Two-player games between polynomial optimizers and semidefinite solvers

Victor Magron, LAAS-CNRS

12 March 2019

Séminaire MOSAR-SCA Meeting Business Center Toulouse

Two-player games between polynomial optimizers & SDP solvers

Introduction

VERIFICATION OF NONLINEAR SYSTEMS ...

SAFETY of critical parts for **computing** \oplus **physical** devices

SDP for Polynomial Optimization

SDP for Polynomial Optimization

NP-hard NON CONVEX Problem $f^{\star} = \inf f(\mathbf{x})$

Practice

LASSERRE'S HIERARCHY of **CONVEX PROBLEMS** $f_d^* \uparrow f^*$ [Lasserre/Parrilo 01]

degree *d n* vars **Numeric**

 $\implies \binom{n+d}{n}$ **SDP** VARIABLES

 $\begin{array}{l} \text{Numeric} \\ \text{Solvers} \end{array} \implies \text{Approx Certificate} \end{array}$

Victor Magron

Two-player games between polynomial optimizers & SDP solvers

Success Stories: Lasserre's Hierarchy

MODELING POWER: Cast as ∞-dimensional LP over measures

VSTATIC Polynomial Optimization Optimal Powerflow $n \simeq 10^3$ [Josz et al 16]

Roundoff Error $n \simeq 10^2$ [Magron et al 17]

POYNAMICAL Polynomial Optimization Regions of attraction [Henrion et al 14]

Reachable sets [Magron et al 17]

APPROXIMATE OPTIMIZATION BOUNDS!

MOTZKIN POLYNOMIAL

sums of squares $= \Sigma$

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \ge 0 \text{ but } f \notin \Sigma$$

MOTZKIN POLYNOMIAL

sums of squares $= \Sigma$

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \ge 0 \text{ but } f \notin \Sigma$$

$$f^* = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0$$
 for $|x^*| = |y^*| = \frac{\sqrt{3}}{3}$

Lasserre's hierarchy:

• order 3 $\rightsquigarrow f_3^{\star} = -\infty$ unbounded SDP $\implies f \notin \Sigma$

MOTZKIN POLYNOMIAL

sums of squares $= \Sigma$

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \ge 0 \text{ but } f \notin \Sigma$$

$$f^* = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0$$
 for $|x^*| = |y^*| = \frac{\sqrt{3}}{3}$

Lasserre's hierarchy:

• order 3
$$\rightsquigarrow f_3^{\star} = -\infty$$
 unbounded SDP $\implies f \notin \Sigma$
• order 4 $\rightsquigarrow f_4^{\star} = -\infty$

MOTZKIN POLYNOMIAL

sums of squares $= \Sigma$

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \ge 0 \text{ but } f \notin \Sigma$$

$$f^{\star} = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0$$
 for $|x^{\star}| = |y^{\star}| = \frac{\sqrt{3}}{3}$

Lasserre's hierarchy:

• order 3 $\rightsquigarrow f_3^{\star} = -\infty$ unbounded SDP $\implies f \notin \Sigma$

• order 4
$$\rightsquigarrow$$
 $f_4^{\star} = -\infty$

• order 5 \rightsquigarrow $f_5^{\star} \simeq -0.4$

MOTZKIN POLYNOMIAL

sums of squares $= \Sigma$

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \ge 0 \text{ but } f \notin \Sigma$$

$$f^* = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0$$
 for $|x^*| = |y^*| = \frac{\sqrt{3}}{3}$

Lasserre's hierarchy:

• order 3 $\rightsquigarrow f_3^{\star} = -\infty$ unbounded SDP $\implies f \notin \Sigma$

• order 4
$$\rightsquigarrow$$
 $f_4^{\star} = -\infty$

- order 5 \rightsquigarrow $f_5^{\star} \simeq -0.4$
- order 8 $\rightsquigarrow f_8^* \simeq -10^{-8} \oplus$ extraction of x^*, y^* **Paradox** ?!

APPROXIMATE SOLUTIONS

$$a^{2} - 2ab + b^{2} \simeq (1.00001a - 0.99998b)^{2}$$

$$a^{2} - 2ab + b^{2} \neq 1.0000200001a^{2} - 1.9999799996ab + 0.9999600004b^{2}$$

$$\simeq \rightarrow = ?$$

Two-player games between polynomial optimizers & SDP solvers

What is Semidefinite Optimization?

Linear Programming (LP):

Linear cost c

• Linear inequalities " $\sum_i A_{ij} z_j \ge d_i$ "

Polyhedron

What is Semidefinite Optimization?

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z} \\ \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succcurlyeq \mathbf{F}_{0} \ .$$

Linear cost c

- Symmetric matrices $\mathbf{F}_0, \mathbf{F}_i$
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

What is Semidefinite Optimization?

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z}$$
s.t.
$$\sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} , \quad \mathbf{A} \mathbf{z} = \mathbf{d}$$

- Symmetric matrices **F**₀, **F**_i
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

Applications of SDP

- Combinatorial optimization
- Control theory
- Matrix completion
- Unique Games Conjecture (Khot '02) :
 "A single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems."
 (Barak and Steurer survey at ICM'14)
- Solving polynomial optimization (Lasserre '01)

Prove polynomial inequalities with SDP:

$$f(a,b) := a^2 - 2ab + b^2 \ge 0$$
.

Find z s.t.
$$f(a,b) = \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix}}_{\geq 0} \begin{pmatrix} a \\ b \end{pmatrix}$$
.

Find z s.t. $a^2 - 2ab + b^2 = z_1a^2 + 2z_2ab + z_3b^2$ (A z = d)

■ Choose a cost c e.g. (1,0,1) and solve:

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z}$$
s.t.
$$\sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} , \quad \mathbf{A} \mathbf{z} = \mathbf{d}$$

Solution
$$\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \succcurlyeq 0$$
 (eigenvalues 0 and 2)

•
$$a^2 - 2ab + b^2 = \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}}_{\geq 0} \begin{pmatrix} a \\ b \end{pmatrix} = (a - b)^2.$$

■ Solving SDP ⇒ Finding SUMS OF SQUARES certificates

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

Semialgebraic set

 $\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0\}$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

Semialgebraic set

$$\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0\}$$

$$\blacksquare := [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0 \}$$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

Semialgebraic set

$$\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0\}$$

$$:= [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0 \}$$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

Semialgebraic set

$$\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0\}$$

$$= [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0 \}$$

Sums of squares (SOS) σ_i

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

Semialgebraic set

$$\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0\}$$

$$= [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0 \}$$

Sums of squares (SOS) σ_i

Bounded degree: $Q_d(\mathbf{K}) := \left\{ \sigma_0 + \sum_{j=1}^m \sigma_j g_j, \text{ with } \deg \sigma_j g_j \leq 2d \right\}$

Victor Magron

Two-player games between polynomial optimizers & SDP solvers

■ Hierarchy of SDP relaxations:
$$\lambda_d := \sup_{\lambda} \{\lambda : f - \lambda \in \mathcal{Q}_d(\mathbf{K})\}$$

- Convergence guarantees $\lambda_d \uparrow f^*$ [Lasserre 01]
- Can be computed with SDP solvers (CSDP, SDPA)
- "No Free Lunch" Rule: $\binom{n+2d}{n}$ SDP variables

SDP for Polynomial Optimization

Inaccurate SDP do Robust Optimization

RealCertify: Certify Non-negativity

$$f = \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$$
$$f^{\star} = \inf f(\mathbf{x})$$
Moment matrix $\mathbf{M}_{d}(\mathbf{y})_{\alpha,\beta} = y_{\alpha+\beta}$

Accurate SDP Relaxations

(Primal Relaxation)(Dual Strengthening) $\inf_{y} \sum_{\alpha} f_{\alpha} y_{\alpha}$ $\sup_{\lambda,\sigma} \lambda$ s.t. $\mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0$ $f - \lambda = \sigma$ $y_{0} = 1$ $\sigma \in \Sigma_{d}$

$$f = \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$$

$$f^{\star} = \inf f(\mathbf{x})$$
Moment matrix $\mathbf{M}_{d}(\mathbf{y})_{\alpha,\beta} = y_{\alpha+\beta}$

$$\mathbf{M}_{d}(\mathbf{y}) = \sum_{\alpha} \mathbf{B}_{\alpha} y_{\alpha}$$
Accurate SDP Relaxations
(Primal Relaxation) (Dual Strengthening)
$$\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} \qquad \sup_{\lambda,Q} \lambda$$
s.t. $\mathbf{M}_{d}(\mathbf{y}) \succeq 0 \qquad f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} = \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle$

$$y_{0} = 1 \qquad \mathbf{Q} \succeq 0$$

Two-player games between polynomial optimizers & SDP solvers

$$f = \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$$

$$f^{\star} = \inf f(\mathbf{x})$$
Moment matrix $\mathbf{M}_{d}(\mathbf{y})_{\alpha,\beta} = y_{\alpha+\beta}$

$$\mathbf{M}_{d}(\mathbf{y}) = \sum_{\alpha} \mathbf{B}_{\alpha} y_{\alpha}$$
Inaccurate SDP Relaxations
(Primal Relaxation) (Dual Strengthening)
$$\sup_{\lambda,Q} \lambda$$

$$|f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle | \leq \varepsilon$$

$$\mathbf{Q} \geq -\eta \mathbf{I}$$

$$f = \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$$
$$f^{\star} = \inf f(\mathbf{x})$$
Moment matrix $\mathbf{M}_{d}(\mathbf{y})_{\alpha,\beta} = y_{\alpha+\beta}$
$$\mathbf{M}_{d}(\mathbf{y}) = \sum_{\alpha} \mathbf{B}_{\alpha} y_{\alpha}$$

Inaccurate SDP Relaxations

(Primal Relaxation) (Dual Strengthening)

$$\begin{split} \inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} + \eta \langle \mathbf{M}_{d}(\mathbf{y}), \mathbf{I} \rangle + \varepsilon \| \mathbf{y} \|_{1} & \sup_{\lambda, \mathbf{Q}} \lambda \\ \text{s.t. } \mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 & |f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle \mid \leqslant \varepsilon \\ y_{0} = 1 & \mathbf{Q} \succcurlyeq -\eta \mathbf{I} \end{split}$$

$$\tilde{f} = f + \eta \sum_{\beta} \mathbf{x}^{2\beta}$$

Inaccurate SDP Relaxations

(Primal Relaxation)(Dual Strengthening) $\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} + \eta \langle \mathbf{M}_{d}(\mathbf{y}), \mathbf{I} \rangle$ $\sup_{\lambda, \mathbf{Q}} \lambda$ s.t. $\mathbf{M}_{d}(\mathbf{y}) \succeq 0$ $f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle = 0$ $y_{0} = 1$ $\mathbf{Q} \succeq -\eta \mathbf{I}$

$$\tilde{f} = f + \eta \sum_{\beta} \mathbf{x}^{2\beta}$$

Inaccurate SDP Relaxations

 $\begin{array}{ll} (\text{Primal Relaxation}) & (\text{Dual Strengthening}) \\ \inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} \, y_{\alpha} + \eta \, \langle \mathbf{M}_{d}(\mathbf{y}), \mathbf{I} \rangle & \sup_{\lambda, \mathbf{Q}} \lambda \\ \text{s.t. } \mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 & f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} - \eta \mathbf{I} \rangle = 0 \\ y_{0} = 1 & \mathbf{Q} \succcurlyeq 0 \end{array}$

$$\tilde{f} = f + \eta \sum_{\beta} \mathbf{x}^{2\beta}$$

Inaccurate SDP Relaxations

(Primal **Relaxation**) $\inf_{y} \sum_{\alpha} \tilde{f}_{\alpha} y_{\alpha}$

s.t. $\mathbf{M}_d(\mathbf{v}) \succeq 0$

(Dual Strengthening) $\sup_{\substack{\lambda,\sigma\\\tilde{f}-\lambda=\sigma}} \lambda$

$$y_0 = 1$$
 $\sigma \in \Sigma_d$

Theorem (Lasserre 06)

For fixed *n*, any $f \ge 0$ can be approximated arbitrarily closely by SOS polynomials.

Theorem (Lasserre 06)

For fixed *n*, any $f \ge 0$ can be approximated arbitrarily closely by SOS polynomials.

Theorem (Lasserre 06)

For fixed *n*, any $f \ge 0$ can be approximated arbitrarily closely by SOS polynomials.

In the constrained case $\mathbf{K} := \{\mathbf{x} : g_j(\mathbf{x}) \ge 0\}$

$$\mathbf{B}_{\infty}(f, \mathbf{K}, \boldsymbol{\eta}) := \{ f + \theta \sum_{j} g_{j}(\mathbf{x}) \sum_{\beta} \mathbf{x}^{2\beta} : | \theta | \leq \boldsymbol{\eta} \}$$

In the constrained case $\mathbf{K} := \{\mathbf{x} : g_j(\mathbf{x}) \ge 0\}$

$$\mathbf{B}_{\infty}(f,\mathbf{K},\boldsymbol{\eta}) := \{f + \theta \sum_{j} g_{j}(\mathbf{x}) \sum_{\beta} \mathbf{x}^{2\beta} : | \theta | \leq \eta \}$$

Theorem (Lasserre-Magron)

Inaccurate SDP relaxations of the robust problem

 $\max_{\tilde{f}\in \mathbf{B}_{\infty}(f,\mathbf{K},\eta)}\min_{\mathbf{x}\in\mathbf{K}}\tilde{f}(\mathbf{x})$

Victor Magron
Priority to SDP Inequalities: $\eta = 0$

Inaccurate SDP Relaxations

(Primal Relaxation)	(Dual Strengthening)
$\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} + \varepsilon \ \mathbf{y}\ _{1}$	$\sup_{\lambda,\mathbf{Q}} \lambda$
s.t. $\mathbf{M}_d(\mathbf{y}) \succcurlyeq 0$	$ f_{\alpha} - \lambda 1_{lpha=0} - \langle \mathbf{B}_{lpha}, \mathbf{Q} angle \leqslant arepsilon$
$y_0 = 1$	$\mathbf{Q} \succcurlyeq 0$

Priority to SDP Inequalities: $\eta = 0$

$$\mathbf{B}_{\infty}(f,\varepsilon) := \{\tilde{f} : \|\tilde{f} - f\|_{\infty} \leqslant \varepsilon\}$$

In the constrained case $\mathbf{K} := \{\mathbf{x} : g_j(\mathbf{x}) \ge 0\}$

Theorem (Lasserre-Magron)

Inaccurate SDP relaxations of the **robust** problem

 $\max_{\tilde{f}\in \mathbf{B}_{\infty}(f,\varepsilon)}\min_{\mathbf{x}\in \mathbf{K}}\tilde{f}(\mathbf{x})$

Victor Magron

A Two-player Game Interpretation

max – min ROBUST OPTIMIZATION Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow$ **SDP leads** Player 2 (optimizer) picks an SOS \rightsquigarrow **User follows**

A Two-player Game Interpretation

max – min ROBUST OPTIMIZATION Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow$ SDP leads Player 2 (optimizer) picks an SOS \rightsquigarrow User follows

Convex SDP relaxations $\implies |max - min = min - max|$

Victor Magron

A Two-player Game Interpretation

 $\max - \min \text{ ROBUST OPTIMIZATION}$ Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow \mathbf{SDP}$ leads Player 2 (optimizer) picks an SOS \rightsquigarrow User follows

Convex SDP relaxations $\implies max - min = min - max$

min - max ROBUST OPTIMIZATION

Player 1 (robust optimizer) picks an SOS \rightsquigarrow User leads Player 2 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow$ SDP follows

Victor Magron

The Certification Game

NUMERICAL GAME

Interior-point solvers OUTPUT inaccurate certificates

 \implies extract solutions for \tilde{f}

Σ

The Certification Game

NUMERICAL GAME

Interior-point solvers OUTPUT inaccurate certificates

 \implies extract solutions for \tilde{f}

SYMBOLIC GAME

Polynomial optimizer **INPUT** inaccurate $\tilde{f} = f - \eta \sum_{|\beta| \leq d} \mathbf{x}^{2\beta}$ \implies exact certificates for *f* SDP for Polynomial Optimization

Inaccurate SDP do Robust Optimization

RealCertify: Certify Non-negativity

$$X = (X_1, \dots, X_n)$$

$$f \in \mathbb{Q}[X]$$

co-NP hard problem: check $f \ge 0$ on K

$$X = (X_1, \dots, X_n)$$
 co-NP hard problem: check $f \ge 0$ on **K**
 $f \in \mathbb{Q}[X]$

1 Unconstrained $\rightsquigarrow \mathbf{K} = \mathbb{R}^n$

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline n = 1 & f = 1 + X + X^2 + X^3 + X^4 \\ \hline n > 1 & f = 4X_1^4 + 4X_1^3X_2 - 7X_1^2X_2^2 - 2X_1X_2^3 + 10X_2^4 \\ \hline \end{array}$$

$$X = (X_1, \dots, X_n)$$
 co-NP hard problem: check $f \ge 0$ **on K**
 $f \in \mathbb{Q}[X]$

1 Unconstrained $\rightsquigarrow \mathbf{K} = \mathbb{R}^n$

$$\begin{array}{|c|c|c|c|c|c|} \hline n = 1 & f = 1 + X + X^2 + X^3 + X^4 \\ \hline n > 1 & f = 4X_1^4 + 4X_1^3X_2 - 7X_1^2X_2^2 - 2X_1X_2^3 + 10X_2^4 \\ \end{array}$$

2 Constrained $\rightsquigarrow \mathbf{K} = \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0\}$ $g_j \in \mathbb{Q}[X]$

$$f = -X_1^2 - 2X_1X_2 - 2X_2^2 + 6$$
 K = { $1 - X_1^2 \ge 0, 1 - X_2^2 \ge 0$ }

$$X = (X_1, \dots, X_n)$$
 co-NP hard problem: check $f \ge 0$ **on K**
 $f \in \mathbb{Q}[X]$

1 Unconstrained $\rightsquigarrow \mathbf{K} = \mathbb{R}^n$

$$\begin{array}{|c|c|c|c|c|c|} \hline n = 1 & f = 1 + X + X^2 + X^3 + X^4 \\ \hline n > 1 & f = 4X_1^4 + 4X_1^3X_2 - 7X_1^2X_2^2 - 2X_1X_2^3 + 10X_2^4 \\ \end{array}$$

2 Constrained $\rightsquigarrow \mathbf{K} = \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0\}$ $g_j \in \mathbb{Q}[X]$

$$f = -X_1^2 - 2X_1X_2 - 2X_2^2 + 6$$
 $\mathbf{K} = \{1 - X_1^2 \ge 0, 1 - X_2^2 \ge 0\}$

1
$$f \in \Sigma$$
 = sums of squares (SOS)
 $f = \sigma = h_1^2 + \dots + h_p^2 \ge 0$
2 Weighted SOS $f = \sigma_0 + \sigma_1 g_1 + \dots + \sigma_m g_m \ge 0$ on K

From Approximate to Exact Solutions

APPROXIMATE SOLUTIONS

$$\begin{aligned} a^2 - 2ab + b^2 &\simeq (1.00001a - 0.99998b)^2 \\ a^2 - 2ab + b^2 &\neq 1.0000200001a^2 - 1.9999799996ab + 0.9999600004b^2 \end{aligned}$$

$$\simeq \rightarrow = ?$$

From Approximate to Exact Solutions

Win TWO-PLAYER GAME

sum of squares of *f*?

From Approximate to Exact Solutions

Win TWO-PLAYER GAME

Let
$$f \in \mathbb{R}[X]$$
 and $f \ge 0$ on \mathbb{R} $(n = 1)$

Theorem

There exist $f_1, f_2 \in \mathbb{R}[X]$ s.t. $f = f_1^2 + f_2^2$.

Let
$$f \in \mathbb{R}[X]$$
 and $f \ge 0$ on \mathbb{R} $(n = 1)$

Theorem

There exist $f_1, f_2 \in \mathbb{R}[X]$ s.t. $f = f_1^2 + f_2^2$.

Proof. $f = h^2(q + ir)(q - ir)$

Let
$$f \in \mathbb{R}[X]$$
 and $f \ge 0$ on \mathbb{R} $(n = 1)$

Theorem

There exist
$$f_1, f_2 \in \mathbb{R}[X]$$
 s.t. $f = f_1^2 + f_2^2$.

Proof. $f = h^2(q + ir)(q - ir)$

Examples

$$1 + X + X^{2} = \left(X + \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}$$

$$1 + X + X^{2} + X^{3} + X^{4} = \left(X^{2} + \frac{1}{2}X + \frac{1 + \sqrt{5}}{4}\right)^{2} + \left(\frac{\sqrt{10 + 2\sqrt{5}} + \sqrt{10 - 2\sqrt{5}}}{4}X + \frac{\sqrt{10 - 2\sqrt{5}}}{4}\right)^{2}$$

• $f \in \mathbb{Q}[X] \cap \mathring{\Sigma}[X]$ (interior of the SOS cone)

Existence Question

Does there exist $f_i \in \mathbb{Q}[X]$, $c_i \in \mathbb{Q}^{>0}$ s.t. $f = \sum_i c_i f_i^2$?

• $f \in \mathbb{Q}[X] \cap \overset{\mathsf{s}}{\Sigma}[X]$ (interior of the SOS cone)

Existence Question

Does there exist $f_i \in \mathbb{Q}[X]$, $c_i \in \mathbb{Q}^{>0}$ s.t. $f = \sum_i c_i f_i^2$?

Examples

$$1 + X + X^{2} = \left(X + \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2} = 1\left(X + \frac{1}{2}\right)^{2} + \frac{3}{4}(1)^{2}$$
$$1 + X + X^{2} + X^{3} + X^{4} = \left(X^{2} + \frac{1}{2}X + \frac{1 + \sqrt{5}}{4}\right)^{2} + \left(\frac{\sqrt{10 + 2\sqrt{5}} + \sqrt{10 - 2\sqrt{5}}}{4}X + \frac{\sqrt{10 - 2\sqrt{5}}}{4}\right)^{2} = ???$$

Existing Frameworks

■ project & round [Peyrl-Parrilo 08] [Kaltofen-Yang-Zhi 08] $f \in \overset{\circ}{\Sigma}[X]$ with deg f = 2D

 $f(X) \simeq \mathbf{v}_D^T(X) \tilde{\mathbf{Q}} \mathbf{v}_D(X) \quad \tilde{\mathbf{Q}} \succ 0$ $\mathbf{v}_D(X): \text{ vector of monomials of deg } \leq D$ $\mathbf{v}_D(X) = \mathbf{v}_D^T(X) \prod(\mathbf{Q}) \mathbf{v}_D(X)$

Existing Frameworks

■ project & round [Peyrl-Parrilo 08] [Kaltofen-Yang-Zhi 08] $f \in \overset{\circ}{\Sigma}[X]$ with deg f = 2D

 $f(X) \simeq \mathbf{v}_D^T(X) \tilde{\mathbf{Q}} \mathbf{v}_D(X) \quad \tilde{\mathbf{Q}} \succ 0$ $\mathbf{v}_D(X): \text{ vector of monomials of deg } \leq D$ $\mathbf{v}_D(X) = \mathbf{v}_D^T(X) \prod(\mathbf{Q}) \mathbf{v}_D(X)$

- RAGLib (critical points) [Safey El Din]
- SamplePoints (CAD) [Moreno Maza-Alvandi et al.]

One Answer when $\mathbf{K} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$

¥́Нуbrid SYMBOLIC/NUMERIC methods

Magron-Allamigeon-Gaubert-Werner 14

 $f\simeq \tilde{\sigma}_0+\tilde{\sigma}_1\,g_1+\cdots+\tilde{\sigma}_m\,g_m$

 $u=f-\tilde{\sigma}_0+\tilde{\sigma}_1\,g_1+\cdots+\tilde{\sigma}_m\,g_m$

One Answer when $\mathbf{K} = \{\mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \ge 0\}$

Hybrid SYMBOLIC/NUMERIC methods

Magron-Allamigeon-Gaubert-Werner 14

 $f\simeq \tilde{\sigma}_0+\tilde{\sigma}_1\,g_1+\cdots+\tilde{\sigma}_m\,g_m$

$$u=f-\tilde{\sigma}_0+\tilde{\sigma}_1\,g_1+\cdots+\tilde{\sigma}_m\,g_m$$

$$\simeq \rightarrow =$$

 $\forall \forall \mathbf{x} \in [0,1]^n, \mathbf{u}(\mathbf{x}) \leq -\varepsilon$

$$\min_{\mathbf{K}} f \geq \varepsilon \text{ when } \varepsilon \to 0$$
COMPLEXITY?

Compact $\mathbf{K} \subseteq [0, 1]^n$

Modules & Install

gricad-gitlab:RealCertify

Depends on Maple &

univsos
$$n=1$$

- Square free decomposition with sqrfree
- PARI/GP for complex zero isolation

multivsos n > 1

- arbitrary precision SDP solver SDPA-GMP [Nakata 10]
- Newton Polytope with convex package [Franz 99]
- Cholesky's decomposition with LUDecomposition

Victor Magron

intsos with $n \ge 1$: Perturbation

PERTURBATION idea

V Approximate SOS Decomposition

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Σ

intsos with n = 1 [Chevillard et. al 11]

$$f \in \mathbb{Q}[X], \deg f = d = 2k, f > 0$$

$$f = 1 + X + X^2 + X^3 + X^4$$

1 11

Victor Magron

intsos with n = 1 [Chevillard et. al 11]

Victor Magron

intsos with n = 1 [Chevillard et. al 11]

$$f \in \mathbb{Q}[X], \deg f = d = 2k, f > 0$$

$$\forall \text{ PERTURB: find } \varepsilon \in \mathbb{Q} \text{ s.t.}$$

$$f_{\varepsilon} := f - \varepsilon \sum_{i=0}^{k} X^{2i} > 0$$

$$\forall \text{ SDP Approximation:}$$

$$f - \varepsilon \sum_{i=0}^{k} X^{2i} = \tilde{\sigma} + u$$

$$\forall \text{ ABSORB: small enough } u_i$$

$$\implies \varepsilon \sum_{i=0}^{k} X^{2i} + u \text{ SOS}$$

intsos with n = 1 and SDP Approximation

Input: *f* ≥ 0 ∈ Q[X] of degree *d* ≥ 2, ε ∈ Q^{>0}, δ ∈ N^{>0}
Output: SOS decomposition with coefficients in Q

$$\begin{array}{l} \overleftarrow{v} & X = \frac{1}{2} \left[(X+1)^2 - 1 - X^2 \right] \\ \overleftarrow{v} & -X = \frac{1}{2} \left[(X-1)^2 - 1 - X^2 \right] \end{array}$$

$$\begin{array}{l} \overleftarrow{V} & X = \frac{1}{2} \left[(X+1)^2 - 1 - X^2 \right] \\ \overleftarrow{V} & -X = \frac{1}{2} \left[(X-1)^2 - 1 - X^2 \right] \end{array}$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$

Victor Magron

$$\vec{V} \quad X = \frac{1}{2} \left[(X+1)^2 - 1 - X^2 \right] \vec{V} \quad -X = \frac{1}{2} \left[(X-1)^2 - 1 - X^2 \right]$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^i)^2 - X^{2i} - X^{2i+2} \right]$$

$$\begin{array}{l} \overleftarrow{v} & X = \frac{1}{2} \left[(X+1)^2 - 1 - X^2 \right] \\ \overleftarrow{v} & -X = \frac{1}{2} \left[(X-1)^2 - 1 - X^2 \right] \end{array}$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^i)^2 - X^{2i} - X^{2i+2} \right]$$

$$\varepsilon \ge \frac{|u_{2i+1}| + |u_{2i-1}|}{2} - u_{2i} \implies \varepsilon \sum_{i=0}^{k} X^{2i} + u \quad SOS$$

Victor Magron

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?

Victor Magron
intsos with $n \ge 1$: Absorbtion

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?

Two-player games between polynomial optimizers & SDP solvers

intsos with $n \ge 1$: Absorbtion

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?

Victor Magron

Two-player games between polynomial optimizers & SDP solvers

intsos with $n \ge 1$: Absorbtion

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?

$$f = 4x^4y^6 + x^2 - xy^2 + y^2$$

spt(f) = {(4,6), (2,0), (1,2), (0,2)}

Newton Polytope $\mathcal{P} = \operatorname{conv}(\operatorname{spt}(f))$

Victor Magron

Two-player games between polynomial optimizers & SDP solvers

Algorithm intsos

- Input: $f \in \mathbb{Q}[X] \cap \mathring{\Sigma}[X]$ of degree d, $\varepsilon \in \mathbb{Q}^{>0}$, $\delta \in \mathbb{N}^{>0}$
- Output: SOS decomposition with coefficients in Q

Algorithm Putinarsos

Assumption: $\exists i \text{ s.t. } g_i = 1 - ||X||_2^2$ $f > 0 \text{ on } \mathbf{K} := \{ \mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0 \}$ has **Putinar**'s representation:

$$f = \sigma_0 + \sum_j \sigma_j g_j$$
 with $\sigma_j \in \Sigma[X]$, deg $\sigma_j \leqslant 2D$

Algorithm Putinarsos

Assumption: $\exists i \text{ s.t. } g_i = 1 - ||X||_2^2$ $f > 0 \text{ on } \mathbf{K} := \{ \mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0 \}$ has **Putinar**'s representation:

$$f = \sigma_0 + \sum_j \sigma_j g_j$$
 with $\sigma_j \in \Sigma[X]$, deg $\sigma_j \leq 2D$

Theorem [M.-Safey El Din 18]

$$f = \mathring{\sigma}_0 + \sum_j \mathring{\sigma}_j g_j$$

with $\mathring{\sigma}_j \in \mathring{\Sigma}[X]$, deg $\mathring{\sigma}_j \leq 2D$

Victor Magron

Algorithm Putinarsos

Assumption: $\exists i \text{ s.t. } g_i = 1 - ||X||_2^2$ $f > 0 \text{ on } \mathbf{K} := \{ \mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0 \}$ has **Putinar**'s representation:

$$f = \sigma_0 + \sum_j \sigma_j g_j$$
 with $\sigma_j \in \Sigma[X]$, deg $\sigma_j \leqslant 2D$

Theorem [M.-Safey El Din 18]

$$f = \mathring{\sigma}_0 + \sum_j \mathring{\sigma}_j g_j$$

with $\mathring{\sigma}_j \in \mathring{\Sigma}[X]$, deg $\mathring{\sigma}_j \leq 2D$

V ABSORBTION as in Algorithm intsos: $u = f_{\epsilon} - \tilde{\sigma}_0 - \sum_i \tilde{\sigma}_i g_i$

Victor Magron

Unconstrained Benchmarks

ы	п	d	multivsos		RoundProject		RAGLib	CAD
iu			$ au_1$ (bits)	t1 (S)	$ au_2$ (bits)	t ₂ (s)	t ₃ (s)	t4 (s)
<i>f</i> ₂₀	2	20	745 419	110.	78 949 497	141.	0.16	0.03
M	3	8	17 232	0.35	18 831	0.29	0.15	0.03
f_2	2	4	1 866	0.03	1 031	0.04	0.09	0.01
<i>f</i> 6	6	4	56 890	0.34	475 359	0.54	598.	—
$f_{1(}$	10	4	344 347	2.45	8 374 082	4.59	—	—

Constrained Benchmarks

	14	d	multivsos			RAGLib	CAD
iu	п		D	$ au_1$ (bits)	t1 (S)	t ₂ (s)	t ₃ (s)
f ₂₆₀	6	3	2	114 642	2.72	4.19	_
<i>f</i> 491	6	3	2	108 359	9.65	0.01	0.05
f ₇₅₂	6	2	2	10 204	0.26	0.07	—
f ₈₅₉	6	7	4	6 355 724	303.	0.05	—
f ₈₆₃	4	2	1	5 492	0.14	0.01	0.01
f_{884}	4	4	3	300 784	25.1	113.	_
butcher	6	3	2	247 623	1.32	231.	—
heart	8	4	2	618 847	2.94	24.7	_

Conclusion and Perspectives

Input f on **K** with deg f = d and bit size τ

Algo	Input	K	OUTPUT BIT SIZE
intsos	Š	\mathbb{R}^{n}	$ au d^{\mathcal{O}(n)}$
Putinarsos	> 0	$\{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$	$\mathcal{O}\left(2^{\tau d^{n} C_{\mathbf{K}}}\right)$
		compact	

How to handle degenerate situations?

Conclusion and Perspectives

Input f on **K** with deg f = d and bit size τ

Algo	Input	K	OUTPUT BIT SIZE
intsos	Š	\mathbb{R}^{n}	$ au d^{\mathcal{O}(n)}$
Putinarsos	> 0	$\{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$ compact	$\mathcal{O}\left(2^{\tau d^{n} C_{\mathbf{K}}}\right)$

Y How to handle degenerate situations?

- V Better arbitrary-precision SDP solvers
- Y Extension to other relaxations, sums of hermitian squares

Crucial need for polynomial systems certification Available PhD/Postdoc Positions

End

Thank you for your attention!

gricad-gitlab:RealCertify

https://homepages.laas.fr/vmagron

- Lasserre & Magron. In SDP relaxations, inaccurate solvers do robust optimization. arxiv:1811.02879
- Magron, Safey El Din & Schweighofer. Algorithms for Weighted Sums of Squares Decomposition of Non-negative Univariate Polynomials, JSC. arxiv:1706.03941
- Magron & Safey El Din. On Exact Polya and Putinar's Representations, *ISSAC'18*. arxiv:1802.10339

Magron & Safey El Din. RealCertify: a Maple package for certifying non-negativity, *ISSAC'18*. arxiv:1805.02201