

Advances in launcher guidance and control design: from robust control to convex optimization

Andrés Marcos Diego Navarro-Tapia Pedro Simplício

Technology for AeroSpace Control (TASC) Aerospace Engineering Department University of Bristol, U.K. www.tasc-group.com

Samir Bennani

Guidance, Navigation and Control Section European Space Agency, ESTEC

Motivation

Motivation

- Launcher G&C particularly challenging because:
 - Mission/aerothermal requirements tend to compete against each other
 - Strong couplings between trajectory, propulsion and flexible structure

Funded by an ESA NPI contract 4000114460/15/NL/MH/ats

"Robust & Adaptable Launcher TVC Control Systems for the VEGA Evolution"

University of BRISTOL

STOL

Samir Bennani

Diego Navarro-Tapia Ch Andrés Marcos

Christophe Roux

Funded by an ESA NPI contract 4000119571/17/NL/MH

"Advanced Flight Control System Design With Active Load & Relief Capabilities"

Stephan Theil David Seelbinder

1. Ascent Control: robust \rightarrow LPV \rightarrow adaptive

• VEGA launcher case

2. Descent **Guidance**: convex pinpoint landing optimization

• VEGA-like reusable launch vehicle case

3. Ascent Load Relief: wind disturbance observer + fins

• VEGA-like reusable launch vehicle case

Ascent Control: robust \rightarrow LPV \rightarrow Adaptive

Funded by an ESA NPI contract 4000114460/15/NL/MH/ats

"Robust & Adaptable Launcher TVC Control Systems for the VEGA Evolution"

Samir Bennani

Diego Navarro-Tapia Andrés Marcos

Christophe Roux

www.tasc-group.com

COMET-SCA Robust Control Workshop – Toulouse (France), 12th-13th March 2019

VEGA challenges: VEGA launcher

VEGA (Vettore Europeo di Generazione Avanzata) is the new European Small Launch Vehicle VEGA OUTPUT Cesa VEGA Soyuz Ariane 5 Saturn V 13 successful flights ... 14th this month

VEGACONTROL

nonlinear, high-fidelity simulator for

Over 120 uncertain parameters

Туре	Flag	Description			
AEROELASTICITY	Flag.seroelastic	sero-elasticity effect (+10% on CN coefficient)	0	Flag.PLdN	Scattering on PL Mass
AERODYNAMIC S	First disc. 04	Disperation on 1 ^{et} Stage Actal Coefficient		Flag.PLdJx	Seatterfrom on PL XX MOI
	Higgdisp_CA		MCI	Flag.PidJy	Scattering on PL V/ MOI
	Fing.unc_CA	Uncertainty on 1 ^{er} Stege Axial Coefficient		Flag PLdJr	Assessment of a TT MAN
	Fileg.disp_CN	Dispersion on 1 ^{el} Stage Normal Coefficient		Reg.PLdxC09	Seamering on PLX CoG
	Flag.unc_CN	Uncertainty on 1 ^{er} Stage Normal Coefficient		Reg.PLdyCOG	Seameting on PL V CoG
	Flag disp Xcp	Dispersion on 1 ^{er} State Xon		Reg.PLdrCOG	Secretaria an RI 7 (nA
	Flag.unc_Xcp	Uncertainty on 1 ^{er} Stepe Xop		Des TUD OF A	Second as T/C asis (as a)
	Flag.aero_roli	To enable Roll motion		Pagitys_ar_a	statengon rac gan care a
WIND	Flag.azimuth_wind_angle	Wind spimuth direction (red)		Flag.TVC_blas_A_diko	Scattering on TVC Lane & (Saussian)
	Flag.h_wind	Synthetic wind gust stitude (Km)		Flag,TVC_blas_à_unc	Scattering on TVC Lane & (uniform)
IR S	Fing.IR8mountingX	IRS Mounting Error set X Body Asia		Flag.TVC_BF_B	Scattering on TVC gain Lane 9
	Fiso. IR8mountingY	IRS Mounting Error wrt Y Body Asia		Flag.TVC_blas_8_dlap	Scattering on TVC Lane B (Saussian)
	Elea IR8mounting7	Int the star from and 7 Back has	THRUST OFF SET & MISALIGNMENT	Flag.TVC_blas_B_unc	Scattering on TV/2 Lane B (uniform)
	Elea di 90	In a wounting error with 2 edby Add		Flag.Thrust, misit, disp.	Scattering on thrus: missignment first lane (Gaussian)
THRUST	Figurier	Scalation on time burn		Flag.Thrue_nick_disp.	Scattering on thrust missignment second lane (Soussian)
PARAMETERS	Elec SEM cel			Reg.Thrust_misb_une	Seattering on thrus: nisalignment first lane (uniform)
SCATTERING	Figg.cros_for	Scattering on P50 Roll Torque		Hag Inter meajore	searching on threat matalignment second ane (unitom)
MCI	Fleg.stagedM	Structural mass scattering		Flag.P.P_offseck	Seattering on thrust offset in X
	Flag.stagedM_Prop	Scattering on propellant mass		Flag.PvP_offset/_disp	Scattering on thrust offset in V (Gaussian)
	Flag.stagedJx	Scattering on Stage XX MDI		Flag PiP_offeetZ_clap	Spatiation on thrust offset in Z (Gaussian)
	Flag.stagedJy	Scattering on Stage YY MOI		Ras PiP offeet/ unc	Annual and a second and a first to bit to a thread
	Flag.staged.lz	Scattering on Stage ZZ MOI			scarsing on tirue: onset in Y (Unitoriti)
	Fiag. stagedx000	Scattering on X CoG		Had his burner for	Scattering on thrust offset in Z (uniform)
	Flag. stagedyCOG	Scattering on Y CoG	ATMO SPHERE	Flag.alr_density_acat	Jonoppheric Density
	Flag. stagedzCOG	Scattering on Z CoG	SEPARATION	Reparedation	
	Flag. stagedJx_8	Scattering on structural Stage XXMOI	DISTURE		
	Flag. stagedJy_8	Scattering on structural Stage 111 MOI			
	Flag. stagedJz_8	Scattering on structural Stage 22 MOI			
	Flag. stagedxCOG_8	Scattering on structural X CoG			
	Flag. stagedyCOG_8	Scattering on Y structural CoG			

VEGA challenges: Vehicle, mission and environment

COMET-SCA Robust Control Workshop – Toulouse (France), 12th-13th March 2019

VEGA State-of-Practice: Control design process

VEGA State-of-Practice: Control objectives & design rationale

	Requirements	Metrics		Bounds		20	-	
Stability	Rigid-body margins	LF-GM	Nominal	$\geq 6\mathrm{dB}$	(B)			
			Dispersed	$\geq 0.5\mathrm{dB}$	p)			
		DM	Nominal	$\geq 100{\rm ms}$	nin	- 0 -	DM _f	
			Dispersed	$\geq 40\mathrm{ms}$	G			Mc
		HF-GM	Nominal	\leq -6 dB	do			
			Dispersed	\leq -3 dB	Lo			
	Flexible-body margins	GM_{f}	Nominal	< 3dB	-ue			/
			Dispersed	≥ -9 dB	Dpe		Mf	1
		DM_{f}	Nominal	$\geq 50\mathrm{ms}$. 0		5	1
			Dispersed	$> 20 \mathrm{ms}$	\$	-20		1

Ascent Control: robust \rightarrow LPV \rightarrow Adaptive

VEGA Structured H_{∞} synthesis: Rigid-body robust design

VEGA Structured H_{∞} synthesis: Rigid-body robust nonlinear Monte Carlo analysis

but a different wind profile

In total, 9 linear structured H_{∞} controllers are synthesized along the atmospheric phase, and are scheduled using VNG (as in VEGA)

MC quantitative assessment

For each controller and each MC run,

get the ∞-norm and 2-norm

for different performance indicators.

Results normalised wrt baseline controller

ASC University of BRISTOL Nominal Robust

VEGA Structured H_{∞} synthesis: Flexible sequential bending filter design

Potential for improvement with respect to baseline bending filter

VEGA Structured H_{∞} **synthesis: Rigid+Flexible integrated analysis**

In total, 9 linear integrated structured H_{∞} controllers synthesized along the atmospheric phase

Ascent Control: robust \rightarrow LPV \rightarrow Adaptive

VEGA LPV synthesis:

Design weighting functions

VEGA LPV synthesis: Control design & linear analysis

LPV synthesis

LPV synthesis using *LPVTools1.0 toolbox* from UMN

Control problem formulated as:

 $\min_{K(s,\rho)} ||\mathcal{T}_{e'd'}(s,\rho)||_{\mathcal{L}_2 \to \mathcal{L}_2};$

subject to $\begin{aligned} \rho(t) \in \mathcal{P}_{NGV} \\ \underline{\nu_{NGA}} < \dot{\rho}(t) < \overline{\nu_{NGA}} \end{aligned}$

Quadratic basis functions to constrain the rate variation of VNG:

$$X_{\rho} = X_0 + X_1 \rho + X_2 \rho^2$$
$$Y_{\rho} = Y_0 + Y_1 \rho + Y_2 \rho^2$$

High computational complexity

Resultant controller (rigid-body and bending filter): 22 states

VEGA LPV synthesis: Nonlinear MC analysis

Bending filter

 $H_3(s)$

 $K_{p_{\psi}}$

 $K_{d\psi}$

 K_{z}

 $K_{\dot{z}}$

We.

 ψ_e

 z_e

 \dot{z}_e

 $\beta_{\psi c}$

VEGA Structured H_{∞} **+IM synthesis:** Additional controller structure

Structured H_∞ design improves robustness & performance for same controller structure

→ better gain-tunings are possible (and in an easier and more methodological manner)

Non-Rate Bounded LPV design shows that there is room to improve robustness and performance

→ better controller architectures can, and should, be used

Redesign the integrated structured H_{∞} controller including an identified internal model $H_{IM}(s)$

Ascent Control: robust \rightarrow LPV \rightarrow Adaptive

LPV versus Adaptive control:

NASA adaptive controllers description

ADAPTIVE CONTROL LAW – A (2012)

J. Orr and T.S. VanZwieten "Robust, Practical Adaptive Control for Launch Vehicles", in AIAA Guidance, Navigation, and Control Conference, 2012

Adaptive augmentation is based on a multiplicative law:

Adaptive + integrated structured H_{∞}

COMET-SCA Robust Control Workshop – Toulouse (France), 12th-13th March 2019

LPV versus Adaptive control: **Test case #5⁺ – performance**

Test case #5⁺

- VV05 wind
- All VEGACONTROL flags to +1.70

None of adaptive control laws can avoid the loss of vehicle under such extreme conditions

The rate-bounded LPV design still capable of completing mission

-10└─ 0

20

60

40

80

The atmospheric phase VEGA launcher control design

has been formulated as a robust control problem using

- Structured H_{∞} (incremental from robust rigid to rigid/flexible integrated design)
- LPV
- Adaptive
- → Clear benefits shown for each technique over traditional design
- \rightarrow Use of robust modeling and analysis (LFT & μ) shown to be very advantageous
- \rightarrow LPV shown to be best (for the presented case) in terms of:
 - exploitation of robustness and performance domain
 - methodological design approach
 - ease of analysis (especially compared to adaptive)

Marcos, A., Rosa, P., Roux, C., Bartolini, M., Bennani, S., "An overview of the RFCS project V&V framework: optimization-based and linear tools for worst-case search," CEAS Space Journal, June 2015, Volume 7, Issue 2, pp 303-318

Simplício, P., Bennani, S., Lefort, X., Marcos, A., Roux, C., "**Structured Singular Value Analysis of the VEGA Launcher in Atmospheric Flight**," AIAA Journal of Guidance, Control, and Dynamics, vol. 39, no. 6, pp. 1342-1355, June 2016

Marcos, A., Roux, C., Bennani, S., "Stochastic mu-Analysis for launcher thrust vector control systems," 3rd CEAS EURO-GNC, Toulouse, France, April 2015

Marcos, A., Bennani, S., Roux, C., Valli, M., "Uncertainty Modeling and Robust Analysis of Atmospheric Launchers: Incremental Steps for Industrial Transfer," 8th IFAC Symposium on Robust Control Design (ROCOND), Bratislava, Slovakia, July 2015

Marcos, A., Bennani, S., Roux, C., "LPV modeling and LFT Uncertainty Identification for Robust Analysis: application to the VEGA Launcher during Atmospheric Phase," 1st IFAC Workshop on Linear Parameter Varying Systems, Grenoble, France, October 2015

Navarro-Tapia, D., Marcos, A., Bennani, S., Roux, C., "**Structured H-infinity Control Based on Classical Control Parameters for the VEGA Launch Vehicle**," IEEE Multi-Conference on Systems and Control (MSC 2016), Buenos Aires, Argentina, September 2016

Navarro-Tapia, D., Marcos, A., Bennani, S., Roux, C., "**Structured H-infinity Control Design for the VEGA Launch Vehicle: Recovery** of the Legacy Control Behaviour," ESA Guidance, Navigation and Control Conference (ESAGNC 2017), Salzburg, Austria, May 2017

Navarro-Tapia, D., Marcos, A., Bennani, S., Roux, C., "**Structured H**_∞ and Linear Parameter Varying control design for the VEGA Launch Vehicle," 7th European Conference for Aeronautics and Space Sciences (EUCASS 2017), Milan, Italy, July 2017

Navarro-Tapia, D., Marcos, A., Bennani, S., Roux, C., "Linear Parameter Varying Control Synthesis for the atmospheric phase VEGA launcher," 2nd LPVS symposium, Florianopolis, Brazil, 2018

Navarro-Tapia, D., Marcos, A., Bennani, S., Roux, C., "**Structured H-infinity Control Design for the VEGA Launcher: Robust Control Design Augmentation**," International Astronautical Congress (IAC), Bremen, Germany, October 2018

Navarro-Tapia, D., Marcos, A., Bennani, S., Roux, C., "Reconciling Full-Order LPV Design and Augmented Structured H_o via Internal Model Principle: A Launcher Application," IEEE 7th International Conference on Systems and Control (ICSC), Valencia, Spain, October 2018

Navarro-Tapia, D., Marcos, A., Bennani, S., Roux, C., "Robust-Control-Based Design and Comparison of an Adaptive Controller for the VEGA Launcher," AIAA SciTech, San Diego, USA, Jan. 2019

Descent Guidance: convex pinpoint landing optimization

ESA NPI contract 4000119571/17/NL/MH

"Advanced Flight Control System Design With Active Load & Relief Capabilities"

Samir Bennani

Pedro Simplício Andrés Marcos

Stephan Theil David Seelbinder

Descent Guidance: Reusable launcher model Mass, CG Sensors & Inertia Thrust Launch & Recovery Vector Gravity Guidance Control Cold Gas Equations Control Allocation of Motion Thrusters Atmosphere & Wind Fins

·e

of DL

Descent Guidance:

180

Reusable launcher model

·e

of DL

Descent Guidance: Mission profiles

Need to shrink dispersions for pinpoint landing requires

closed-loop guidance algorithms

Constrained terminal velocity

- Closed-form solution of a simplified fuel-optimal control problem
- Simple but unable to enforce path constraints

$$\mathbf{T}_{\text{CTV}}(t) = \hat{m}(t) \begin{bmatrix} k_r & k_v \end{bmatrix} \begin{bmatrix} \frac{\mathbf{ZEM}(t)}{(t_f - t)^2} \\ \frac{\mathbf{ZEV}(t)}{\mathbf{ZEV}(t)} \end{bmatrix}$$

 $t_f - t$

Convex optimisation-based

- Recovery trajectory and thrust commands updated on-board
- Real-time reliable via convexification of the constrained optimal control problem
- Novel algorithm developed to cope with the extended flight envelope of RLVs

Descent Guidance: The DESCENDO algorithm

<u>Descending over Extended Envelopes using</u> <u>Successive Convexification-based Optimisation</u>

- At each simulation instance, commands are interpolated from most recent guidance solution
- Solution updated once a SOCP is triggered and feasible
- SOCP 1 finds a discrete trajectory that does not account for aerodynamic forces
- SOCP 2 applies successive convexification to approximate these forces

<u>Descending over Extended Envelopes using</u> <u>Successive Convexification-based Optimisation</u>

- At each simulation instance, commands are interpolated from most recent guidance solution
- Solution updated once a SOCP is triggered and feasible
- SOCP 1 finds a discrete trajectory that does not account for aerodynamic forces
- SOCP 2 applies successive convexification to approximate these forces

SOCP 2 $\max_{\mathbf{w},\sigma} z[N] - w_{\eta_{\mathbf{w}}} \sum_{i=1}^{N} \eta_{\mathbf{w}}[k], \text{ subject to:}$ Boundary conditions $z[1] = \ln \hat{m}(t), \ \mathbf{r}[1] = \hat{\mathbf{r}}(t), \ \mathbf{v}[1] = \hat{\mathbf{v}}(t), \ \mathbf{w}[1] = \hat{\mathbf{w}}(t)$ $\mathbf{r}[N] = \mathbf{r}_{f}, \ \mathbf{v}[N] = \mathbf{v}_{f}, \ \mathbf{w}_{x,y}[N] = \mathbf{0}_{2\times 1}, \ \mathbf{w}_{z}[N] \ge 0$ Dynamics equations, $\forall k \in [1, \dots, N-1]$ $\mathbf{r}[k+1] = \mathbf{r}[k] + T_{\mathrm{S}} \, \mathbf{v}[k] + \frac{T_{\mathrm{S}}^2}{3} \left(\mathbf{a}[k] + \frac{\mathbf{a}[k+1]}{2} \right)$ $\mathbf{v}[k+1] = \mathbf{v}[k] + \frac{T_{S}}{2} (\mathbf{a}[k] + \mathbf{a}[k+1])$ $z[k+1] = z[k] - \frac{1}{I_{sp}g_0} \frac{T_s}{2} \left(\sigma[k] + \sigma[k+1]\right)$ Surrogate variables, $\forall k \in [1, \dots, N]$ $\mathbf{a}[k] = \mathbf{w}[k] + \hat{\mathbf{g}}(t) - d_i^*[k]\mathbf{v}[k]$ $\|\mathbf{w}[k]\| \leq \sigma[k]$ Trust region constraints, $\forall k \in [1, \dots, N]$ $\|\mathbf{w}[k] - \mathbf{w}_i^*[k]\| \le \eta_{\mathbf{w}}[k]$ Flight path constraints, $\forall k \in [1, \dots, N-1]$ $\mathbf{r}_{z}[k] \geq \frac{\hat{\mathbf{r}}_{z}(t)}{\|\hat{\mathbf{r}}_{x,y}(t)\|} \|\mathbf{r}_{x,y}[k]\|$ Control constraints, $\forall k \in [1, \dots, N-1]$ $\mathbf{w}_{z}[k] \geq \frac{\|\mathbf{w}_{x,y}[k]\|}{\tan \theta_{\max}}, \quad \frac{T_{\min}}{\hat{m}(t)} \leq \sigma[k] \leq \frac{T_{\max}}{\hat{m}(t)}, \quad \text{if } T_{\mathrm{S}}(k-1) \in \mathcal{T}_{\mathrm{P}}$ $w[k] = 0_{3 \times 1},$ otherwise Control rate constraints, $\forall k \in [1, \dots, N-1]$ $\sigma[k] - T_{\rm S} \frac{\dot{T}_{\rm max}}{\dot{m}(t)} \le \sigma[k+1] \le \sigma[k] + T_{\rm S} \frac{\dot{T}_{\rm max}}{\dot{m}(t)}$

DESCENDO solution:

Last ru

First run

Descent Guidance:

The DESCENDO algorithm – detailed DRL trajectory results

Simplício, P., Marcos, A., Joffre, E., Zamaro, M., Silva, N., "Systematic Performance-oriented Guidance Tuning for Descent & Landing on Small Planetary Bodies," Acta Astronautica, published online July 2018

Joffre, E., Zamaro, M., Silva, N., Marcos, A., Simplício, P., Richardson, B., "**Trajectory Design and Guidance for Landing on Phobos**," Acta Astronautica, vol. 151, pp. 389-400, Oct 2018.

Simplício, P., Marcos, A., Joffre, E., Zamaro, M., Silva, N., "**Survey of Guidance Techniques for Planetary Descent**," Progress in Aerospace Sciences, published online November2018

Simplício, P., Marcos, A., Bennani, S., "Guidance of Reusable Launchers: Improving Descent and Landing Performance," AIAA Journal of Guidance, Control, and Dynamics, accepted for publication January 2019

Simplício, P., Marcos, A., Joffre, E., Zamaro, M., Silva, N., "Parameterised Laws for Robust Guidance and Control of Planetary Landers," 4th CEAS Specialist Conference on Guidance, Navigation and Control (EuroGNC 2017), Warsaw, Poland, April 2017

Joffre, E., Zamaro, M., Silva, N., Marcos, A., Simplício, P., Richardson, B., "Results of new guidance and control strategies for landing on small bodies," ESA Guidance, Navigation and Control Conference (ESAGNC 2017), Salzburg, Austria, May 2017

Simplício, P., Marcos, A., Joffre, E., Zamaro, M., Silva, N., "A Systematic Performance-Oriented Tuning for Space Exploration Descent & Landing Guidance," 7th European Conference for Aeronautics and Space Sciences (EUCASS 2017), Milan, Italy, July 2017

Simplício, P., Marcos, A., Bennani, S., "A Reusable Launcher Benchmark with Advanced Recovery Guidance," 5th CEAS EuroGNC, Milan, Italy, April 2019

Ascent Load Relief: Wind Disturbance Observer (WDO)

ESA NPI contract 4000119571/17/NL/MH

"Advanced Flight Control System Design With Active Load & Relief Capabilities"

Samir Bennani

Pedro Simplício Andrés Marcos

Stephan Theil David Seelbinder

Ascent Load Relief: Achievable performance

Ascent Load Relief: Achievable performance

Ascent Load Relief: Achievable performance

Ascent Load Relief:

Attitude control with WDO and fins - design

Ascent Load Relief: Attitude control with WDO and fins - analysis

Notice that the Wind-Disturbance-Observer (WDO) results show a drastic reduction on: [ss indicators] the load (°) and drift (m/s) & equivalently [gust response] the α (deg) and zdot (m/s)

DESCENDO provides a trade-off between

computational efficiency and trajectory optimality which makes it suitable to the extended flight envelope of RLVs

Earliest application of robust wind disturbance observation (WDO)
for improved launcher load relief

