

Advanced Robust Control Design for the VEGA Launch Vehicle

Diego Navarro-Tapia Pedro Simplício <u>Andrés Marcos</u>

Technology for AeroSpace Control (TASC) Aerospace Engineering Department University of Bristol, U.K. www.tasc-group.com Samir Bennani

Guidance, Navigation and Control ESA, ESTEC

www.tasc-group.com International Workshop on Robust LPV Control Techniques and Anti-Windup Design, ONERA (FR), 17th April2018

- 1. Motivation
- 2. VEGA mission & vehicle
- 3. Structured H-infinity synthesis
- 4. LPV (Linear Parameter Varying) synthesis
- 5. Conclusions

TASC Group: Launcher activities in support of ESA

1. Motivation

- 2. VEGA mission & vehicle
- 3. Structured H-infinity synthesis
- 4. LPV (Linear Parameter Varying) synthesis
- 5. Conclusions

VEGA mission and vehicle: VEGA mission

VEGA (Vettore Europeo di Generazione Avanzata)

is the new European Small Launch Vehicle

11 successful flights

1st flight on 13th February 2012 (Multi payload) **2nd flight** on 7th May 2013 (Multi payload) 3rd flight on 30th April 2014 (KazEOSAT-1) 4th flight on 11th February 2015 (IXV) 5th flight on 23rd June 2015 (Sentinel-2A) 6th flight on 3rd December 2015 (LISA Pathfinder) 7th flight on 16th September 2016 (Multi payload) 8th flight on 5th December 2016 (Göktürk-1A) 9th flight on 7th March 2017 (Sentinel 2B) **10th flight** on 1st August 2017 (Multi payload) **11th flight** on 8th November 2017 (Mohammed VI-A)

VEGA mission and vehicle:

Challenges – Vehicle, Environment and Dynamics

- The model used is a 6 degrees-of-freedom nonlinear simulator of the VEGA launcher set up to perform simulations in the atmospheric flight phase P80, VEGACONTROL
- □ It is developed in Simulink with S-Function written in C-code and includes:

VEGA mission and vehicle: VEGACONTROL simulator – Uncertainties

120 uncertain and dispersion parameters: MCI, bending modes characteristics ...

Туре	Flag	Description
AEROELASTICITY	Flag.aeroelastic	aero-elasticity effect (+10% on CN coefficient)
AERODYNAMICS	Flag.disp_CA	Dispersion on 1 st Stage Axial Coefficient
	Flag.unc_CA	Uncertainty on 1 st Stage Axial Coefficient
	Flag.disp_CN	Dispersion on 1 st Stage Normal Coefficient
	Flag.unc_CN	Uncertainty on 1 st Stage Normal Coefficient
	Flag.disp_Xcp Flag.unc_Xcp Flag.aero_roll	Dispersion on 1 st Stage Xcp Uncertainty on 1 st Stage Xcp To enable Roll motion
WIND	Flag.azimuth_wind_angle	Wind azimuth direction [rad]
TIND	Flag.h_wind	Synthetic wind gust altitude [Km]
IRS	Flag.IRSmountingX	IRS Mounting Error wrt X Body Axis
	Flag.IRSmountingY	IRS Mounting Error wrt Y Body Axis
	Flag.IRSmountingZ	IRS Mounting Error wrt Z Body Axis
THRUST	Flag.dISP	1st stage impulse scattering
PARAMETERS	Flag.dTc	Scattering on time burn
SCATTERING	Flag.SRM_roll	Scattering on P80 Roll Torque
MCI	Flag.stagedM	Structural mass scattering
	Flag.stagedM_Prop	Scattering on propellant mass
	Flag.stagedJx	Scattering on Stage XX MOI
	Flag.stagedJy	Scattering on Stage YY MOI
	Flag.stagedJz	Scattering on Stage ZZ MOI
	Flag. stagedxCOG	Scattering on X CoG
	Flag. stagedyCOG	Scattering on Y CoG
	Flag. stagedzCOG	Scattering on Z CoG
	Flag. stagedJx_S	Scattering on structural Stage XX MOI
	Flag. stagedJy_S	Scattering on structural Stage YY MOI
	Flag. stagedJz_S	Scattering on structural Stage ZZ MOI
	Flag. stagedxCOG_S	Scattering on structural X CoG
	Flag. stagedyCOG_S	Scattering on Y structural CoG

MCI	Flag.PLdM	Scattering on PL Mass
	Flag.PLdJx	Scattering on PL XX MOI
	Flag.PldJy	Scattering on PL YY MOI
	Flag.PLdJz	Scattering on PL ZZ MOI
	Flag.PLdxCOG	Scattering on PL X CoG
	Flag.PLdyCOG	Scattering on PL Y CoG
	Flag.PLdzCOG	Scattering on PL Z CoG
THRUST OFFSET & MISALIGNMENT	Flag.TVC_SF_A	Scattering on TVC gain Lane A
	Flag.TVC_bias_A_disp	Scattering on TVC Lane A (Gaussian)
	Flag.TVC_bias_A_unc	Scattering on TVC Lane A (uniform)
	Flag.TVC_SF_B	Scattering on TVC gain Lane B
	Flag.TVC_bias_B_disp	Scattering on TVC Lane B (Gaussian)
	Flag.TVC_bias_B_unc	Scattering on TVC Lane B (uniform)
	Flag.Thrust_misA_disp	Scattering on thrust misalignment first lane (Gaussian)
	Flag.Thrust_misB_disp	Scattering on thrust misalignment second lane (Gaussian)
	Flag.Thrust_misA_unc	Scattering on thrust misalignment first lane (uniform)
	Flag PvP offsot	Scattering on thrust misalignment second lane (uniform)
	nay.rvr_onsetA	Scattering on thrust offset in X
	Flag.PvP_offsetY_disp	Scattering on thrust offset in Y (Gaussian)
	Flag.PvP_offsetZ_disp	Scattering on thrust offset in Z (Gaussian)
	Flag.PvP_offsetY_unc	Scattering on thrust offset in Y (uniform)
	Flag.PvP_offsetZ_unc	Scattering on thrust offset in Z (uniform)
ATMOSPHERE	Flag.air_density_scat	Atmospheric Density
SEPARATION DISTURB	Flag.sep_dist_yz	

VEGA mission and vehicle:

Industrial state-of-the-practice for control design

- **1.** Launcher model linearized at flight times = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]secs
- 2. For each point, independent design first & then joint tuning of:
 - Rigid-body control design
 - Flexible bending filter design
 - Rigid- and flexible-body joint tuning
- 3. Ad-hoc gain scheduling based on some parameter (time, VNG)

4. Intensive V&V process using high fidelity nonlinear simulation

VEGA controller structure

- PD in attitude
- Lateral control

(drift and drift-rate)

• H filters (for Bending Modes)

VEGA mission and vehicle:

Industrial state-of-the-practice for control design

1. Motivation

2. VEGA mission & vehicle

3. Structured H-infinity synthesis

4. LPV (Linear Parameter Varying) synthesis

5. Conclusions

Standard H∞ **design widely operational** but has several practical limitations:

- The designed controller is usually of high-order (and sometimes unstable)
- H-infinity generates controllers without defined structure

Structured H∞ **design** (HINFSTRUCT & SYSTUNE) allows to:

- Synthesize controllers with a desired order and structure
- ➤ Use the same design framework as H∞
 - But still, process to select weighting functions / objectives can be tedious and unclear
 - And it is **not deterministic** -> difficult to learnt from weight changing

It appeared only a few years ago but has had great impact on aerospace world

With already several examples of flown systems:

Airbus DS (Astrium SAS Toulouse) / ESA

ROSETTA spacecraft

CNES (Toulouse)

MICROSCOPE satellite

University of Bristol TASC

JAXA MuPAL-α aircraft

Structured H-infinity synthesis: LEGACY RECOVERY - Design augmentation scheme

CLASSICAL CONTROL

STRUCTURED H-INFINITY

Nominal design

Nominal design

Main objective: recover the VEGA VV05 baseline rigid-body controller

Structured H-infinity synthesis: LEGACY RECOVERY - Design interconnection

 $X_{b} \qquad \psi$ INS $I_{INS} \qquad D$ $CP \qquad Z_{b}$ $I_{CP} \qquad Z_{i}$ mg $I_{CG} \qquad PVP$ $I_{cG} \qquad PVP$ $I_{cG} \qquad PVP$

The **launcher dynamics** described by: Rotational motion (yaw ψ or pitch θ) Translational motion (y or z)

Yaw and pitch planes are identical

if the roll rate is considered negligible.

Structured H-infinity synthesis: LEGACY RECOVERY - Design interconnection

www.tasc-group.com

Structured H-infinity synthesis: LEGACY RECOVERY - Requirements formulation

Requirements expressed as input/output weighting functions

Structured H-infinity synthesis: LEGACY RECOVERY - Requirements formulation

Requirements expressed as input/output weighting functions

17

Structured H-infinity synthesis: LEGACY RECOVERY - VEGA legacy recovery

Structured H-infinity synthesis: LEGACY RECOVERY - VEGA legacy recovery

VEGACONTROL verification

Baseline controller frequency response successfully recovered at all flight instances D. Navarro-Tapia, A. Marcos, S. Bennani and C. Roux, "**Structured H-infinity Control Design for the VEGA Launch Vehicle: Recovery of the Legacy Control Behaviour**", in Proceedings of the 10th International ESA Conference on Guidance, Navigation and Control Systems, May 2017.

CLASSICAL CONTROL

STRUCTURED H-INFINITY

Structured H-infinity synthesis: WIND MODEL augmentation - Wind generator

10

0

20

 $v_w (m/s)$

Wind model defined by a **Dryden filter** for [light, moderate, severe] turbulence

in Atmospheric Flight", in Journal of Guidance, Control and Dynamics, Vol. 39, No. 6, June 2016

40

30

Structured H-infinity synthesis:

WIND MODEL augmentation - Design interconnection

Structured H-infinity synthesis: WIND MODEL augmentation - Qalpha benchmark

Wind VV05: '07_2015_23_12_005.wind'

CLASSICAL CONTROL

STRUCTURED H-INFINITY

Structured H-infinity synthesis:

UNCERTAINTY augmentation - LFT models

Structured H-infinity synthesis: UNCERTAINTY augmentation - Design interconnection

Using LFT models in design interconnection allows augmentation to robust design

Structured H-infinity synthesis: Robust RIGID+FLEXIBLE - **Design augmentation scheme**

Structured H-infinity synthesis: Robust RIGID+FLEXIBLE - Design interconnection

- □ Rigid-body and flexible-body dynamics (1st bending mode)
- Wind disturbance model

Structured H-infinity synthesis: Robust RIGID+FLEXIBLE - Controller structure

Simplified TVC structure for design

VEGACONTROL implementation

H2 filter is also simplified as a first order pseudo-derivative filter

Structured H-infinity synthesis: Robust RIGID+FLEXIBLE - Bending filter parametrization

Structured H-infinity synthesis: Robust RIGID+FLEXIBLE - Results at t=50sec

Structured H-infinity synthesis:

ANALYSIS - Classical stability margins assessment

Structured H-infinity synthesis: ANALYSIS - Singular structured value analysis

Non linear analysis

The same **4 MC campaigns of 500 runs each** are applied to two controllers:

VEGA VV05 baseline controller and Structured H-infinity controller Each MC campaign uses the same 500 scattering flags but a different wind profile

Baseline controller

Structured H-infinity controller

- **1.** Motivation
- 2. VEGA mission & vehicle
- **3.** Structured H-infinity synthesis
- 4. LPV (Linear Parameter Varying) synthesis
- 5. Conclusions

Linear Parameter Varying (LPV) systems are continuous functions of a measurable set of time-varying parameters $\theta(t)$ (i.e. time, VNG)

$$\dot{x}(t) = A[\theta(t)]x(t) + B[\theta(t)]u_{LV}(t) \qquad \qquad \theta \in \Omega$$

$$y_{LV}(t) = C[\theta(t)]x(t) + D[\theta(t)]u_{LV}(t) \qquad \qquad \underline{v} \leq \dot{\theta} \leq \overline{v}$$

Main features

 Controller design and gain-scheduling are incorporated into a single design step This feature may reduce the tuning and design effort prior to each mission
Performance and robustness are guaranteed along the flight envelope
It uses the same design framework as H-infinity

LPV synthesis: LPV modeling

Time-varying parameter: non-gravitational velocity

Integrated design of rigid-body controller and bending filters

LPV synthesis: ANALYSIS - Classical stability margins assessment

Good rigid-body margins

□ All bending modes are gain stabilized

www.tasc-group.com International Workshop on Robust LPV Control Techniques and Anti-Windup Design, ONERA (FR), 17th April2018

LPV synthesis: ANALYSIS – Monte Carlo assessment

LPV synthesis: ANALYSIS – Monte Carlo assessment

--- Baseline

LPV synthesis: ANALYSIS – Effect of Plant Time Variations & Uncertainty

Frozen H-infinity norm (Hinf-LTI)

IQC Linear Time Varying Arbitrarily Fast (IQC-TV-AF)

C-TV-AF) IQC Linear Time Varying Robust Arbitrarily Fast (IQC-TV-AFrob)

www.tasc-group.com

- **1.** Motivation
- 2. VEGA mission & vehicle
- **3.** Structured H-infinity synthesis
- 4. LPV (Linear Parameter Varying) synthesis
- 5. Conclusions

- The atmospheric phase VEGA launcher control problem has been presented.
- □ Classical control has a rich heritage but several limitations are recognized.

Two robust control design techniques have been presented:

- Structured H_{∞} infinity synthesis
- LPV synthesis

Project showed that a robust control design and analysis framework:

- More suitable for multivariable control problems
- Can incorporate wind disturbance estimation in the design
- Guarantees robustness and performance by design
- Allows performing RS/RP, WC and TV/NL analyses

Thank you for your attention

www.tasc-group.com International Workshop on Robust LPV Control Techniques and Anti-Windup Design, ONERA (FR), 17th April2018