art 1 - Preliminaries in mod. ap 000000000000000 Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app 00000000

Conclusion

Approximation of infinite dimensional linear dynamical models

... and its applications

Charles Poussot-Vassal

March 2019 COMET and MOSAR Workshop

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (1/38)

Part 1 - Preliminaries in mod. ap 0000000000000 Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclusion Conclusion

Introduction and motivating examples

Finite and infinite dimensional linear dynamical models...

Finite dynamical models have a finite number of singularities, *e.g.*

$$\mathbf{H}(s) = \frac{1}{1+s} \in \mathcal{RL}_2$$

Infinite dynamical models have an **infinite** number of singularities, *e.g.*

$$\mathbf{H}(s) = \frac{1}{1+s+e^{-s}} \in \mathcal{L}_2$$

$$\mathcal{L}_{p}: \{\mathbf{H}: \mathbb{C} \to \mathbb{C}^{n_{y} \times n_{u}}, ||\mathbf{H}||_{p} < \infty\}$$
$$\mathcal{RL}_{p}: \{ \text{ rational } \mathcal{L}_{p} \text{ functions } \}$$

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (2/38)

Part 1 - Preliminaries in mod. ap 000000000000000 Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclu 00000000

Introduction and motivating examples

... and where do they come from?

Finite representations are largely used in industry and academic research. Infinite representation are less explored (or in specific cases, *e.g.* delay literature).

Finite dynamical models come from

spatial meshing of PDE

 $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$

standard mechanical equations

 $M\ddot{\mathbf{x}}(t) = C\dot{\mathbf{x}}(t) + K\mathbf{x}(t) + B\mathbf{u}(t)$

structured....

 $(J-H)\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$

Infinite dynamical models may come

exact solution of linear PDE

$$\mathbf{y}(s) = e^{-\sqrt{s}}\mathbf{u}(s)$$

delays in the loop

$$\mathbf{y}(s) = \frac{1}{1+s+e^{-s}}\mathbf{u}(s)$$

discretisation of control laws

$$\mathbf{y}(s) = C(e^{sh}I - A)^{-1}B\mathbf{u}(s)$$

Infinite dimensional dynamical models describe a larger class of systems

Part 1 - Preliminaries in mod. ap 000000000000000 Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. 00000000

Introduction and motivating examples

Today's talk

Approximation of infinite dimensional models:

- Part 1 ... some generalities and tools
- Part 2 ... for linear PDE modelling and analysis applied on a hydro-electrical open channel
- Part 3 ... for stability approximation of \mathcal{L}_2 functions applied on a bundle of TDS models

Part 1 - Preliminaries in mod. ap

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. 00000000

Introduction and motivating examples

Today's talk

Approximation of infinite dimensional models:

- Part 1 ... some generalities and tools
- Part 2 ... for linear PDE modelling and analysis applied on a hydro-electrical open channel
- Part 3 ... for stability approximation of \mathcal{L}_2 functions applied on a bundle of TDS models

Main message:

- Approximation is a pivotal tool
- ... and (locally optimal) solutions exist
- ... as well as numerical tools: MOR toolbox

http://mordigitalsystems.fr/

Intro	du	cti	on
000)		

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclusion 00000000

Preliminaries in model approximation

A (rather general Petrov-Galerkin finite) linear rational model approximation problem

Let $\mathbf{H}: \mathbb{C} \to \mathbb{C}^{n_y \times n_u}$ be a n_u inputs n_y outputs, complex-valued function describing a LTI dynamical system as a DAE of order n, with realisation S:

$$S: \begin{cases} E\dot{\mathbf{x}}(t) &= A\mathbf{x}(t) + B\mathbf{u}(t) \\ \mathbf{y}(t) &= C\mathbf{x}(t) \end{cases}$$

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclusion 00000000

Preliminaries in model approximation

A (rather general Petrov-Galerkin finite) linear rational model approximation problem

Let $\mathbf{H}: \mathbb{C} \to \mathbb{C}^{n_y \times n_u}$ be a n_u inputs n_y outputs, complex-valued function describing a LTI dynamical system as a DAE of order n, with realisation S:

$$S: \begin{cases} E\dot{\mathbf{x}}(t) &= A\mathbf{x}(t) + B\mathbf{u}(t) \\ \mathbf{y}(t) &= C\mathbf{x}(t) \end{cases}$$

the approximation problem consists in finding $V, W \in \mathbb{R}^{n \times r}$ (with $r \ll n$) spanning \mathcal{V} and \mathcal{W} subspaces and forming a projector $\Pi_{V,W} = VW^T$, such that

$$\hat{\mathcal{S}} : \begin{cases} W^T E V \dot{\hat{\mathbf{x}}}(t) &= W^T A V \hat{\mathbf{x}}(t) + W^T B \mathbf{u}(t) \\ \hat{\mathbf{y}}(t) &= C V \hat{\mathbf{x}}(t) \end{cases}$$

well approximates H.

00	0	

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conc 00000000

Preliminaries in model approximation

A (rather general Petrov-Galerkin finite) linear rational model approximation problem

Truncation (mostly dense) e.g.

- Modal, $\{V, W\}$ are eigenvectors subspaces
- ▶ Balanced, $\{V, W\}$ come from Lyapunov and SVD subspaces
- Singular perturbation, $\{V, W\}$ come from Lyapunov and SVD subspaces

Interpolation (mostly sparse) e.g.

- Moment matching (quite general formulation)
- ▶ Rational (Padé, Markov, generalised), $\{V, W\}$ are Krylov subspaces
- Multi-point (\mathcal{H}_2 optimal or not), $\{V, W\}$ are generalised Krylov subspaces

		on
	uu	
000)	

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conc 00000000

Preliminaries in model approximation

A (rather general Petrov-Galerkin finite) linear rational model approximation problem

Truncation (mostly dense) e.g.

- Modal, $\{V, W\}$ are eigenvectors subspaces
- ▶ Balanced, $\{V, W\}$ come from Lyapunov and SVD subspaces
- Singular perturbation, $\{V, W\}$ come from Lyapunov and SVD subspaces

Interpolation (mostly sparse) e.g.

- Moment matching (quite general formulation)
- ▶ Rational (Padé, Markov, generalised), $\{V, W\}$ are Krylov subspaces
- Multi-point (\mathcal{H}_2 optimal or not), $\{V, W\}$ are generalised Krylov subspaces

This framework mainly works for finite order (structured) models. What about realisation-free models?

Intro	du	cti	on
000)		

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclus 00000000

Preliminaries in model approximation

A (rather general) linear model approximation problem

Let us consider H, a n_u inputs, n_y outputs linear dynamical system described by the complex-valued function from u to y, of order n (n large or ∞)

 $\mathbf{H}:\mathbb{C}\to\mathbb{C}^{n_y\times n_u},$

the model approximation problem consists in finding $\hat{\mathbf{H}}$ of order $r \ll n$

 $\mathbf{\hat{H}}: \mathbb{C} \to \mathbb{C}^{n_y \times n_u},$

that well reproduces the input-output behaviour of H.

Part 2 - p-PDE mod. approx 000000000 Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclus 00000000

Preliminaries in model approximation

A (rather general) linear model approximation problem

Let us consider H, a n_u inputs, n_y outputs linear dynamical system described by the complex-valued function from u to y, of order n (n large or ∞)

 $\mathbf{H}:\mathbb{C}\to\mathbb{C}^{n_y\times n_u},$

the model approximation problem consists in finding $\hat{\mathbf{H}}$ of order $r \ll n$

 $\mathbf{\hat{H}}: \mathbb{C} \to \mathbb{C}^{n_y \times n_u},$

that well reproduces the input-output behaviour of \mathbf{H} and equipped with a given realisation, *e.g.*

$$\hat{\mathcal{S}} : \begin{cases} \hat{E}\dot{\mathbf{x}}(t) &=& \hat{A}\hat{\mathbf{x}}(t) + \hat{B}\mathbf{u}(t) \\ \hat{\mathbf{y}}(t) &=& \hat{C}\hat{\mathbf{x}}(t) \end{cases} \text{ or } \hat{\mathcal{S}}_{d} : \begin{cases} \hat{E}\dot{\mathbf{x}}(t) &=& \hat{A}\hat{\mathbf{x}}(t) + \hat{B}\hat{\Delta}_{i}(\mathbf{u}(t)) \\ \hat{\mathbf{y}}(t) &=& \hat{\Delta}_{o}(\hat{C}\hat{\mathbf{x}}(t)) \end{cases}$$

Part 2 - p-PDE mod. approx 000000000 Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclus 00000000

Preliminaries in model approximation

A (rather general) linear model approximation problem

Let us consider H, a n_u inputs, n_y outputs linear dynamical system described by the complex-valued function from u to y, of order n (n large or ∞)

 $\mathbf{H}:\mathbb{C}\to\mathbb{C}^{n_y\times n_u},$

the model approximation problem consists in finding $\hat{\mathbf{H}}$ of order $r \ll n$

 $\mathbf{\hat{H}}: \mathbb{C} \to \mathbb{C}^{n_y \times n_u},$

that well reproduces the input-output behaviour of ${\bf H}$ and equipped with a given realisation, *e.g.*

$$\hat{\mathcal{S}} : \begin{cases} \hat{E}\dot{\mathbf{x}}(t) &=& \hat{A}\hat{\mathbf{x}}(t) + \hat{B}\mathbf{u}(t) \\ \hat{\mathbf{y}}(t) &=& \hat{C}\hat{\mathbf{x}}(t) \end{cases} \text{ or } \hat{\mathcal{S}}_{d} : \begin{cases} \hat{E}\dot{\mathbf{x}}(t) &=& \hat{A}\hat{\mathbf{x}}(t) + \hat{B}\hat{\boldsymbol{\Delta}}_{i}(\mathbf{u}(t)) \\ \hat{\mathbf{y}}(t) &=& \hat{\boldsymbol{\Delta}}_{o}(\hat{C}\hat{\mathbf{x}}(t)) \end{cases}$$

"Well reproduce..."? $\hat{\mathbf{H}}$ is a "good" approximation of \mathbf{H} if for the same driving $\mathbf{u}(t)$, $\mathcal{E}(t) = \mathbf{y}(t) - \hat{\mathbf{y}}(t)$ is "small"

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Con 00000000

Preliminaries in model approximation

 \mathcal{H}_2 optimality conditions^{1 2}

 \mathcal{H}_2 model approximation

$$\begin{split} \mathbf{\hat{H}} &:= \arg \quad \min_{\mathbf{G} \ \in \ \mathcal{H}_2} \quad ||\mathbf{H} - \mathbf{G}||_{\mathcal{H}_2} \\ &\mathbf{rank}(\mathbf{G}) = r \ll n \end{split}$$

Energy to an impulse input $||\mathbf{H}||_{\mathcal{H}_2}^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{tr} \Big(\overline{\mathbf{H}(\iota\nu)} \mathbf{H}^T(\iota\nu) \Big) d\nu$

Note that: $||\mathbf{y}(t) - \hat{\mathbf{y}}(t)||_{L_{\infty}} \le ||\mathbf{H} - \hat{\mathbf{H}}||_{\mathcal{H}_{2}} ||\mathbf{u}(t)||_{L_{2}}$

¹ S. Gugercin and A C. Antoulas and C A. Beattie, " H_2 Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

² K. A. Gallivan, A. Vanderope, and P. Van-Dooren, "Model reduction of MIMO systems via tangential interpolation", SIAM Journal of Matrix Analysis and Application, vol. 26(2), February 2004, pp. 328-349.

Charles Poussot-Vassal [Onera]

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Co

Preliminaries in model approximation

 \mathcal{H}_2 optimality conditions ¹

Input / output delays structured \mathcal{H}_2 model approximation

$$\begin{split} \mathbf{\hat{H}}_{d} := \arg & \min_{\substack{\mathbf{G} \ \in \ \mathcal{H}_{\infty} \\ \mathbf{rank}(\mathbf{G}) = \ r \ \ll \ n}} & ||\mathbf{H} - \mathbf{G}||_{\mathcal{H}_{2}} \end{split}$$

Energy to an impulse input

$$||\mathbf{H}||_{\mathcal{H}_2}^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{tr} \Big(\overline{\mathbf{H}(\imath\nu)} \mathbf{H}^T(\imath\nu) \Big) d\nu$$

Note that: $||\mathbf{y}(t) - \hat{\mathbf{y}}(t)||_{L_{\infty}} \leq ||\mathbf{H} - \hat{\mathbf{H}}||_{\mathcal{H}_{2}} ||\mathbf{u}(t)||_{L_{2}}$

¹ I. Pontes Duff, C. P-V and C. Seren, " \mathcal{H}_2 -optimal model approximation by input / output-delay structured reduced order models", in Systems & Control Letters, vol. 117, July 2018, pp. 60-67.

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Con 00000000

Preliminaries in model approximation

 \mathcal{H}_2 optimality conditions²

$$\hat{\mathbf{H}}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B} = \sum_{l=1}^{r} \frac{\hat{\phi}_{l}}{s - \hat{\lambda}_{l}}$$

Let $\hat{\mathbf{H}}$ be a *r*-th order asymptotically stable model with semi-simple poles only, equipped with $\hat{\mathcal{S}} : (\hat{E}, \hat{A}, \hat{B}, \hat{C}, \hat{D})$. If $\hat{\mathbf{H}}$ is solution of the \mathcal{H}_2 approximation problem, then

$$\begin{array}{rcl} \mathbf{H}(-\hat{\lambda}_l) &=& \mathbf{\hat{H}}(-\hat{\lambda}_l) \\ \mathbf{H}'(-\hat{\lambda}_l) &=& \mathbf{\hat{H}}'(-\hat{\lambda}_l) \end{array}$$

where $\hat{\lambda}_l$ are the eigenvalues of $(\hat{E},\hat{A}).$

 \mathcal{H}_2 optimality is recast a bi-tangential Hermite interpolation at the reduced order model eigenvalues (same comment if input/output delays enter in the game)

² S. Gugercin and A C. Antoulas and C A. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Con 00000000

Preliminaries in model approximation

 \mathcal{H}_2 optimality conditions²

$$\hat{\mathbf{H}}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B} = \sum_{l=1}^{r} \frac{\hat{\phi}_l}{s - \hat{\lambda}_l}$$

Let $\hat{\mathbf{H}}$ be a *r*-th order asymptotically stable model with semi-simple poles only, equipped with $\hat{\mathcal{S}} : (\hat{E}, \hat{A}, \hat{B}, \hat{C}, \hat{D})$. If $\hat{\mathbf{H}}$ is solution of the \mathcal{H}_2 approximation problem, then

$$\begin{array}{rcl} \mathbf{H}(-\hat{\lambda}_l) &=& \mathbf{\hat{H}}(-\hat{\lambda}_l) \\ \mathbf{H}'(-\hat{\lambda}_l) &=& \mathbf{\hat{H}}'(-\hat{\lambda}_l) \end{array}$$

where $\hat{\lambda}_l$ are the eigenvalues of (\hat{E}, \hat{A}) .

\mathcal{H}_2 optimality is recast a bi-tangential Hermite interpolation at the reduced order model eigenvalues (same comment if input/output delays enter in the game)

² S. Gugercin and A C. Antoulas and C A. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Co

Preliminaries in model approximation

Approximation by interpolation^{3 4}

(Tangential) interpolation is the path to this \mathcal{H}_2 problem

SISO model: given $\mathbf{H},$ seek a reduced-order system $\mathbf{\hat{H}},$ such that

$$\mathbf{\hat{H}}(\mu_i) = \mathbf{H}(\mu_i) \quad i = 1, \dots, q \\
 \mathbf{\hat{H}}(\lambda_j) = \mathbf{H}(\lambda_j) \quad j = 1, \dots, k$$

³ S. Gugercin and A C. Antoulas and C A. Beattie, "H₂ Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

⁴ A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", Linear Algebra and its Applications, 425(2-3), 2007, pp 634-662.

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (10/38)

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Co

Preliminaries in model approximation

Approximation by interpolation^{3 4}

(Tangential) interpolation is the path to this \mathcal{H}_2 problem

SISO model: given $\mathbf{H},$ seek a reduced-order system $\mathbf{\hat{H}},$ such that

$$\begin{aligned}
\hat{\mathbf{H}}(\mu_i) &= \mathbf{H}(\mu_i) \quad i = 1, \dots, q \\
\hat{\mathbf{H}}(\lambda_j) &= \mathbf{H}(\lambda_j) \quad j = 1, \dots, k
\end{aligned}$$

MIMO model (tangential): in a similar way, given H, seek $\hat{H},$ such that

$$\mathbf{l}_{i}^{H} \hat{\mathbf{H}}(\mu_{i}) = \mathbf{l}_{i}^{H} \mathbf{H}(\mu_{i}) \quad i = 1, \dots, q
\hat{\mathbf{H}}(\lambda_{j}) \mathbf{r}_{j} = \mathbf{H}(\lambda_{j}) \mathbf{r}_{j} \quad j = 1, \dots, k$$

³ S. Gugercin and A C. Antoulas and C A. Beattie, "*H*₂ *Model Reduction for Large Scale Linear Dynamical Systems*", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

⁴ A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", Linear Algebra and its Applications, 425(2-3), 2007, pp 634-662.

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (10/38)

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclu 00000000

Preliminaries in model approximation

Rational interpolation in the Loewner framework

Given $\mathbf{H}(s)$ and $\{\mu_1, \ldots, \mu_q\}$, $\{\lambda_1, \ldots, \lambda_k\}$, we seek $\mathbf{\hat{H}}$, s.t.

$$\mathbf{\hat{H}}(\mu_i) = \mathbf{H}(\mu_i) \quad i = 1, \dots, q \\
 \mathbf{\hat{H}}(\lambda_j) = \mathbf{H}(\lambda_j) \quad j = 1, \dots, k$$

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclu 00000000

Preliminaries in model approximation

Rational interpolation in the Loewner framework

Given $\mathbf{H}(s)$ and $\{\mu_1, \ldots, \mu_q\}$, $\{\lambda_1, \ldots, \lambda_k\}$, we seek $\mathbf{\hat{H}}$, s.t.

$$\begin{split} \hat{\mathbf{H}}(\mu_i) &= \mathbf{H}(\mu_i) \quad i = 1, \dots, q \\ \hat{\mathbf{H}}(\lambda_j) &= \mathbf{H}(\lambda_j) \quad j = 1, \dots, k \\ \\ \mathbf{L} &= \begin{bmatrix} \frac{\mathbf{H}(\mu_1) - \mathbf{H}(\lambda_1)}{\mu_1 - \lambda_1} & \cdots & \frac{\mathbf{H}(\mu_1) - \mathbf{H}(\lambda_k)}{\mu_1 - \lambda_k} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{H}(\mu_q) - \mathbf{H}(\lambda_1)}{\mu_q - \lambda_1} & \cdots & \frac{\mathbf{H}(\mu_q) - \mathbf{H}(\lambda_k)}{\mu_q - \lambda_k} \end{bmatrix} \in \mathbb{C}^{q \times k} \\ \\ \mathbf{L}_{\sigma} &= \begin{bmatrix} \frac{\mu_1 \mathbf{H}(\mu_1) - \mathbf{H}(\lambda_1)\lambda_1}{\mu_1 - \lambda_1} & \cdots & \frac{\mu_1 \mathbf{H}(\mu_1) - \mathbf{H}(\lambda_k)\lambda_k}{\mu_1 - \lambda_k} \\ \vdots & \ddots & \vdots \\ \frac{\mu_q \mathbf{H}(\mu_q) - \mathbf{H}(\lambda_1)\lambda_1}{\mu_q - \lambda_1} & \cdots & \frac{\mu_q \mathbf{H}(\mu_q) - \mathbf{H}(\lambda_k)\lambda_k}{\mu_q - \lambda_k} \end{bmatrix} \in \mathbb{C}^{q \times k} \\ \\ \mathbf{W} &= \begin{bmatrix} \mathbf{H}(\sigma_1) & \cdots & \mathbf{H}(\sigma_r) \end{bmatrix} \text{ and } \mathbf{V}^T = \begin{bmatrix} \mathbf{H}(\sigma_1) & \cdots & \mathbf{H}(\sigma_r) \end{bmatrix}$$

 $\mathbf{\hat{H}}(s) = \mathbf{W}(\mathbb{L}_{\sigma} - s\mathbb{L})^{-1}\mathbf{V} \Rightarrow \text{Rational interpolation}$

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclu 00000000

Preliminaries in model approximation

Rational interpolation in the Loewner framework

Given
$$\mathbf{H}(s)$$
 and $\{\sigma_1, \ldots, \sigma_r\} = \{\mu_1, \ldots, \mu_q\} = \{\lambda_1, \ldots, \lambda_k\}$, we seek $\mathbf{\hat{H}}$, s.t.

Preliminaries in model approximation

Rational interpolation in the Loewner framework

Given
$$\mathbf{H}(s)$$
 and $\{\sigma_1, \ldots, \sigma_r\} = \{\mu_1, \ldots, \mu_q\} = \{\lambda_1, \ldots, \lambda_k\}$, we seek $\hat{\mathbf{H}}$, s.t.

$$\begin{aligned} & \hat{\mathbf{H}}(\sigma_i) &= & \mathbf{H}(\sigma_i) \quad i = 1, \dots, r \\ & \hat{\mathbf{H}}'(\sigma_i) &= & \mathbf{H}'(\sigma_i) \end{aligned}$$

$$\mathbf{L} = \begin{bmatrix} \mathbf{H}'(\sigma_1) & \dots & \frac{\mathbf{H}(\sigma_1) - \mathbf{H}(\sigma_r)}{\sigma_1 - \sigma_r} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{H}(\sigma_r) - \mathbf{H}(\sigma_1)}{\sigma_r - \sigma_1} & \dots & \mathbf{H}'(\sigma_r) \end{bmatrix} \in \mathbb{C}^{r \times r}$$
$$\mathbf{L}_{\sigma} = \begin{bmatrix} (s\mathbf{H}(s))'_{s=\sigma_1} & \dots & \frac{\sigma_1\mathbf{H}(\sigma_1) - \sigma_r\mathbf{H}(\sigma_r)}{\sigma_1 - \sigma_r} \\ \vdots & \ddots & \vdots \\ \frac{\sigma_r\mathbf{H}(\sigma_r) - \sigma_1\mathbf{H}(\sigma_1)}{\sigma_r - \sigma_1} & \dots & (s\mathbf{H}(s))'_{s=\sigma_r} \end{bmatrix} \in \mathbb{C}^{r \times r}$$
$$\mathbf{W} = \begin{bmatrix} \mathbf{H}(\sigma_1) & \dots & \mathbf{H}(\sigma_r) \end{bmatrix} \text{ and } \mathbf{V}^T = \begin{bmatrix} \mathbf{H}(\sigma_1) & \dots & \mathbf{H}(\sigma_r) \end{bmatrix}$$

 $\mathbf{\hat{H}}(s) = \mathbf{W}(\mathbb{L}_{\sigma} - \mathbb{L}s)^{-1}\mathbf{V} \quad \Rightarrow \text{Hermite interpolation}$

Part 1 - Preliminaries in mod. app. ○○○○○○○●○○○○○ Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclusi 00000000

Preliminaries in model approximation

Rational interpolation in the Loewner framework

The rational function $\hat{\mathbf{H}}(s)=\hat{C}(s\hat{E}-\hat{A})^{-1}\hat{B}$ interpolates $\mathbf{H}(s)$ at points σ_i iff.

$$\begin{split} \left[\hat{E} \right]_{ij} &= \begin{cases} -\frac{\left(\mathbf{H}(\sigma_i) - \mathbf{H}(\sigma_j) \right)}{\sigma_i - \sigma_j} & i \neq j \\ -\mathbf{H}'(\sigma_i) & i = j \end{cases} \\ \left[\hat{A} \right]_{ij} &= \begin{cases} -\frac{\left(\sigma_i \mathbf{H}(\sigma_i) - \sigma_j \mathbf{H}(\sigma_j) \right)}{\sigma_i - \sigma_j} & i \neq j \\ -(s\mathbf{H}(s))'|_{s=\sigma_i} & i = j \end{cases} \\ \hat{C} &= \begin{bmatrix} \mathbf{H}(\sigma_1) & \dots & \mathbf{H}(\sigma_r) \end{bmatrix} \text{ and } \hat{B} = \begin{bmatrix} \mathbf{H}(\sigma_1) \\ \vdots \\ \mathbf{H}(\sigma_r) \end{bmatrix} \end{split}$$

Use an iterative scheme to find σ_i .

Charles Poussot-Vassal [Onera]

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app.

Preliminaries in model approximation

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (14/38)

⁵ C. Beattie and S. Gugercin, "*Realization-independent* \mathcal{H}_2 -approximation", Proceedings of the 51st IEEE Conference on Decision and Control, 2012.

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclu 00000000

Preliminaries in model approximation

$$\begin{split} \mathbf{y}(s) &= \frac{1}{1+s+e^{-s}} \mathbf{u}(s) \\ \% \ \mathsf{xdt}(t) &= -\mathsf{x}(t) - \mathsf{x}(t-1) + \mathsf{u} \\ \% \ \ \mathsf{y}(t) &= \mathsf{x}(t) \\ \mathsf{delayT}(1) &= \mathsf{struct}(\mathsf{'delay'}, 1, \mathsf{'a'}, -1, \mathsf{'b'}, 0, \mathsf{'c'}, 0, \mathsf{'d'}, 0); \\ \mathsf{Hss} &= \mathsf{delayss}(-1, 1, 1, 0, \mathsf{delayT}); \end{split}$$

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclu 00000000

Preliminaries in model approximation

Rational approximation on a TDS example

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (15/38)

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclusion 00000000

Preliminaries in model approximation

% MOR Toolbox

$$W = logspace(-2,2,200);$$

 $H = @(s) 1/(1+s+exp(-s));$
 $FR = mor.bode(H,W);$
 $Hr = mor.lti({W,FR},[]);$ % Rational approximation r=37

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclusion 00000000

Preliminaries in model approximation

% MOR Toolbox

$$W = logspace(-2,2,200);$$

 $H = @(s) 1/(1+s+exp(-s));$
 $FR = mor.bode(H,W);$
 $Hr = mor.lti({W,FR},[]);$ % Rational approximation r=37

Introduction	Part 1 - Preliminaries in mod. app.	Part 2 - p-PDE mod. approx.	Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclusion	n
000	000000000000	000000000	0000000	
		-		

Preliminaries in model approximation

Rational approximation on a PDE example⁶

Vibrating string (ends fixed & control and observation distributed along the string)

$$\mathbf{H}(s) = \frac{\frac{s}{2}\sinh(s) + 2\cosh(\frac{s}{2}) - 3\cosh^2(\frac{s}{2}) + 1}{s(s+\frac{1}{2})\sinh(s) + 2\cosh(\frac{s}{2}) - 3\cosh^2(\frac{s}{2}) + 1}$$

⁶ R. Curtain and K. Morris, "Transfer functions of distributed parameter systems: A tutorial", Automatica, 45(5), 2009, pp. 1101-1116.

Charles Poussot-Vassal [Onera]

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conc 00000000

Preliminaries in model approximation

% MOR Toolbox

$$H = @(s) (s/2*sinh(s)+2*cosh(s/2)-3*cosh(s/2)^2+1) / \dots$$

$$FR = mor.bode(H,W);$$

$$Hr = mor.lti({W,FR},[]); % Rational approximation r=60$$

$$Hred = mor.lti(Hr,r); % H2 approximation r=40,30,20,10$$

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conc 00000000

Preliminaries in model approximation

% MOR Toolbox

$$H = @(s) (s/2*sinh(s)+2*cosh(s/2)-3*cosh(s/2)^2+1) / \dots$$

$$FR = mor.bode(H,W);$$

$$Hr = mor.lti({W,FR},[]); % Rational approximation r=60$$

$$Hred = mor.lti(Hr,r); % H2 approximation r=40,30,20,10$$

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conc 00000000

Preliminaries in model approximation

% MOR Toolbox

$$H = @(s) (s/2*sinh(s)+2*cosh(s/2)-3*cosh(s/2)^2+1) / \dots$$

$$FR = mor.bode(H,W);$$

$$Hr = mor.lti({W,FR},[]); % Rational approximation r=60$$

$$Hred = mor.lti(Hr,r); % H2 approximation r=40,30,20,10$$

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conc 00000000

Preliminaries in model approximation

% MOR Toolbox

$$H = @(s) (s/2*sinh(s)+2*cosh(s/2)-3*cosh(s/2)^2+1) / \dots$$

$$FR = mor.bode(H,W);$$

$$Hr = mor.lti({W,FR},[]); % Rational approximation r=60$$

$$Hred = mor.lti(Hr,r); % H2 approximation r=40,30,20,10$$

Part 1 - Preliminaries in mod. app.

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Cond 00000000

Preliminaries in model approximation

% MOR Toolbox

$$H = @(s) (s/2*sinh(s)+2*cosh(s/2)-3*cosh(s/2)^2+1) / \dots$$

$$FR = mor.bode(H,W);$$

$$Hr = mor.lti({W,FR},[]); % Rational approximation r=60$$

$$Hred = mor.lti(Hr,r); % H2 approximation r=40,30,20,10$$

'art 1 - Preliminaries in mod. ap

Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. 00000000

Linear parametrised PDE model approximation

An industrial example⁷

Hydraulics green electricity ($\approx 10\%$)

edf

- Dams
- Run-of-the-river

Run-of-the-river ($\approx 5\%$)

- In France, provides 3.6GW
- Rely open-channel hydraulic systems
- Need for analysis and control

⁷http://alsace.edf.com/actions/fonctionnement-des-centrales-hydroelectriques-sur-le-rhin/

Approximation of infinite dimensional linear dynamical models (19/38)

Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conc 00000000

Linear parametrised PDE model approximation

An industrial example

Modelling assumptions

- No discharge, no infiltration, one dimensional flow, small bed slope, small stream line, negligible vertical acceleration
- Input u: boundary conditions $q_e(t)$ and $q_s(t)$
- Output y: water depth
- t, x are the time and spatial variables

$$\frac{\frac{\partial S}{\partial t} + \frac{\partial Q}{\partial x}}{\frac{\partial Q}{\partial t} + \frac{\partial (Q^2/S)}{\partial x} + gS\frac{\partial H}{\partial x}} = gS(I-J),$$

 $x\in [0\;;\;L]$ is the spatial variable, H(x,t) the water depth, S(x,t) the wetted area, Q(x,t) the discharge...

Under some assumptions, can be rewritten as a nominal flow parametrised irrational function

Charles Poussot-Vassal [Onera]

Part 1 - Preliminaries in mod. app 000000000000000 Part 2 - p-PDE mod. approx.

Part 3 - $I/O \mathcal{L}_2$ stability by mod. app. Con 00000000

Linear parametrised PDE model approximation

An industrial example⁸

$$h(s, x_m, \delta) = \mathbf{G}_e(s, x_m, \delta)q_e(s) - \mathbf{G}_s(s, x_m, \delta)q_s(s)$$

$$\begin{aligned} \mathbf{G}_{e}(s, x_{m}, \delta) &= \frac{\lambda_{1}(s)e^{\lambda_{2}(s)L+\lambda_{1}(s)x_{m}}-\lambda_{2}(s)e^{\lambda_{1}(s)L+\lambda_{2}(s)x_{m}}}{B_{0}s(e^{\lambda_{1}(s)L}-e^{\lambda_{2}(s)L})} \\ \mathbf{G}_{s}(s, x_{m}, \delta) &= \frac{\lambda_{1}(s)e^{\lambda_{1}(s)x_{m}}-\lambda_{2}(s)e^{\lambda_{2}(s)x_{m}}}{B_{0}s(e^{\lambda_{1}(s)L}-e^{\lambda_{2}(s)L})} \end{aligned}$$

- Irrational transfer function
- Infinite order equation

⁸ V. Dalmas, G. Robert, C. Poussot-Vassal, I. Pontes Duff and C. Seren, "From infinite dimensional modelling to parametric reduced order approximation: Application to open-channel flow for hydroelectricity", in Proceedings of the 15th European Control Conference (ECC'16), Aalborg, Denmark, July, 2016.

Part 1 - Preliminaries in mod. app 000000000000000 Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Co

Linear parametrised PDE model approximation

An industrial example⁸

$$h(s, x_m, \delta) = \mathbf{G}_e(s, x_m, \delta)q_e(s) - \mathbf{G}_s(s, x_m, \delta)q_s(s)$$

- Delay behaviour is obvious
- ▶ Not \mathcal{H}_2 function

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (21/38)

⁸ V. Dalmas, G. Robert, C. Poussot-Vassal, I. Pontes Duff and C. Seren, "From infinite dimensional modelling to parametric reduced order approximation: Application to open-channel flow for hydroelectricity", in Proceedings of the 15th European Control Conference (ECC'16), Aalborg, Denmark, July, 2016.

Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclus 00000000

Linear parametrised PDE model approximation

Delay structured ROM

... from the open-channel example

$$h(s, x, \delta) = \mathbf{G}_e(s, x, \delta)q_e(s) - \mathbf{G}_s(s, x, \delta)q_s(s)$$

one seeks the input delayed r-th order rational function

$$\begin{aligned} \hat{h}(s,\delta) &= \hat{\mathbf{G}}_{\mathbf{e}}(s,\delta)q_{e}(s) - \hat{\mathbf{G}}_{\mathbf{s}}(s,\delta)q_{s}(s) \\ \hat{\mathbf{G}}_{\mathbf{e}}(x,s,\delta) &= \mathbf{R}_{\mathbf{e}}(s,\delta)e^{-\tau_{\mathbf{e}}(\delta)s} \\ \hat{\mathbf{G}}_{\mathbf{s}}(x,s,\delta) &= \mathbf{R}_{\mathbf{s}}(s,\delta)e^{-\tau_{\mathbf{s}}(\delta)s} \end{aligned}$$

- $\mathbf{R}_{\mathbf{e}}(s, \delta)$ and $\mathbf{R}_{\mathbf{s}}(s, \delta)$ are rational meromophic functions
- which are linearly dependent on δ ,
- and $\tau_e(\delta), \tau_s(\delta) \in \mathbb{R}^{n_u}_+$ is an input delay vector.

Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclusion 00000000

Linear parametrised PDE model approximation

Delay structured ROM (an approach when the delay is known)

If delays are a-priori known functions, approximation can be done on the shifted function

$$\tilde{h}(s,x,\delta) = \mathbf{G}_e(s,x,\delta)e^{+\boldsymbol{\tau_e}(\delta)s}q_e(s) - \mathbf{G}_s(s,x_m,\delta)e^{+\boldsymbol{\tau_s}(\delta)s}q_s(s)$$

- then apply Loewner
- and go back to $h(s, x, \delta)$

or

- apply TF-IRKA⁹
- and go back to $h(s, x, \delta)$

The Loewner approach is preferred for practical reasons in¹⁰. However, is the fixed delays the best idea? What if you don't a priori know them?

 $^{^{9}}$ © C.A. Beattie, and S. Gugercin, "*Realization-independent* \mathcal{H}_{2} -approximation", in ProceedingsProceedings of the 51st IEEE CDC, USA, December, 2012.

¹⁰ V. Dalmas, G. Robert, C. Poussot-Vassal, I. Pontes Duff and C. Seren, "From infinite dimensional modelling to parametric reduced order approximation: Application to open-channel flow for hydroelectricity", in Proceedings of the 15th ECC, Denmark, July, 2016.

Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclus 00000000

Linear parametrised PDE model approximation

I/O delayed H_2 optimality conditions¹¹

Input / output delays structured \mathcal{H}_2 model approximation

$$\begin{split} \mathbf{\hat{H}}_{d} := \arg & \min_{\mathbf{G} \ \in \ \mathcal{H}_{\infty}} & ||\mathbf{H} - \mathbf{G}||_{\mathcal{H}_{2}} \\ & \mathbf{rank}(\mathbf{G}) = r \ll n \end{split}$$

where $\hat{\mathbf{H}}_d = \hat{\boldsymbol{\Delta}}_o \hat{\mathbf{H}} \hat{\boldsymbol{\Delta}}_i$.

 \mathcal{H}_2 interpolatory conditions in the delay free case no longer apply

- due to the exponential terms in the transfer function...
- dedicated conditions need to be derived

¹¹ I. Pontes Duff, C. P-V and C. Seren, " \mathcal{H}_2 -optimal model approximation by input / output-delay structured reduced order models", in Systems & Control Letters, vol. 117, July 2018, pp. 60-67.

Introduction	Part 1 - Preliminaries in mod. app.	Part 2 - p-PDE mod. approx.	Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclusion
000	0000000000000	0000000000	0000000

Linear parametrised PDE model approximation

I/O delayed \mathcal{H}_2 optimality conditions (reminder in the delay-free case)

$$\hat{\mathbf{H}}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B} = \sum_{l=1}^{r} \frac{\hat{\phi}_{l}}{s - \hat{\lambda}_{l}}$$

Let $\hat{\mathbf{H}}$ be a *r*-th order asymptotically stable model with semi-simple poles only, equipped with $\hat{\mathcal{S}} : (\hat{E}, \hat{A}, \hat{B}, \hat{C}, \hat{D})$. If $\hat{\mathbf{H}}$ is solution of the \mathcal{H}_2 approximation problem, then

$$\begin{aligned} \mathbf{H}(-\hat{\lambda}_l) &= \mathbf{\hat{H}}(-\hat{\lambda}_l) \\ \mathbf{H}'(-\hat{\lambda}_l) &= \mathbf{\hat{H}}'(-\hat{\lambda}_l) \end{aligned}$$

where $\hat{\lambda}_l$ are the eigenvalues of $(\hat{E},\hat{A}).$

art 1 - Preliminaries in mod. ap 000000000000000 Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclusion 00000000

Linear parametrised PDE model approximation

I/O delayed \mathcal{H}_2 optimality conditions

$$\hat{\mathbf{H}}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B} = \sum_{k=1}^{r} \frac{\hat{\phi}_{k}}{s - \hat{\lambda}_{k}} \text{ and } \hat{\mathbf{H}}_{d} = \hat{\mathbf{H}}e^{-\hat{\tau}s}$$

Let $\hat{\mathbf{H}}$ be a *r*-th order asymptotically stable model with semi-simple poles only, equipped with $\hat{S} : (\hat{E}, \hat{A}, \hat{B}, \hat{C}, \hat{D})$. If $\hat{\mathbf{H}}$ is solution of the \mathcal{H}_2 approximation problem, then

$$\begin{array}{rcl} \mathbf{T}_d(-\hat{\lambda}_l) &=& \mathbf{\hat{H}}(-\hat{\lambda}_l) \\ \mathbf{T}_d'(-\hat{\lambda}_l) &=& \mathbf{\hat{H}}'(-\hat{\lambda}_l) \end{array}$$

where $\hat{\lambda}_l$ are the eigenvalues of $(\hat{E},\hat{A}).$

$$\mathbf{T}_{d}(s) = \sum_{j=1}^{n} \frac{\psi_{j}}{s - \mu_{j}} e^{\hat{\tau}\mu_{j}}.$$
Ins, a delay condition:
$$\sum_{j=1}^{n} \mu_{j}\psi_{j} \left(\sum_{k=1}^{r} \frac{\hat{\phi}_{k}}{\mu_{j} + \hat{\lambda}_{k}}\right) e^{\hat{\tau}\mu_{j}} = 0.$$

Charles Poussot-Vassal [Onera]

P

Approximation of infinite dimensional linear dynamical models (26/38)

Part 1 - Preliminaries in mod. ap

Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. Conclus 00000000

Linear parametrised PDE model approximation

I/O delayed H_2 optimality conditions

- Rational model obtained by Loewner
- Rational ROM, r = 4 with and without input delay structure

Introduction	Part 1 - Preliminaries in mod. app.	Part 2 - p-PDE mod. approx.	Part 3 - I/O \mathcal{L}_2 stability by mod. a
000	0000000000000	00000000	0000000

Linear parametrised PDE model approximation

Get the parametrised form

- Irrational model, rational parametrised ROM, r = 4
- Parametric model / LFR (using SMAC Toolbox)

			Input output C. stab	:1:+
Introduction 000	Part 1 - Preliminaries in mod. app. 00000000000000	Part 2 - p-PDE mod. approx.	Part 3 - I/O L₂ stability by mod. app. ●○○○○○○○	Conclusio

Problem description

Let us now assume that the delayed (hydro-electrical channel) model is looped with a control law. The model becomes:

Time Domain (TD)

$$E\dot{\mathbf{x}}(t) = A_0 \mathbf{x}(t) + \sum_{k=1}^{n_d} A_k \mathbf{x}(t - \tau_k) + \mathbf{b}u(t), \quad y(t) = \mathbf{c}^T \mathbf{x}(t),$$

Frequency Domain (FD)

$$\mathbf{H}(s) = \mathbf{c}^T \left(sE - A_0 - \sum_{k=1}^{n_d} A_k e^{-s\tau_k} \right)^{-1} \mathbf{b},$$

How to evaluate the stability of such a model?

Part 1 - Preliminaries in mod. ap

Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. $\odot \bullet \circ \circ \circ \circ \circ \circ$

Input-output \mathcal{L}_2 stability

Traditional approaches^{12 13 14}

Time domain approach

- Lyapunov-Krasovskii functional,
- Lyapunov-Rasumikin functional, or
- Jensen inequalities
- $\sqrt{}$ applicable to time varying delay
- $\checkmark\,$ involves LMI, so optimality can be measured
- \times ... limited to low n and few delays

Frequency domain approach

- Bifurcation theory
- Arnoldi like methods
- $\sqrt{}$ provides the number of unstable modes
- \checkmark applicable to larger n
- × ... usually involving single interpolation point

What if n or the number of delays n_d go large?

¹³ C. Briat, "LPV & Time-Delay Systems Analysis, Observation, Filtering & Control", Vol. 3, Springer-Heidelberg, Germany, 2015.

¹² W. Michiels, S.-I. Niculescu, "Stability, Control, and Computation for Time-Delay Systems", SIAM Advances in Design and Control, 2014.

¹⁴ R. Siphai, S. Niculescu, C. Abdallah, W. Michels, K. Gu, "Stability and stabilization of systems with time delay", IEEE Control Systems Magazine 2, 2011 38-65.

Part 1 - Preliminaries in mod. ap 000000000000000 Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. (

Input-output \mathcal{L}_2 stability

Glimpse of stability approximation on a delay example¹⁵

```
\mathbf{y}(s) = \frac{1}{1+s+e^{-s}}\mathbf{u}(s)
\% xdt(t) = -x(t) - x(t-1) + u
\% v(t) = x(t)
delayT(1) = struct('delay',1,'a',-1,'b',0,'c',0,'d'.0):
Hss = delayss(-1,1,1,0,delayT);
% MOR Toolbox
W = logspace(-2, 2, 200);
mor.stability(Hss,W)
% Stable = close to machine precision
% Unstable, otherwise
ans =
   6.0729 e - 26
```

¹⁵ 🐳 A. Seuret & C. P-V., "SMS exchanges", March 12th, 2019.

Part 1 - Preliminaries in mod. app 000000000000000 Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app.

Input-output \mathcal{L}_2 stability

Glimpse of stability approximation on a delay example¹⁵

$$\mathbf{y}(s) = \frac{1}{1+s+e^{-s}}\mathbf{u}(s)$$
% xdt(t) = -x(t) - x(t-1) + u
% y(t) = x(t)
delayT(1) = struct('delay',1,'a',-1,'b',0,'c',0,'d',0);
Hss = delayss(-1,1,1,0,delayT);
% MOR Toolbox
W = logspace(-2,2,200);
mor.stability(Hss,W)
% Stable = close to machine precision
% Unstable, otherwise
ans =
6.0729e-26
 e^{15} A. Seuret & C. P-V., "SMS exchanges", March 12th, 2019.
 e^{15} A. Seuret & C. P-V., "SMS exchanges", March 12th, 2019.
 e^{15} A. Seuret & C. P-V., "SMS exchanges", March 12th, 2019.

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (31/38)

Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app.

 \mathcal{L}_2 MFSA, Meromorphic Function Stability Approximation¹⁶

- **Require:** $\mathbf{H} \in \mathcal{L}_2$, $\{\omega_i\}_{i=1}^N \in \mathbb{R}_+$, $N \in \mathbb{N}$ and $\epsilon \in \mathbb{R}_+$ (typically twice machine precision)
 - 1: Sample $\mathbf{\hat{H}}$ and obtain $\{\omega_i, \mathbf{\Phi}_i\}_{i=1}^N$
 - 2: Perform an exact Loewner interpolation and obtain $\hat{\mathbf{H}}$ equipped with $\hat{\mathcal{S}} \in \mathbb{S}_{n,n_{y},n_{u}}^{0}$ which ensures interpolatory conditions
 - 3: Compute $\hat{\mathbf{H}}_s$ with realisation $\hat{\mathcal{S}}_+ \in \mathbb{S}^+_{n,n_u,n_u}$, the best stable approximation of $\hat{\mathbf{H}}$
 - 4: Compute the stability index as $S = ||\mathbf{\hat{H}}_s \mathbf{\hat{H}}||_{\mathcal{L}_2}$
 - 5: if $S < \epsilon$ then
 - 6: H is stable
 - 7: **else**
 - 8: H is unstable
 - 9: end if

No proof, yet... but some arguments are coming...

Approximation of infinite dimensional linear dynamical models (32/38)

¹⁶ C. P-V. and P. Vuillemin, "Input-output stability estimation of $\mathcal{L}_2(\imath \mathbb{R})$ functions", in maybe somewhere.

Introduction 000	Part 1 - Preliminaries in mod. app.	Part 2 - p-PDE mod. approx. 0000000000	Part 3 - I/O \mathcal{L}_2 stability by mod. app. 0000000	Conclusion
			Input-output \mathcal{L}_2 stab	ility
			Arguments to derive an algorithm	17 18

The conjecture we claim is in twofolds:

1. One is always able to find a rational model $\hat{\mathbf{H}} \in \mathcal{RL}_2$ that well reproduces $\mathbf{H} \in \mathcal{L}_2$, whatever the complexity of \mathbf{H} is, if we can arbitrarily increase r, the dimension of $\hat{\mathbf{H}}$.

This can be achieved by increasing the Loewner matrix up to a numerical rank loss.

2. If, based on an unstable realisation of $\hat{\mathbf{H}} \in \mathcal{RL}_2$, the optimal stable approximant $\hat{\mathbf{H}}_s \in \mathcal{H}_2$ is close enough to $\hat{\mathbf{H}} \in \mathcal{RL}_2$, in the sense of the \mathcal{L}_2 -norm, then $\hat{\mathbf{H}}$ is stable and, following previous statement (1.), \mathbf{H} is stable too. This step can be achieved by a rational stable approximation followed by a norm computation which threshold is fixed to machine precision.

¹⁷ I. Pontes Duff, P. Vuillemin, C. P-V, C. Briat and C. Seren, "Approximation of stability regions for large-scale time-delay systems using model reduction techniques", in Proceedings of the 14th European Control Conference (ECC'15), Linz, Austria, July, 2015.

¹⁸ C. P-V. and P. Vuillemin, "Input-output stability estimation of $\mathcal{L}_2(\iota \mathbb{R})$ functions", in maybe somewhere.

Introduction 000	Part 1 - Preliminaries in mod. app.	Part 2 - p-PDE mod. approx.	Part 3 - I/O \mathcal{L}_2 stability by mod. app.	Conclusion
_			Input-output \mathcal{L}_2 stab	ility
		1	Arguments to derive an algorithm	17 18

The conjecture we claim is in twofolds:

1. One is always able to find a rational model $\hat{\mathbf{H}} \in \mathcal{RL}_2$ that well reproduces $\mathbf{H} \in \mathcal{L}_2$, whatever the complexity of \mathbf{H} is, if we can arbitrarily increase r, the dimension of $\hat{\mathbf{H}}$.

This can be achieved by increasing the Loewner matrix up to a numerical rank loss.

2. If, based on an unstable realisation of $\hat{\mathbf{H}} \in \mathcal{RL}_2$, the optimal stable approximant $\hat{\mathbf{H}}_s \in \mathcal{H}_2$ is close enough to $\hat{\mathbf{H}} \in \mathcal{RL}_2$, in the sense of the \mathcal{L}_2 -norm, then $\hat{\mathbf{H}}$ is stable and, following previous statement (1.), \mathbf{H} is stable too. This step can be achieved by a rational stable approximation followed by a norm

computation which threshold is fixed to machine precision.

¹⁷ I. Pontes Duff, P. Vuillemin, C. P-V, C. Briat and C. Seren, "Approximation of stability regions for large-scale time-delay systems using model reduction techniques", in Proceedings of the 14th European Control Conference (ECC'15), Linz, Austria, July, 2015.

¹⁸ C. P-V. and P. Vuillemin, "Input-output stability estimation of $\mathcal{L}_2(\imath \mathbb{R})$ functions", in maybe somewhere.

Part 1 - Preliminaries in mod. ap 000000000000000 Part 2 - p-PDE mod. approx. 000000000 Part 3 - I/O \mathcal{L}_2 stability by mod. app.

Conclusion

Input-output \mathcal{L}_2 stability

Time delay examples¹⁹

$$\mathbf{H}_1(s) = ke^{-\tau s} / (s^2 + w_0^2 - ke^{-\tau s})$$

- Left: brute force interpolation-based
- Right: coupled with boundary search algorithm

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (34/38)

¹⁹ R. Siphai, S. Niculescu, C. Abdallah, W. Michels, K. Gu, "Stability and stabilization of systems with time delay", IEEE Control Systems Magazine 2 (2011) pp. 38-65.

Part 1 - Preliminaries in mod. ap 000000000000000 Part 2 - p-PDE mod. approx.

Part 3 - I/O \mathcal{L}_2 stability by mod. app. 0000000

Input-output \mathcal{L}_2 stability

Time delay examples²⁰

$$\mathcal{S}_2: \dot{\mathbf{x}}(t) = A_0 \mathbf{x}(t) + A_1 \mathbf{x}(t-\tau_1) + A_2 \mathbf{x}(t-\tau_1-\tau_2)$$

- ► Left: brute force interpolation-based
- Right: result obtained in S.I. Niculescu's paper

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (35/38)

²⁰ S-I. Niculescu, "On delay robustness analysis of a simple control algorithm in high-speed networks", Automatica 38 (2002) pp. 885 - 889.

Part 1 - Preliminaries in mod. ap

Part 2 - p-PDE mod. approx. 000000000 Part 3 - I/O \mathcal{L}_2 stability by mod. app. 0000000

Input-output \mathcal{L}_2 stability

Time delay examples²¹

$$S_3: \dot{\mathbf{x}}(t) = A_0 \mathbf{x}(t) + A_1 \mathbf{x}(t-\tau) + \mathbf{b} \mathbf{u}(t), \ \mathbf{y}(t) = \mathbf{c}^T \mathbf{x}(t)$$

- Left: brute force interpolation-based
- Right: coupled with boundary search algorithm

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (36/38)

²¹ SA. Seuret, F. Gouaisbaut, "Hierarchy of LMI conditions for the stability analysis of time-delay systems", Systems & Control Letters 81 (2015) pp. 1-7.

Intro	duo	ctio	n
000)		

Part 3 - I/O \mathcal{L}_2 stability by mod. app. 00000000

Conclusion

Conclusion

What to keep in mind?

Model approximation tailored to large-scale models (of course) but also...

- ▶ Infinite dimensional models (such as)e.g. delay, irrational functions)
- Input output stability estimation (and norms)

IIILIO		
~ ~ ~		

Part 3 - I/O \mathcal{L}_2 stability by mod. app.

Conclusion

Conclusion

Model approximation tailored to large-scale models (of course) but also...

- ▶ Infinite dimensional models (such as) e.g. delay, irrational functions)
- Input output stability estimation (and norms)

The MOR Toolbox is appropriate to treat

- finite order large-scale dynamical models
- infinite order dynamical models
- input-output data dynamical models approximation
- \blacktriangleright norm and stability estimation of \mathcal{L}_2 complex meromorphic functions

http://mordigitalsystems.fr/

art 1 - Preliminaries in mod. ap 000000000000000 Part 2 - p-PDE mod. approx

Part 3 - I/O \mathcal{L}_2 stability by mod. app 00000000

Conclusion

Approximation of infinite dimensional linear dynamical models

... and its applications

Charles Poussot-Vassal

ONERA THE FRENCH AEROSPACE LAB

March 2019 COMET and MOSAR Workshop

Charles Poussot-Vassal [Onera]

Approximation of infinite dimensional linear dynamical models (38/38)