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Performance Adaptive Aeroelastic Wing (PAAW)

• Goal: Suppress flutter, control wing shape 
and alter shape to optimize performance

• Funding: NASA NRA NNX14AL36A

• Technical Monitor: Dr. Jeffrey Ouellette 

• Two years of testing at UMN followed by two 
years of testing on NASA’s X-56 Aircraft

2

Schmidt &
Associates

LM/NASA X-56UMN Mini-Mutt

LM BFF



AEROSPACE ENGINEERING AND MECHANICS

The FlexOp Project
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Flutter Free FLight Envelope eXpansion for ecOnomical
Performance improvement
Balint Vanek (vanek@sztaki.hu), coordinator

Institute for Computer Science and Control, HAS 

Approach

*Move towards methods and 

tools enabling multidisciplinary 

design analysis and optimization 

in the aeroservoelastic domain

*Validate the developed tools 

with the demonstrator

mailto:vanek@sztaki.hu
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Aeroservoelasticity (ASE)

Efficient aircraft design

• Lightweight structures

• High aspect ratios
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Flutter
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Source: NASA Dryden Flight Research
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Classical Approach
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Flexible Aircraft Challenges
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Flexible Aircraft Challenges
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Modeling and Control for Flex Aircraft

1. Parameter Dependent Dynamics

• Models depend on airspeed due to 
structural/aero interactions

• LPV is a natural framework.

2. Model Reduction

• High fidelity CFD/CSD models have 
many (millions) of states.

3. Model Uncertainty

• Use of simplified low order models 
OR reduced high fidelity models

• Unsteady aero, mass/inertia & 
structural parameters
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Current PAAW Aircraft
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mAEWing1

10 foot wingspan

~14 pounds

Laser-scan replica of BFF

4 aircraft, >50 flights

mAEWing2

14 foot wingspan

~42 pounds

Half-scale X-56

Currently ground testing
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mAEWing1 and 2
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Open-Loop Flutter
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Animated Mode Shape

The BFF mode (genesis at SWB1) at a velocity near the flutter point. 

The coupling of SWB1 and short period is apparent
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In Flight Mode Shape
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Pole Map for H-Inf Controller
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Hinf Design procedure due to Julian Theis (’16 AIAA, ‘18 Phd) with re-

tuning by Kotikalpudi, et al  (‘18 Aviation).

Marker descriptions 

(X): theoretical (from models)  

(◊): system I.D. (from flight tests) 
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Flight Test Summary
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Successful flight 
beyond flutter with 
2 controllers!

Indicated Airspeed 

(IAS, m/s) 

Estimated True 

Airspeed (m/s) 

20 21.9 

23 25.8 

25 28.4 

27 30.9 

29 33.5 

31 36.1 
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Outline

• Motivation for LTV Analysis

• Nominal LTV Performance

• Robust LTV Performance

• Examples

• Conclusions

17



AEROSPACE ENGINEERING AND MECHANICS

Outline

• Motivation for LTV Analysis

• Nominal LTV Performance

• Robust LTV Performance

• Examples

• Conclusions

18



AEROSPACE ENGINEERING AND MECHANICS

Analysis Objective

Goal: Assess the robustness of linear time-varying (LTV) 
systems on finite horizons.

Approach: Classical Gain/Phase Margins focus on (infinite 
horizon) stability and frequency domain concepts. 
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Instead focus on:

• Finite horizon metrics, e.g. 
induced gains and reachable sets.

• Effect of disturbances and model 
uncertainty (D-scales, IQCs, etc).

• Time-domain analysis conditions.
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Two-Link Robot Arm
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Nonlinear dynamics [MZS]:
ሶ𝜂 = 𝑓(𝜂, 𝜏, 𝑑)

where

𝜂 = 𝜃1, ሶ𝜃1, 𝜃2, ሶ𝜃2
𝑇

𝜏 = 𝜏1, 𝜏2
𝑇

𝑑 = 𝑑1, 𝑑2
𝑇

t and d are control torques and 
disturbances at the link joints.

[MZS] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robot Manipulation, 1994.

Two-Link Diagram [MZS]
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Overview of Analysis Approach
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Nonlinear dynamics:
ሶ𝜂 = 𝑓(𝜂, 𝜏, 𝑑)

Linearize along a (finite –horizon) trajectory ҧ𝜂, ҧ𝜏, 𝑑 = 0
ሶ𝑥 = 𝐴 𝑡 𝑥 + 𝐵 𝑡 𝑢 + 𝐵 𝑡 𝑑

Compute bounds on the terminal state x(T) or other quantity 
e(T) = C x(T) accounting for disturbances and uncertainty.

Comments:

• The analysis can be for 
open or closed-loop.

• LTV analysis complements 
the use of Monte Carlo 
simulations.
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Nominal Trajectory (Cartesian Coords.)
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Effect of Disturbances / Uncertainty
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Cartesian Coords. Joint Angles
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Finite-Horizon LTV Performance
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Finite-Horizon LTV System G defined on [0,T]

Induced L2 Gain

L2-to-Euclidean Gain

The L2-to-Euclidean gain requires D(T)=0 to be well-posed. 

The definition can be generalized to estimate ellipsoidal bounds on 
the reachable set of states at T.
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General (Q,S,R,F) Cost

Cost function J defined by (Q,S,R,F)

Example: Induced L2 Gain
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Subject to: LTV Dynamics with x(0)=0

Select (Q,S,R,F) as:

Cost Function J is:
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General (Q,S,R,F) Cost

Cost function J defined by (Q,S,R,F)

Example: L2-to-Euclidean Gain
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Subject to: LTV Dynamics with x(0)=0

Select (Q,S,R,F) as:

Cost Function J is:
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Strict Bounded Real Lemma
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This is a generalization of results contained in:
*Tadmor, Worst-case design in the time domain. MCSS, 1990 .

*Ravi, Nagpal, and Khargonekar. H∞ control of linear time-varying systems. SIAM JCO, 1991.

*Green and Limebeer. Linear Robust Control, 1995.

*Chen and Tu. The strict bounded real lemma for linear time-varying systems. JMAA, 2000.
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Proof: 31

By Schur complements, the RDI is equivalent to:

This is an LMI in P.  It is also equivalent to a dissipation 
inequality with the storage function 𝑉 𝑥, 𝑡 ≔ 𝑥𝑇𝑃 𝑡 𝑥.

Integrate from t=0 to t=T:

Apply x(0)=0 and P(T)≥F:

29
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Strict Bounded Real Lemma
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Comments:

*For nominal analysis, the RDE can be integrated. If the solution exists 
on [0,T] then nominal performance is achieved. This typically involves 
bisection, e.g. over g, to find the best bound on a gain.

*For robustness analysis, both the RDI and RDE will be used to 
construct an efficient numerical algorithm. 
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Uncertainty Model

• Standard LFT Model, Fu(G,D), where G is LTV:

D is block structured and used to model parametric / 
dynamic uncertainty and nonlinear perturbations.
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Integral Quadratic Constraints (IQCs)
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Integral Quadratic Constraints (IQCs)
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Comments:

*A library of IQC for various uncertainties / nonlinearities is given in 

[MR].  Many of these are given as frequency domain inequalities.

*Time-domain IQCs that hold over finite horizons are called hard.

*This generalizes D and D/G scales for LTI and parametric uncertainty.    

It can be used to model the I/O behavior of nonlinear elements.

[MR] Megretski and Rantzer. System analysis via integral quadratic constraints, TAC, 1997.
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Robustness Analysis

The robustness analysis is performed on the extended 
(LTV) system of (G,Y) using the constraint on z.
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Robustness Analysis: Induced L2 Gain
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Proof:

The Differential LMI (DLMI) is equivalent to a dissipation ineq. with 
storage function 𝑉 𝑥, 𝑡 ≔ 𝑥𝑇𝑃 𝑡 𝑥.

Integrate and apply the IQC + boundary conditions to conclude that the 
induced L2 gain is ≤g.

Robustness Analysis: Induced L2 Gain
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Comments:

*A similar result exists for L2-to-Euclidean or, more generally (Q,S,R,F) 
cost functions.

*The DLMI can be expressed as a Riccati Differential Ineq. (RDI) by 
Schur Complements.

*The RDI is equivalent to a related Riccati Differential Eq. (RDE) 
condition by the strict Bounded Real Lemma.

Robustness Analysis: Induced L2 Gain

38



AEROSPACE ENGINEERING AND MECHANICS

Comments:

*The DLMI is convex in the IQC matrix M but requires gridding on time t
and parameterization of P.

*The RDE form directly solves for P by integration (no time gridding) but 
the IQC matrix M enters in a non-convex fashion.

Robustness Analysis: Induced L2 Gain
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Numerical Implementation

An efficient numerical algorithm is obtained by mixing the 
LMI and RDE conditions.

Sketch of algorithm:

1. Initialize: Select a time grid and basis functions for P(t).

2. Solve DLMI: Obtain finite-dimensional optim. by enforcing 
DLMI on the time grid and using basis functions. 

3. Solve RDE: Use IQC matrix M from step 2 and solve RDE. 
This gives the optimal storage P for this matrix M.

4. Terminate: Stop if the costs from Steps 2 and 3 are similar. 
Otherwise return to Step 2 using optimal storage P as a 
basis function.
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Outline
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Example 1: LTI Plant

• Compute the induced L2 gain of Fu(G,D) where D is LTI 
with Δ ≤ 1 and G is:

• By (standard) mu analysis, the worst-case (infinite 
horizon) L2 gain is 1.49.

• This example is used to assess the finite-horizon 
robustness results.
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Example 1: Finite Horizon Results

Total comp. time is 466 sec to compute worst-case gains 
on nine finite horizons. 
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Example 2: Two-Link Robot Arm

• Assess the worst-case L2-to-Euclidean gain from 
disturbances at the arm joints to the joint angles.

• LTI uncertainty with Δ ≤ 0.8 injected at 2nd joint.

• Analysis performed along nominal trajectory in with 
LQR state feedback.
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Example 2: Results

Bound on worst-case L2-to-Euclidean gain  = 0.0592.

Computation took 102 seconds.
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Cartesian Coords. Joint Angles
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Worst-case Disturbance / Uncertainty

Numerically robust algorithm to construct the worst-case 
disturbance (work with A. Iannelli and A. Marcos)
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Extensions: Rational Dependence on Time
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Ref: Seiler, IQC-Analysis of Uncertain LTV Systems With 

Rational Dependence on Time, submitted to the ‘18 CDC.
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Dynamic IQC for Time Operator Dt

Swapping Lemma

IQC for Dt
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Example: Nominal Analysis
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Example: Robust Analysis
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Plant, P
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Example: Robust Analysis
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Conclusions

• Main Result: Bounds on finite-horizon robust performance 
can be computed using differential equations or inequalities.

• These results complement the use of nonlinear Monte Carlo 
simulations.  

• It would be useful to construct worst-case inputs / uncertainties 
analogous to m lower bounds.

• An LTVTools toolbox is in development with b-code of the 
proposed methods.

• References
• Moore, Finite Horizon Robustness Analysis Using Integral Quadratic Constraints, 

MS Thesis, 2015.

• Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV 
Systems Using Integral Quadratic Constraints, arXiv + submission to Automatica.

• Related work by Biertümpfel and Pfifer with application to rocket launchers 
submitted to the 2018 IEEE Conference on Control Technology and Applications. 
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