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Introduction

n Many mathematical tools in robust control for building LMI conditions

l Lyapunov, S-procedure, KYP, DG-scaling, IQC, Quadratic Separation,

Finsler lemma, S-variables, Positivstellensatz, SOS, Polyá...

s Developed for specific uncertainties and view points

s Conservative SDP relaxations, with various decision variables (certificates)

s Hierarchies of relaxations with decreasing conservatism

l This presentation : Attempt to establish links between these tools

s Positivity of matrix polynomials with matrix indeterminates

s Continuation of work of S-variable approach [Ebihara]

s Strongly inspired by Quadratic Separation & Generalized KYP lemma [Iwasaki]

s Connexions to be done with Generalized Frequency Variables [Hara]

s Technicalities linking SOS and S-variables [Sato]
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Motivation - Lyapunov

n The linear system ẋ = Ax is stable

⇔ All eigenvalues of A have negative real part

⇔ A does not have eigenvalues in the closed right-half plane

⇔ sI −A is non singular for all s ∈ C+

⇔ I −As−1 is non singular for all s−1 ∈ C+

⇔∃ε : (I −As−1)∗(I −As−1) � εI � 0 for all s−1 + s−∗ ≥ 0

t Matrix valued polynomial inequality (PMI) constrained by a polynomial inequality (PI)

t Indeterminate is complex-valued s−1 ∈ C

⇔∃P � 0, ∃ε > 0 such that A∗P + PA � −εI

s Lossless LMI formulation

s P is such that P (s−1 + s−∗) � 0
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Motivation - Lyapunov & S-variables

l Polytopic constraints on matrices :

CO{A[1] . . . A[v̄]} = CO{. . . A[v] . . .} =

{
A =

v̄∑
v=1

ξvA
[v] : ξv ≥ 0,

v̄∑
v=1

ξv = 1

}

n The uncertain linear system ẋ = Ax with A ∈ CO{. . . A[v] . . .} is robustly stable

⇔ I −As−1 is non singular ∀s−1 ∈ C+, ∀A ∈ CO{. . . A[v] . . .}

⇔

[
I −s−1I

−A I

]
is non singular ∀s−1 ∈ C+, ∀A ∈ CO{. . . A[v] . . .}

⇔∃ε :

[
I −s−1I

−A I

]∗ [
I −s−1I

−A I

]
� εI � 0

∀s−1 + s−∗ ≥ 0

∀A ∈ CO{. . . A[v] . . .}

t PMI with scalar/matrix indeterminates constrained by PI & polytopes

s Indeterminates are in independent rows and columns
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Motivation - Lyapunov & S-variables

n The uncertain linear system ẋ = Ax with A ∈ CO{. . . A[v] . . .} is robustly stable

⇔∃ε :

[
I −s−1I

−A I

]∗ [
I −s−1I

−A I

]
� εI � 0

∀s−1 + s−∗ ≥ 0

∀A ∈ CO{. . . A[v] . . .}

t PMI with scalar/matrix indeterminates constrained by PI & polytopes

⇐∃S : ∀v = 1 . . . v̄, ∃P [v] � 0 such that[
εI P [v]

P [v] εI

]
� S

[
A[v] −I

]
+ (S

[
A[v] −I

]
)∗

s Conservative LMI formulation

s P (A) =
∑v̄

v=1 ξvP
[v], parameter-dependent, s.t. P (A)(s−1 + s−∗) � 0

s S-variable copes with the polytopic uncertainty
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Motivation - DG-scalings

n Well-posedness of ∆ ? M

l ∆ =

 δ1Ir1
0

. . .

0 ∆k̄


t independent uncertainties

t scalar repeated or matrix valued

t real or complex

t norm-bounded by 1 : |δk| ≤ 1 or ‖∆k‖ ≤ 1

l ? : feedback-loop
∆

Mw

w̃ z

z̃

lM : Complex valued matrix

l Well-posedness : internal (w, z) bounded for all bounded disturbances (w̃, z̃)
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Motivation - DG-scalings

n Well-posedness of ∆ ? M

l ∆ =

 δ1Ir1 0

. . .

0 ∆k̄


t independent uncertainties

t scalar repeated or matrix valued

t real or complex

t norm-bounded by 1 : |δk| ≤ 1 or ‖∆k‖ ≤ 1

δk ∈ C, |δk| ≤ 1 ⇔ 1 ≥ δk∗δk
∆k ∈ Cm1k,m2k , ‖∆k‖ ≤ 1 ⇔ I � ∆k

∗∆k

δk ∈ R, |δk| ≤ 1 ⇔ −jδk∗ + jδk = 0, 1 ≥ δk∗δk
δk ∈ R, |δk| ≤ 1 ⇔ δk ∈ CO {−1, 1}

t Complex matrix valued indeterminates ∆k

t Constrained by polynomial inequalities (PMI), equalities (PME) & Polytopes

t Indeterminates are repeated Irk ⊗∆k (generalization of δ1Ir1 to matrices)
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Motivation - DG-scalings

n Well-posedness of ∆ ? M
∆

Mw

w̃ z

z̃

⇔ internal (w, z) bounded for all bounded disturbances (w̃, z̃) and all ∆...

⇔∃ε > 0 : (Im2 −M∆)∗(Im2 −M∆) � εIm2 for all ∆...

t PMI with matrix indeterminates constrained by PMIs, PMEs (& Polytopes)

s Indeterminates are in independent rows and columns (∆ block-diagonal)

⇐∃Dk � 0, Gk :
[

I M∗
]

Θ(Dk, Gk)

[
I

M

]
� εI

s Θ(Dk, Gk) : linear in the decision variables

sDk � 0 such that Dk ⊗ PMI(∆k) � 0

sGk = G∗k such that Gk ⊗ PME(∆k) = 0
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Motivation - Proving positivity under constraints

n Robustness analysis of linear time-invariant systems

l Most problems can be recast as proving positivity of polynomials

t matrix valued (semi-definite constraints)

t indeterminates are matrices (or scalars), complex valued

t constrained by PMIs, PMEs & Polytopes

s LFT modeling allows to have indeterminates in separate rows/columns

l Many LMI results in the litterature,

t in general conservative (problems are NP-hard)

s some results are proved to be less conservative

s on examples conservatism may vanish

s duality of SDPs can extract worst case indeterminates (prove conservatism vanishes)

t Numerical issues : limit size of LMIs using the structure of the data

D. Peaucelle 8 Toulouse, March 13, 2019



Introduction

n Many mathematical tools in robust control for building LMI conditions

l Lyapunov, S-procedure, KYP, DG-scaling, IQC, Quadratic Separation,

Finsler lemma, S-variables, Positivstellensatz, SOS, Pólya...

s Developed separately for specific uncertainties and view points

s Conservative SDP relaxations

s Hierarchies of relaxations with decreasing conservatism

l This presentation : Attempt to establish links between these tools

s Positivity of matrix polynomials with matrix indeterminates

s Continuation of work of S-variable approach [Ebihara]

s Strongly inspired by Quadratic Separation [Hara, Iwasaki]

s Technicalities linking SOS and S-variables [Sato]
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Sum-Of-Squares

n [Lasserre], [Parillo], [Scherer], [Chesi] ...

l Goal : proving a PMI F (δ) � 0

s with (scalar) indeterminates δ ∈ Rk̄

s constrained by (scalar) polynomial inequalities fi(δ) ≥ 0.

l Key steps for solving the problem using SDPs

s Polynomials modeled as quadratic functions of monomials

s Positivstellensatz

s SDP relaxation

s Hierarchies

s (Moment problem)

l Case of matrix valued indeterminates : non-commutative polynomials [Helton]...

t Each step may be much more complicated
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Quadratic functions of monomials

n Goal : proving F (∆) = F (Ir1 ⊗∆1, . . . , Irk̄ ⊗∆k̄) � 0

s Indeterminates ∆k are in independent columns

t Constrained by PMIs, PMEs & Polytopes

Fik(∆k) � 0, Fek(∆k) = 0, ∆k ∈ CO{. . .∆
[vk]
k . . .}

l Polynomials modeled as quadratic functions of monomials

s Real scalar : 1 + 2δ2 =

(
1

δ

)T [
1 0

0 2

](
1

δ

)
=

 1

δ

δ2

T  1 0 0

0 2 0

0 0 0

 1

δ

δ2


t Extension to ∆k ∈ Cm1k,m2k that could be non-square?

s Our suggestion : monomials composed of

Im2k
, ∆k, ∆∗k∆k, ∆k∆

∗
k∆k . . .
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Quadratic functions of monomials

l Monomials with matrix indeterminates ∆k ∈ Cm1k×m2k

∆k
{0} = Im2k

∆k
{1} = ∆k, ∆k

{2} = ∆∗k∆k,

∆k
{3} = ∆k∆

∗
k∆k, ∆k

{4} = ∆∗k∆k∆
∗
k∆k, . . .

s Matrix with monomials from degree 0 to degree pk :

∆k
{0:pk} =


∆k
{0}

...

∆k
{pk}

 =


Im2k

∆k

∆∗k∆k

...

 , (Irk⊗∆k)
{0:pk} =


Irk ⊗∆k

{0}

...

Irk ⊗∆k
{pk}



∆{0:p} =


(Ir1 ⊗∆1){0:p1} 0

. . .

0 (Irk̄ ⊗∆k̄)
{0:pk̄}


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Quadratic functions of monomials

l Problem reformulated as proving F (∆) = ∆{0:p}∗(F0 + F ∗1F1)∆{0:p} � 0

t under constraints

Fik(∆k) = ∆k
{0:pk}∗Φik∆k

{0:pk} � 0,

Fek(∆k) = ∆k
{0:pk}∗Φek∆k

{0:pk} = 0,
∆k ∈ CO{∆

[1]
k , . . . ,∆

[v̄k]
k }

t This is a subclass of the original problem (work in progress to extended the result)
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Positivstellensatz

l Case of scalar constraints : Putinar’s Positivstellensatz

F (δ) � 0 ∀δ : fi(δ) ≥ 0

⇑

∃d0(δ), Di(δ) SOS : FD(δ) = d0(δ)F (δ)−
∑

Di(δ)fi(δ) SOS

s Lossless, under some assumptions & polynomials Di(δ) with sufficiently high order

t Formulation for matrix indeterminates and PMI constraints ?
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Positivstellensatz

l Problem reformulated as proving F (∆) = ∆{0:p}∗(F0 + F ∗1F1)∆{0:p} � 0

t under constraints

Fik(∆k) = ∆k
{0:pk}∗Φik∆k

{0:pk} � 0,

Fek(∆k) = ∆k
{0:pk}∗Φek∆k

{0:pk} = 0,
∆k ∈ CO{∆

[1]
k , . . . ,∆

[v̄k]
k }

l Sufficient condition : ∃Dk(∆) SOS, ∃Gk(∆) = G∗k(∆) such that

∆{0:p}∗ (F0 + F ∗1F1 − diag (· · ·Dk(∆) � Φik +Gk(∆) � Φek · · ·)) ∆{0:p} SOS

t under polytopic constraints ∆k ∈ CO{∆
[1]
k , . . . ,∆

[v̄k]
k } (v̄k = 0 if no constraint)

t � is a Kronecker-like product

t Manipulation of ∆ variables is difficult

s We restrict the search to D(∆), G(∆) affine in the ∆k that are in polytopes.

D. Peaucelle 15 Toulouse, March 13, 2019



SDP relaxation

l Semidefinite relaxation to prove that a polynomial is SOS

s Exploit degrees of freedom in writing the polynomial in a basis of monomials

∆{0:p}∗F∆{0:p} = ∆{0:p̂}∗(F̂ + V )∆{0:p̂}

t V is structured such that ∆{0:p̂}∗V∆{0:p̂} = 0

t p̂ ≥ p : larger basis of monomials

s SDP test of SOS ∃V : F̂ + V � 0

s Example of a scalar polynomial 1

δ

δ2

T  1 0 v1

0 2− 2v1 0

v1 0 0

 1

δ

δ2

 = 1 + 2δ2

t Formula to build systematically V (not by inspection of all monomials) ?
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S-variables for SDP relaxation

l Consider building Hk(∆k) = J0 + J1(I ⊗∆k)J2 + J3(I ⊗∆k
∗)J4

such that ∆k
{0:pk} spans the null space of Hk(∆k)

∆k −I 0 0

0 ∆k
∗ −I 0

0 0 ∆k −I


︸ ︷︷ ︸

Hk(∆k)


I

∆k

∆k
∗∆k

∆k∆k
∗∆k


︸ ︷︷ ︸

∆k
{0:pk}

= 0
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S-variables for SDP relaxation

l SDP relaxation for one indeterminate ∆k in polytope, assuming Ψ(X) is affine in X

∃Sk, X [vk] : Ψ(X [vk]) + SkHk(∆
[vk]
k ) + (SkHk(∆

[vk]
k ))∗ � 0 ∀vk = 1 . . . v̄k

⇓

∃X(∆) : ∆k
{0:pk}∗Ψ(X(∆k))∆k

{0:pk} � 0 ∀∆k ∈ CO{∆
[1]
k , . . . ,∆

[v̄k]
k }

s LMI result for proving PMI constraints over polytopes

s Can be applied to PMIs such as those build using Positivstellensatz

t Very large # of decision variables (and v̄k constraints)

s We have tools to reduce the size of these LMIs exploiting structure of the data.
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S-variables and SDPs for SOS

l Proof

s Affine Ψ and Mk and ∆k =
∑v̄k

vk=1 ξv∆
[vk]

∃Sk, X [vk] : Ψ(X [vk]) + SkHk(∆
[vk]
k ) + (SkHk(∆

[vk]
k ))∗ � 0 ∀vk = 1 . . . v̄k

m

∃Sk, : Ψ(X(∆)) + SkHk(∆k) + (SkHk(∆k))
∗ � 0 ∀ξv ≥ 0,

∑v̄
v=1 ξv = 1

X(∆) =
∑v̄k

vk=1 ξvX
[vk]

s By congruence with the fact that Hk(∆k)∆k
{0:pk} = 0

⇓

∃X(∆) : ∆k
{0:pk}∗Ψ(X(∆))∆k

{0:pk} � 0 ∀∆k ∈ CO{∆
[1]
k , . . . ,∆

[v̄k]
k }

t Conservatism comes for the choice of indeterminate-independent Sk
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S-variables and SDPs for SOS

l SDP relaxation for one unbounded ∆k

∃Ŝk, X : Ψ(X) + ŜkHk(0) + (ŜkHk(0))∗ � 0 ∀vk = 1 . . . v̄k

Ŝk =
[
JT4 JT2

] Tk ⊗ I 0

0 Tk ⊗ I

 JT1

JT3

 , Tk = −T ∗k

⇓

∃X : ∆k
{0:pk}∗Ψ(X)∆k

{0:pk} � 0 ∀∆k

s Structured S-variables provide parameterization of V s.t. ∆{0:p̂}∗V∆{0:p̂} = 0

V = ŜkHk(0) + (ŜkHk(0))∗

t We conjecture it is a complete parameterization (true for scalar indeterminates)

s SOS-Moment SDP relaxations are a special case of S-variable relaxation
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Main result

n F (∆) = ∆{0:p}∗(F0 + F ∗1F1)∆{0:p} � 0

t under constraints

Fik(∆k) = ∆k
{0:pk}∗Φik∆k

{0:pk} � 0,

Fek(∆k) = ∆k
{0:pk}∗Φek∆k

{0:pk} = 0,
∆k ∈ CO{∆

[1]
k , . . . ,∆

[v̄k]
k }

⇐ ∃D[vK2
]

k � 0, G
[vK2

]

k = G
[vK2
∗]

k , Ŝ
[vK2

]

k , S
[vK2\k]

k

F̂⊥∗1

F̂0 − diag


...

D
[vK2

]

k � Φik +G
[vK2

]

k � Ψek

...


 F̂⊥1

+
∑

k∈K1

{
F̂⊥∗1 Ŝ

[vK2
]

k Ĥk(0)F̂⊥1

}H
+
∑

k∈K2

{
S

[vK2\k]

k Ĥk(∆
[vk]
k )F̂⊥1

}H
� 0

sK1,K2 indices of uncertainties without and with polytopic constraints respectively
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Main result

n F (∆) = ∆{0:p}∗(F0 +F ∗1F1)∆{0:p} � 0 under PMI, PME & Polytopic constraints

⇐ ∃D[vK2
]

k � 0, G
[vK2

]

k = G
[vK2
∗]

k , Ŝ
[vK2

]

k , S
[vK2\k]

k

F̂⊥∗1

(
F̂0 − diag

(
D

[vK2
]

k � Φik +G
[vK2

]

k � Ψek

))
F̂⊥1

+
∑

k∈K1

{
F̂⊥∗1 Ŝ

[vK2
]

k Hk(0)F̂⊥1

}H
+
∑

k∈K2

{
S

[vK2\k]

k Hk(∆
[vk]
k )F̂⊥1

}H
� 0

s Hierarchy of SDP relaxations as order p is increased

t As all LMI formulations numerical burden is rapidly prohibitive

s Complicated formula, but not difficult to code (no need for symbolic manipulation)

s Size of LMIs is not so huge when exploiting the structure F0 + F ∗1F1

s When applied to special cases we get exactly the existing LMIs of the litterature

t Can we provide new results?

t Assuming all indeterminates are matrices. Exploit commutativity of scalars?

t Is the hierarchy complete (proof of losslessness at some order of relaxation)?
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Conclusion

s Ongoing work to explore links between many existing results in Robust Control

s Method inspired by SOS-Moments relaxations and our S-variable approach

s Motivation for dealing with polynomial matrix inequalities of matrix indeterminates

t Sub-case of all possible polynomial matrix inequalities of matrix indeterminates

t Numerical experiments to be done
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