepsilon_{2}}\|z\|_{H}^{2}+\varepsilon_{2}\|d\|_{U}^{2}$, one has

$$
\begin{aligned}
\frac{2 M}{3} \frac{d}{d t}\|z\|_{H}^{3}= & M\|z\|\left(\langle A z, z\rangle_{H}+\langle z, A z\rangle_{H}\right) \\
& -2 M\left\|_{z}\right\|_{H}\left\langle B \operatorname{sat}_{U}\left(B^{\star} z+d\right), z\right\rangle_{H} \\
\leq & -2 M\left\|_{z}\right\|_{H}\left(\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right), B^{\star} z\right\rangle_{U}\right. \\
& \left.+\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{U}\right)
\end{aligned}
$$

Secondly, using the dissipativity of the operator $A_{\text {sat }}$, $\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{U} \leq C_{0}\|d\|_{U}$, and $\|z\|_{H}\|d\|_{U} \leq \frac{1}{\varepsilon_{2}}\|z\|_{H}^{2}+\varepsilon_{2}\|d\|_{U}^{2}$, one has

$$
\begin{aligned}
\frac{2 M}{3} \frac{d}{d t}\|z\|_{H}^{3}= & M\|z\|\left(\langle A z, z\rangle_{H}+\langle z, A z\rangle_{H}\right) \\
& -2 M\|z\|_{H}\left\langle B \operatorname{sat}_{U}\left(B^{\star} z+d\right), z\right\rangle_{H} \\
\leq & -2 M\left\|_{z}\right\|_{H}\left(\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right), B^{\star} z\right\rangle_{U}\right. \\
& \left.+\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{U}\right) \\
\leq & -2 M\left\|_{z}\right\|_{H}\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right), B^{\star} z\right\rangle_{U} \\
& +2 M C_{0}\left\|_{z}\right\|_{H} \|_{d}
\end{aligned}
$$

Secondly, using the dissipativity of the operator $A_{\text {sat }}$, $\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{U} \leq C_{0}\|d\|_{U}$, and $\|z\|_{H}\|d\|_{U} \leq \frac{1}{\varepsilon_{2}}\|z\|_{H}^{2}+\varepsilon_{2}\|d\|_{U}^{2}$, one has

$$
\begin{aligned}
\frac{2 M}{3} \frac{d}{d t}\|z\|_{H}^{3}= & M\|z\|\left(\langle A z, z\rangle_{H}+\langle z, A z\rangle_{H}\right) \\
& -2 M\|z\|_{H}\left\langle B \operatorname{sat}_{U}\left(B^{\star} z+d\right), z\right\rangle_{H} \\
\leq & -2 M\left\|_{z}\right\|_{H}\left(\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right), B^{\star} z\right\rangle_{U}\right. \\
& \left.+\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right)-\operatorname{sat}_{U}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{U}\right) \\
\leq & -2 M\left\|_{z}\right\|_{H}\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right), B^{\star} z\right\rangle_{U} \\
& +2 M C_{0}\left\|^{2}\right\|_{H}\left\|^{2}\right\|_{U} \\
\leq & -2 M\|z\|_{H}\left\langle\operatorname{sat}_{U}\left(B^{\star} z\right), B^{\star} z\right\rangle_{U} \\
& +\frac{2 M C_{0}}{\varepsilon_{2}}\|z\|_{H}^{2}+2 M C_{0} \varepsilon_{2}\|d\|_{U}^{2}
\end{aligned}
$$

where ε_{2} is a positive value that has to be selected. For an appropriate choice of M, ε_{1} and ε_{2} we deduce the result.

Consider again the wave equation (with S. Tarbouriech and JM Gomes da Silva; 16):

$$
z_{t t}(x, t)=z_{x x}(x, t)-\operatorname{sat}\left(a z_{t}(x, t)\right), \forall x \in(0,1), t \geq 0,
$$

Boundary conditions, $\forall t \geq 0$,

$$
\begin{aligned}
& z(0, t)=0, \\
& z(1, t)=0,
\end{aligned}
$$

and with the following initial condition, $\forall x \in(0,1)$,

$$
\begin{aligned}
z(x, 0) & =z^{0}(x) \\
z_{t}(x, 0) & =z^{1}(x)
\end{aligned}
$$

with $z^{0}(x)=\sin (2 \pi x)$ and $z^{1}(x)=0$, for all $x \in[0,1]$.

With the damping $a=0.1$ and the level of the saturation $u_{0}=5$:

Figure: Time evolution of solution to nonlinear PDE with $u_{0}=5$.

Figure: Time evolution of the saturating input with $u_{0}=5$.

Let us now select a lower saturation level: $u_{0}=1$. It takes a longer time to converge, but still converging!

Figure: Time evolution of solution to nonlinear PDE with $u_{0}=1$.

Figure: Time evolution of the saturating input with $u_{0}=1$.

4 - Conclusion

Conclusion

- Well-posedness and global asymptotic stability for the nonlinear PDEs:
$\left\{\begin{array}{l}z_{t t}=z_{x x}-\operatorname{sat}\left(a z_{t}\right) \\ z(0, t)=z(1, t)=0\end{array} \quad\left\{\begin{array}{l}z_{t t}=z_{x x} \\ z(0, t)=0, z_{x}(1, t)=-\operatorname{sat}(b z(1, t))\end{array}\right.\right.$
- control abstract problems and ISS results
- distributed/localized (localized $/ L^{2}$) saturating control
- strict and non-strict Lyapunov functions have been used

4 - Conclusion

Conclusion

- Well-posedness and global asymptotic stability for the nonlinear PDEs:
$\left\{\begin{array}{l}z_{t t}=z_{x x}-\underline{\operatorname{sat}}\left(a z_{t}\right) \\ z(0, t)=z(1, t)=0\end{array} \quad\left\{\begin{array}{l}z_{t t}=z_{x x} \\ z(0, t)=0, z_{x}(1, t)=-\underline{\operatorname{sat}}(b z(1, t))\end{array}\right.\right.$
- control abstract problems and ISS results
- distributed/localized (localized $/ L^{2}$) saturating control
- strict and non-strict Lyapunov functions have been used

Under actual investigation

Under actual investigation \#1
ISS stability results for saturated boundary control?

```
Under actual investigation #2
Other PDF with saturated input? Beam equation?
See also [Tarbouriech, CP, and Gomes da Silva Jr.; 2005] for
anti-windup and (discretized) beam equation.
```

Under actual investigation \#3
Anti-mindup design to improve the performance?

Under actual investigation

Under actual investigation \#1
ISS stability results for saturated boundary control?

Under actual investigation \#2
Other PDE with saturated input? Beam equation? See also [Tarbouriech, CP, and Gomes da Silva Jr.; 2005] for anti-windup and (discretized) beam equation.

Under actual investigation \#3
Anti-windup design to improve the performance?

Under actual investigation

Under actual investigation \#1
ISS stability results for saturated boundary control?

Under actual investigation \#2
Other PDE with saturated input? Beam equation? See also [Tarbouriech, CP, and Gomes da Silva Jr.; 2005] for anti-windup and (discretized) beam equation.

Under actual investigation \#3
Anti-windup design to improve the performance?

Bonus - Wave equation with a boundary control

1D wave equation with a boundary control.
Dynamics:

$$
\begin{equation*}
z_{t t}(x, t)=z_{x x}(x, t), \forall x \in(0,1), t \geq 0 \tag{16}
\end{equation*}
$$

Boundary conditions, $\forall t \geq 0$,

$$
\begin{align*}
z(0, t) & =0 \tag{17}\\
z_{x}(1, t) & =g(t),
\end{align*}
$$

and with the same initial condition, $\forall x \in(0,1)$,

$$
\begin{align*}
z(x, 0) & =z^{0}(x) \\
z_{t}(x, 0) & =z^{1}(x) \tag{18}
\end{align*}
$$

When closing the loop with a linear boundary control

Let us define the linear control by

$$
\begin{equation*}
g(t)=-b z_{t}(1, t), x \in(0,1), \forall t \geq 0 \tag{19}
\end{equation*}
$$

and consider

$$
V_{2}=\frac{1}{2} \int\left(e^{\mu x}\left(z_{t}+z_{x}\right)^{2} d x+\int\left(e^{-\mu x}\left(z_{t}-z_{x}\right)^{2} d x\right.\right.
$$

Formal computation. Along the solutions to (16), (17) and (19):

$$
\dot{V}_{2}=-\mu V_{2}+\frac{1}{2}\left(e^{\mu}(1-b)^{2}-e^{-\mu}(1+b)^{2}\right) z_{t}^{2}(1, t)
$$

Assuming $b>0$ and letting $\mu>0$ such that
strict Lyapunov function and thus (16)-(19) is exponentially stable.

When closing the loop with a linear boundary control

Let us define the linear control by

$$
\begin{equation*}
g(t)=-b z_{t}(1, t), x \in(0,1), \forall t \geq 0 \tag{19}
\end{equation*}
$$

and consider

$$
V_{2}=\frac{1}{2} \int\left(e^{\mu x}\left(z_{t}+z_{x}\right)^{2} d x+\int\left(e^{-\mu x}\left(z_{t}-z_{x}\right)^{2} d x\right.\right.
$$

Formal computation. Along the solutions to (16), (17) and (19):

$$
\dot{V}_{2}=-\mu V_{2}+\frac{1}{2}\left(e^{\mu}(1-b)^{2}-e^{-\mu}(1+b)^{2}\right) z_{t}^{2}(1, t)
$$

Assuming $b>0$ and letting $\mu>0$ such that $e^{\mu}(1-b)^{2} \leq e^{-\mu}(1+b)^{2}$, it holds $\dot{V}_{2} \leq-\mu V_{2}$ and thus V_{2} is a strict Lyapunov function and thus (16)-(19) is exponentially stable.

When closing the loop with a saturating control

Let us consider now the nonlinear control $g(t)=-\operatorname{sat}\left(b z_{t}(1, t)\right), \forall t \geq 0$. The boundary conditions become:

$$
\begin{equation*}
z(0, t)=0, \quad z_{x}(1, t)=-\operatorname{sat}\left(b z_{t}(1, t)\right) \tag{20}
\end{equation*}
$$

Theorem 3

$\forall b>0$, for all $\left(z^{0}, z^{1}\right)$ in $\{(u, v),(u, v) \in$ $\left.H^{2}(0,1) \times H_{(0)}^{1}(0,1), u_{x}(1)+\operatorname{sat}(b v(1))=0, u(0)=0\right\}$, the solution to (16) with the boundary conditions (20) and the initial condition (5) satisfies the following stability property, $\forall t \geq 0$,

$$
\|z(., t)\|_{H_{(0)}^{1}(0,1)}+\left\|z_{t}(., t)\right\|_{L^{2}(0,1)} \leq\left\|z^{0}\right\|_{H_{(0)}^{1}(0,1)}+\left\|z^{1}\right\|_{L^{2}(0,1)}
$$

together with the attractivity property

$$
\|z(., t)\|_{H_{(0)}^{1}(0,1)}+\left\|z_{t}(., t)\right\|_{L^{2}(0,1)} \rightarrow 0, \quad \text { as } t \rightarrow \infty
$$

To prove the well-posedness of the Cauchy problem we prove that A_{2} defined by

$$
A_{2}\binom{u}{v}=\binom{v}{u^{\prime \prime}}
$$

with the domain $D\left(A_{2}\right)=\{(u, v),(u, v) \in$ $\left.H^{2}(0,1) \times H_{(0)}^{1}(0,1), u^{\prime}(1)+\operatorname{sat}(b v(1))=0, u(0)=0\right\}$ is a semigroup of contraction.

The g
of A_{2}.

The global attractivity property comes from the following lemma:

To prove the well-posedness of the Cauchy problem we prove that A_{2} defined by

$$
A_{2}\binom{u}{v}=\binom{v}{u^{\prime \prime}}
$$

with the domain $D\left(A_{2}\right)=\{(u, v),(u, v) \in$ $\left.H^{2}(0,1) \times H_{(0)}^{1}(0,1), u^{\prime}(1)+\operatorname{sat}(b v(1))=0, u(0)=0\right\}$ is a semigroup of contraction.

The global stability property comes directly from the dissipativity of A_{2}.

The global attractivity property comes from the following lemma:

Lemma (semi-global exponential stability)
For all $r>0$, there exists $\mu>0$ such that, for all initial condition satisfying

$$
\begin{equation*}
\left\|z^{0 \prime \prime}\right\|_{L^{2}(0,1)}^{2}+\left\|z^{1}\right\|_{H_{(0)}^{1}(0,1)}^{2} \leq r^{2} \tag{21}
\end{equation*}
$$

it holds

$$
\dot{V}_{2} \leq-\mu V_{2}
$$

along the solutions to (16) with the boundary conditions (20).

Sketch of the proof of this lemma

First note that by dissipativity of A_{2}, it holds that

$$
t \mapsto\left\|A_{2}\binom{z(., t)}{z_{t}(., t)}\right\|
$$

is a non-increasing function. Thus, for all $t \geq 0$,

$$
\begin{equation*}
\left|z_{t}(1, t)\right| \leq\left\|A_{2}\binom{z(., 0)}{z_{t}(., 0)}\right\| \tag{22}
\end{equation*}
$$

Now for all initial conditions satisfying (21), there exists $c \neq b$ such that, for all $t \geq 0$,

$$
(b-c)\left|z_{t}(1, t)\right| \leq 1
$$

and thus the following local sector condition holds:

Letting $\sigma=z_{t}(1, t)$, it holds
$(\operatorname{sat}(b \sigma)-b \sigma)(\operatorname{sat}(b \sigma)-(b-c) \sigma) \leq 0$

We come back to the Lyapunov function candidate V_{2}. Given $b>0$, using the previous inequality, we compute
$\dot{V}_{2}=-\mu V_{2}+e^{\mu}(\sigma-\operatorname{sat}(b \sigma))^{2}-e^{-\mu}(\sigma+\operatorname{sat}(b \sigma))^{2}$
with a suitable choice of constant values μ and c. The semi-global exponential stability follows.

We come back to the Lyapunov function candidate V_{2} ．Given $b>0$ ，using the previous inequality，we compute

$$
\begin{aligned}
\dot{V}_{2}= & -\mu V_{2}+e^{\mu}(\sigma-\operatorname{sat}(b \sigma))^{2}-e^{-\mu}(\sigma+\operatorname{sat}(b \sigma))^{2} \\
\leq & -\mu V_{2}+(\underset{(\underset{\sigma}{\sigma}}{\operatorname{sat}(b \sigma)})^{\top}\left(\begin{array}{cc}
e^{\mu}-e^{-\mu}-b^{2}(b-c) & -e^{\mu}-e^{-\mu}+b+b(b-c) \\
-e^{\mu}-e^{-\mu}+b+b(b-c) & -1+e^{\mu}-e^{-\mu}
\end{array}\right) \\
& \times(\underset{\operatorname{sat}(b \sigma)}{\operatorname{san}})
\end{aligned}
$$

with a suitable choice of constant values μ and c ． The semi－global exponential stability follows．

We come back to the Lyapunov function candidate V_{2}. Given $b>0$, using the previous inequality, we compute

$$
\begin{aligned}
\dot{V}_{2} & =-\mu V_{2}+e^{\mu}(\sigma-\operatorname{sat}(b \sigma))^{2}-e^{-\mu}(\sigma+\operatorname{sat}(b \sigma))^{2} \\
\leq & -\mu V_{2}+\left(\begin{array}{c}
\sigma \\
\operatorname{sat}(b \sigma) \\
\sigma
\end{array}\right)^{\top}\left(\begin{array}{cc}
e^{\mu}-e^{-\mu}-b^{2}(b-c) & -e^{\mu}-e^{-\mu}+b+b(b-c) \\
-e^{\mu}-e^{-\mu}+b+b(b-c) & -1+e^{\mu}-e^{-\mu}
\end{array}\right) \\
& \times\left(\begin{array}{c}
\operatorname{sat}(b \sigma)
\end{array}\right) \\
\leq & -\mu V_{2}
\end{aligned}
$$

with a suitable choice of constant values μ and c.
The semi-global exponential stability follows.
Back to the wave equation with in-domain control

